Non-perturbative Quantum Field Theory

Instructors: Elias Kiritsis and Vasilis Niarchos

ABSTRACT: The purpose of the course is to develop several methods that have been used over the years to deal with non-perturbative physics in quantum field theory. Such methods are rarely taught in today's graduate programs. Such methods complement modern approaches to non-perturbative physics using the holographic correspondence. There are two parts. The first deals with non-supersymmetric theories. The second deals with the special properties of supersymmetric theories.

-TOC- Contents

1.	Confinement in Quantum Chromodynamics (12 hours)	1	
2.	Chiral symmetry and chiral symmetry breaking (22 hours)		
3.	The large N_c limit (12 hours)		
4.	Lattice gauge theories (8 hours)		
5.	Supersymmetric non-perturbative dynamics (12 hours)	3	
	5.1 Supersymmetric gauge theories (4 hours)	3	
	5.2 N=2 supersymmetric gauge theories (4 hours)	3	
	5.3 N=1 supersymmetric gauge theories (4 hours)	3	
6.	On the bibliography	4	

This a course spanning 66 academic hours (each hour= 45 minutes).

1. Confinement in Quantum Chromodynamics (12 hours)

- 1. The string picture of hadrons (1 hour).
- 2. The Nielsen-Olesen vortex as stable confined magnetic flux (1 hour).
- 3. Generalities on the realization of global and gauge theories. Elitzur's theorem (1 hour).
- 4. Wilson loops and a criterion for confinement. Timelike loops, spacelike loops. The Wilson loop as a "gauge" of magnetic flux (1 hours).
- 5. Confinement in 2+1 YM theories (1 hour).
- 6. 't Hooft operators and their braiding with Wilson loops (1 hour).
- 7. Magnetic and electric fluxes in a box and duality relations (2 hours).
- 8. Confinement of quarks and monopoles (1 hour).
- 9. Deconfinement at finite temperature and the phase transition (1 hour).
- 10. Confinement with Dynamical Quarks (1 hour).
- 11. Dynamical Quarks at finite temperature (1 hour).

2. Chiral symmetry and chiral symmetry breaking (22 hours)

- 1. The pair-condensate instability (1 hour).
- 2. The Nambu-Jona-Lasinio model and dynamical chiral symmetry breaking (1 hour).
- 3. The chiral symmetry at finite temperature (1 hour).
- 4. Chiral anomalies and their implications (1 hour).
- 5. The $U(1)_A$ problem (2 hours).
- 6. Instantons and the θ parameter (2 hours).
- 7. The chiral selection rule (2 hours).
- 8. Anomalies and the realization of chiral symmetry (the 't Hooft anomaly matching conditions) (2 hours).
- 9. Anomaly matching in QCD. Persistence of mass. Complementarity. (4 hours)
- 10. Chiral gauge theories.(2 hours)
- 11. The trace anomaly. (1 hour)
- 12. The non-perturbative SU(2) (Witten) anomaly. (1 hour)

3. The large N_c limit (12 hours)

- 1. Generalities. (1 hour)
- 2. The Gross-Neveu model. (2 hours)
- 3. The large- N_c limit in QCD and 't Hooft's string expansion. (3 hours)
- 4. Meson-Glueball phenomenology at large- N_c . (3 hours)
- 5. θ dependence in large-N_c YM. (1 hour)
- 6. Baryons in the large- N_c expansion. (2 hours)

4. Lattice gauge theories (8 hours)

- 1. The Wilson formulation. (2 hours)
- 2. The strong coupling expansion.(1 hour)
- 3. The character expansion (1 hour)
- 4. Z_N gauge theory and Kramers-Wannier duality. (1.5 hours)
- 5. Wilson loops and 't Hooft loops. (0.5 hours)
- 6. Phase diagrams of lattice theories. (2 hours)

5. Supersymmetric non-perturbative dynamics (12 hours)

5.1 Supersymmetric gauge theories (4 hours)

- 1. Introduction and overview of phenomena that will be studied.
- 2. Supersymmetry multiplets, supersymmetric Lagrangians (N = 1, 2)
- 3. Effective actions, holomorphy and symmetries, non-renormalization theorems.
- 4. Phases of gauge theories.
- 5. Exact beta-functions

5.2 N=2 supersymmetric gauge theories (4 hours)

- 1. The perturbative regime (SU(2)).
- 2. The exact quantum moduli space.
- 3. The BPS spectrum.
- 4. The generalization of the Seiberg-Witten theory to other gauge groups.
- 5. More on duality, Argyres-Seiberg duality, Gaiotto generalizations.

5.3 N=1 supersymmetric gauge theories (4 hours)

- 1. Perturbative N=1 Supersymmetric QCD, symmetries and vacua.
- 2. Non-perturbative sQCD in the various regimes (pure sYM, $N_{fi}N_{c}$ no vacuum, $N_{f}=N_{c}$ confinement with chiral symmetry breaking, $N_{f}=N_{c}+1$ confinement without chiral symmetry breaking, $N_{f} > N_{c}+1$)
- 3. The 't Hooft anomaly matching conditions in sQCD.

- 4. Seiberg duality: formulation, implications, checks.
- 5. Other examples of Seiberg duality
- 6. a-maximization: towards an a-theorem.
- 7. Example: adjoint-SQCD

6. On the bibliography

The main parts of sections 1-4 will be based on a combination of the old material of Preskill's lectures, [1] as well as from various other lecture notes and books like:

- 1. Coleman's Erice Lectures, [2]. This has relevant chapters well explained for beginners for solitons, instantons and large N_c ,
- 2. Frishman's and Sonennschein's book [3]. It contains for our purposes, Instantons in QCD, magnetic monopoles and (baryon) solitons in the Skyrme model, Large N_c methods in QCD. It also contains relevant two dimensional physics namely, the 't Hooft solution of two dimensional QCD, and the physics of baryons.
- 3. The standard review on basic lattice methods [4]
- 4. 't Hooft's classic review on instantons and the $U(1)_A$ problem, [5].
- 5. 't Hooft's classic review on Monopoles, Instantons and Confinement, [6].
- 6. Manohar's lectures on Large- N_c QCD, [7].

The lectures on non-perturbative methods in supersymmetric theories will be based on mainly references [8] and [9]. Further references in this directions with different emphasis are given in [10]-[16].

References

- Preskill
 [1] John Preskill's lecture notes available from his web page at Caltech, http://www.theory.caltech.edu/~preskill/notes.html#qcd
- Coleman [2] S. Coleman, "Aspects of symmetry", the Erice lectures. Table of contents
 - Cobi [3] Y. Frishman and J. Sonnenschein, "Non-Perturbative Field Theory: From Two Dimensional Conformal Field Theory to QCD in Four Dimensions", Cambridge University Press, Table of contents
- Itzykson[4] J. M. Drouffe and C. Itzykson, "Lattice gauge fields",
Physics Reports 38 (1978) 133-175.

tHooft1	[5]	G. 't Hooft, "How instantons solve the $U(1)_A$ problem", Physics Reports 142 , (1986) 357-387.
tHooft2	[6]	G. 't Hooft, "Monopoles, Instantons and Confinement", Lecture notes.
Manohar	[7]	A. Manohar, "Large-N QCD", Les Houches Lecture notes.
lerche	[8]	W. Lerche, "Introduction to Seiberg-Witten theory and its stringy origin", http://arxiv.org/abs/hep-th/9611190
argyres	[9]	P. Argyres, "Introduction to global supersymmetry", Lecture Notes
seiberg	[10]	, K. Intriligator, N. Seiberg, "Lectures on supersymmetric gauge theories and electric-magnetic duality", http://arxiv.org/abs/hep-th/9509066
flume	[11]	R. Flume, L. O'Raifeartaigh, I. Sachs, "Brief resume of Seiberg-Witten theory", http://arxiv.org/abs/hep-th/9611118
bilal	[12]	A. Bilal, "Introduction to supersymmetry", http://arxiv.org/abs/hep-th/0101055
peskin	[13]	M. Peskin, "Duality in supersymmetric Yang-Mills theory", http://arxiv.org/abs/hep-th/9702094
quevedo	[14]	F. Quevedo, "Cambridge lectures on supersymmetry and extra dimensions", arXiv:1011.1491
Wipf	[15]	A. Wipf, "Non-perturbative methods in supersymmetric theories", hep-th/0504180.
rassler1	[16]	M Strassler "An Unorthodor Introduction to Supersymmetric Gauge Theory"

strassler1[16]M. Strassler, "An Unorthodox Introduction to Supersymmetric Gauge Theory",
http://arxiv.org/abs/hep-th/0309149.