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Quantum Entaglement 1.0

• Consider a pair of particles with spin 1/2, produced from a source in a

spin-singlet state:

|ψ⟩ =
(
| ↓⟩1 ⊗ | ↑⟩2 − | ↑⟩1 ⊗ | ↓⟩2

)
• This is the simplest version of an entangled state of two particles (where

we focus only on the spinz degree of freedom)

• The particles move in opposite directions, and we pose two detectors far

away that can measure the spinz of the particles.

• If one detector measures the spinz = 1
2 for particle No 2, then he auto-

matically knows that particle No 1 is in a spinz = −1
2 state.
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Einstein-Podolsky-Rosen (EPR) Paradox

• In 1934 Einstein-Podolsky-Rosen (EPR) wrote a paper where they de-

scribed a variant of the previous experiment, and considered the outcome

to be a “flaw” of the quantum theory.

• They spoke about a “spooky action at a distance”, because the result of

the remote experiment is known immediately after the first experiment.

• They also wrote a 1935 paper where they further argued on the “unphys-

ical nature” of QM.

• This made it to the New York Times before publication.
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• Einstein complained in writing to the NYT as they obtained “unauthorised

information”(from Physical Review)

• A version of the argument using spins was later made by David Böhm in

1951.
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• In 1964, John Bell, motivated by the EPR Paradox, and wanting to differ-

entiate local hidden variable theories, derived his famous Bell inequalities,

which is a sharp formulation of the EPR problem.

• In 1982, Alain Aspect did the first set of experiments using entangled

photons to show that Bell’s inequalities were violated, in agreement with

QM.

• Many experiments followed and the first (almost) loophole-free experi-

ment was done in 2015 by R. Hanson

• There has been a recent Bell-violation experiment using the light of two

distant (8 Gly) quasars
D. Rauch et al.
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Quantum Information

• The entanglement of two or more systems is a property of QM.

• It is a matter of “initial conditions” or dynamics.

• The reason that Quantum Computation has an important advantage over
classical computation is due to entanglement.

• This has lead to the development of Quantum Information Theory: a
transcript of Classical Information Theory to quantum systems.

• Key parts of Quantum Information Theory are

♠Quantum Cryptography

♠Quantum Computation

♠Quantum Teleportation

♠Quantum Complexity Theory
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Entanglement Entropy

• The simplest measure of entanglement of two quantum sub systems A
and B is the entanglement entropy.

• The general pure state of the total system A×B can be written as

|ψ⟩ =
∑
a,m

Ca,m|a⟩A ⊗ |m⟩B

• In general this is an entangled state of A and B.

• In the special case Ca,m = DaEm then the state is not entangled:

|ψ⟩ =
(∑

a
Da|a⟩A

)
⊗

(∑
m
Em|m⟩B

)

• We imagine that we can not perform experiments on system B but only
on A.

• To calculate what we expect for the experiments of system A, we must
sum over all the possibilities in B we cannot measure.
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• Because of this loss of information, the system A alone, as a quantum

system is now described by a density matrix ρA.

(ρA)ba =
∑
m
C∗
am Cbm = (C† · C)ba , ρB = C · C†

• Reminder: a diagonal density matrix

ρA =


p1 0 0 · · ·
0 p2 0 · · ·
0 0 p3 · · ·
... ... ... . . .

 ,

p1 ↔ |1⟩A
p2 ↔ |2⟩A
p3 ↔ |3⟩A

...

says that the system is in state |ψ1⟩ with probability p1 and so on.

• These are CLASSICAL Probabilities.

• Always

Tr[ρA] =
∑
i

pi = 1
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, but

Tr[ρ2A] =
∑
i

p2i ≤ 1.

• Tr[ρ2A] = 1 if and only if the system is in a pure state (p1 = 1, p2 = p3 =

· · · = 0).

• The entanglement density matrix ρA contains all the information of the

entanglement of the system A with the system B.

• The entanglement entropy is constructed as the standard Von Neumann

entropy:

Sentangl,A ≡ −Tr[ρA log(ρA)] = Sentangl,B = −Tr[ρB log(ρB)] = −
∑
i

pi log(pi)

• It depends on the original state of the entangled system, as well as the

subsystems themselves.

• When the original system A×B is in a non-entangled state, then p1 = 1,

p2 = p3 = · · · = 0 and the entanglement entropy vanishes.
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• If we consider the two systems to be spatial parts of the total system we

have the following picture

• If the total system is in a pure state, SA = SB.

• Therefore the entanglement entropy cannot be extensive=not propor-

tional to volume!
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Thermodynamic Entropy

• Entropy was first defined in thermodynamics.

• A thermal system can be thought of as a complex system in a mixed

quantum mechanical state, with thermal density matric

ρthermal =
1

Z

∑
n
e−

En
T |n⟩⟨n|

• This is equivalent to the statement that the system has probability

pn = e−
En
T to be in the energy eigenstate |n⟩.

• It can also be thought of as a system in contact (=strong interaction)

with a heat bath. The density matrix is due to the loss of information due

to the interaction with a heat bath.

• It can also be a quantum mechanical system in a pure state, but at high

energy.
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• Lloyd’s theorem indicates that for generic states in such a system, a

microcanonical thermal density matrix is a very good approximation to the

state of the system if the density of states is large.
Lloyd, 1987

• The thermal entropy is again given by a Von Neumann formula

Sthermal = −Tr[ρthermal log(ρthermal)] =
1

T

∑
n Ene

−En
T∑

n e−
En
T

• It is well known that the thermal entropy is extensive!

• There seems to be absolutely no relation between entanglement entropy

and thermal entropy.
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Properties of the Entanglement Entropy

• Entanglement properties and entropy of few body systems are easy to

compute an analyse.

• However, the entanglement entropy in many body systems and Quantum

Field Theory are notoriously difficult to compute.

• Even in free theories in d > 2 it is a VERY difficult observable to compute.

• Moreover, in continuum QFTs it is infinite.

• There are some general properties that can be proven without solving

the theory:

• Consider a system and two spatial subsystems A,B.
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• Then, the following inequality holds:

SA∪B + SA∩B ≤ SA+ SB.

• It is known as the strong subadditivity condition and its proof is very

lengthy in QFT.

• There is no “understanding” why such inequalities hold!

Geometry and Entanglement, Elias Kiritsis

7-



Entanglement Entropy in continuum QFT

• In continuum QFT, we have a continuum number of degrees of freedom

(a few per space point).

• We consider local QFTs because this is what we observe in nature. This

means a space-time point interacts only with its “closest neighbors”.

• When we separate space in A and its complement as in

we expect that most of the entanglement entropy of A with the complement

(B) will come from the surface Σ separating A and B.
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• Consider a QFT in 3+1 dimensions. We fix a time t0, and we separate

the three-dimensional space R3, into the interior of a sphere of radius R

(this is region A) and its complement: the exterior of the sphere up to

infinity.

• To calculate the entanglement entropy of the interior to the exterior

degrees of freedom we must introduce a minimum length ϵ, (that could be

a lattice spacing), (otherwise SA is infinite):

SA = a2

(
R

ϵ

)2
+ a0 log

R

ϵ
+ a′0 +O(ϵ)

• The leading (divergent) contribution scales as the area of the entangling

surface (here a two-dimensional sphere).
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• Although this is expected from the locality of the QFT, it rimes with

another similar observation made by Bekenstein in 1972:

♠The thermal entropy of black holes is proportional to the area of the

horizon rather than the volume that anyone would expect.

• F. Wilczek in the 90s, suggested there may be a connection between the

entanglement entropy in QFT and the thermal entropy of Black Holes, but

nobody understood why and how.
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The Einstein-Rosen (ER) bridge

• After the EPR paradox papers in 1934-1935, Einstein and Rosen (ER)

wrote another paper in 1935 on the Schwarszchild solution, that is describ-

ing the simplest non-rotating black hole:

ds2 = −
(
1−

2GM

r

)
dt2 +

dr2(
1− 2GM

r

) + r2dΩ2
2

• In this coordinate system the horizon is at r = 2GM and the singularity

at r = 0.

• They considered the fixed t = 0 surface, and found that the metric there

is regular, and it describes the geometry of a worm-hole (a name coined by

J. Wheeler).

• They wanted to find ways of avoiding the Schwarzschild curvature singu-

larity.

• This geometry became known as the Einstein-Rosen (ER) bridge (that

linked two different universes).
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• One side of this worm-hole is the usual asymptotic infinity, far from

the source. The other is in another universe which is not visible in the

Schwarzschild coordinates.
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The Schwarzschild metric in Szekeres-Kruskal

coordinates

• We charge coordinates from r, t to X,T so that

ds2 =
32(GM)3

r
e−

r
2GM (−dT2 + dX2) + r2dΩ2

2 , r → r(T,X)

−∞ < T2 −X2 < 1 , −∞ < X < +∞

• The horizon is at X2 = T2 and the singularity is at T2 −X2 = 1.

• This is a solution of the vacuum Einstein equations that maximally ex-

tends the Schwarzschild solution.

• It contains two disconnected boundaries isomorphic to the standard two-

sphere at infinity.

• The T = 0 slice metric is the ER bridge (worm-hole).
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• The T = 0 three-dimensional space is the ER bridge (wormhole).
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A quick recap on worm-holes

• Worm-holes are the darlings of science-fiction novels and movies.

• They are “tunnels” in space-time that connect different, (and sometimes
distant) points in space-time.

• They ARE NOT traversable in classical Einstein gravity if matter behaves
properly (null energy condition).

• But this changes in quantum gravity.
Jafferis+Zlokapa+Lykken+Kolchmeyer+Davis+Lauk+Neven+Spiropulu
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The gauge-theory/gravity duality conjecture

• The gauge-theory/gravity duality is a duality that relates a string theory

with a gauge theory.

• It also similar to say that it relates a quantum gravity theory (coming

from the string theory) and a QFT (the gauge theory).

• The microscopic quantum degrees of freedom are the QFT degrees of

freedom. There are many quantum degrees of freedom in number: N → ∞.

• In the regime where the microscopic quantum degrees of freedom interact

strongly, the dynamics of system is described by semiclassical gravity (and

other interactions).

• One can think of this as follows: quantum (semiclassical) gravity emerges

from the collective interaction of microscopic, strongly-interacting quantum

degrees of freedom.
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• In a sense, gravity is the analogue of what hydrodynamics is to a quantum

many-body system.

• The prime example is the AdS/CFT correspondence
Maldacena 1997

• It states that N=4 four-dimensional SU(N) gauge theory (gauge fields,

4 fermions, 6 scalars) is equivalent to ten-dimensional IIB string theory on

AdS5 × S5

• The gravitational theory has 6 extra emergent dimensions.

• The space (AdS5) is non-compact and has a single boundary, at r = 0.
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• This is a bulk (gravity) /boundary (QFT) correspondence or duality.

• The bulk geometry (AdS5) corresponds to a state (the ground state) of
the dual QFT.
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The gauge-theory at finite temperature

• The finite temperature ground state of the gauge theory corresponds to
a different solution in the dual string theory: the AdS-Black-hole solution

E. Witten, 1998

• This solution has a horizon that is hiding the black-hole singularity

• The (thermal) Bekenstein entropy of the black holes is proportional to
the horizon area. It is equal to the thermal entropy of the gauge theory.
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Entanglement Entropy (Ryu-Takayanagi formula)

• We consider a holographic QFT on R4.

• Separate a region B inside space ∼ R3 and we would like to calculate the

entanglement entropy associated to it.

• We have described this calculation earlier.

• What is the same calculation in the gravitational dual?
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SB =
Aminimal

4ℓ2P

Ryu-Takayanagi

• This formula was originally guessed, and then it was generalized to time-

dependent contexts.
Hubeny-Rangamani-Takayanagi

• It was proven later by Lewkowitz and Maldacena to give the same answer

as the QFT formula.

• It is amazingly simpler to compute it in gravity than in QFT.

• The UV divergence in the QFT is appearing as an IR divergence in gravity

(near the boundary).
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• The Strong Subadditivity property

SA∪B + SB∪C ≥ SA+ SC .

can be proven with one figure:

• This calculation can be generalized to a QFT at finite temperature.

• There are phase transitions in entanglement entropy that can be corre-

lated with quantum phase transitions in the QFT.
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Are entanglement and thermal entropies

different?

• We have argued earlier that entanglement entropies and thermal entropies

measure different things.

• Consider a QFT4 on de Sitter space.

• This is the (very symmetric space) that solves Einstein’s equations with

a positive cosmological constant.

• Our universe today is closer and closer to de Sitter space.

• In global coordinates

ds2 = −dt2 + cosh2(Ht)dΩ2
3
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• We can compute the entaglement entropy SEE of one of the two hemi-

spheres of the spatial S3 using the Ryu-Takayanagi formula.

• Consider another coordinate system (static coordinates)

ds2 = −
(
1− r2H2

)
dτ2 +

(
1− r2H2

)−1
dr2 + r2dΩ2

2

• It describes a static observer in de Sitter.
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• Now, there is a cosmological horizon at r = 1
H .

• There is a Bekenstein thermal entropy associated with this horizon,
Sthermal

SEE = Sthermal

Ghosh+E.K.+Nitti+Witkowski

• This realizes the suspicion of the 90’s

• An entanglement entropy for one observer becomes a thermal entropy
for another observer.

Geometry and Entanglement, Elias Kiritsis
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ER=EPR

• Now the two boundaries each correspond to (the same) QFT: → QFTL×
QFTR.

• The black-hole solution corresponds to the thermofield double state

|ψL,R⟩ =
∑
n

e−
En
2T |n⟩L ⊗ |n⟩R

• This is a pure quantum state for the product of the two QFT’s.
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• In this state the two theories are strongly entangled.

• We have a direct correlation between strongly entangled pair of QFTs

(EPR) and a ER bridge that connects the two parts of the entangled pair.
Maldacena+Susskind

16-



“EPR=ER”

• Strong quantum entanglement between two systems, appears as a ER

bridge (worm-hole) that connects them in emergent gravity.

• If one cuts in different ways the ER worm-hole, the smallest area gives

the entanglement entropy.
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• No observer in one theory can communicate, or make experiments in the

other theory.

• We will therefore calculate the entanglement density matrix by summing

over the theory on the left.

ρR =
∑
n
e−

En
T |n⟩R R⟨n|

• ρR is the thermal density matrix at temperature T , the Hawking temper-

ature of the black hole.

• The entanglement entropy between the two black holes is equal to the

thermal entropy of a single black hole.

• The extendend Kruskal solution with two asymptotic boundaries is the

“purification” of the mixed state of a Schwarzschild black hole.
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Quantum entanglement as space-time fabric

• It can be shown in full generality that entanglement entropy always sat-
isfies a differential relation akin to the first law of thermodynamics.

Faulkner+Guica+Hartman+Myers+Van Raamsdonk

• With some mild assumptions this first law leads to the linearized Einstein
equations for gravity.

Jacobson, Faulkner+Guica+Hartman+Myers+Van Raamsdonk

• It also provides a holographic map between the QFT and gravity data.

• The modular Hamiltonian associated to an entanglement entropy is gen-
erating a new “time” that is the time of a freely-falling observer in a grav-
itational field.

Jafferis+Lambrou

• All of this suggests that quantum entanglement of the underlying QFT
degrees of freedom translates into the geometry of space-time and the laws
of gravitation.
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Black Holes again

• Black holes have the highest entropy density from any physical system.
Bekenstein

• They are the fastest scramblers of all systems.
Susskind

• They are the most chaotic quantum systems in nature as they saturate
the quantum Lyapunov exponent bound.

Maldacena+Shenker+Stanford

• They are the most strongly entangled systems in nature.
Maldacena+Susskind

• They are potentially the most powerful quantum computers because of
storage capacity and degree of entanglement.

Lloyd, Dvali

• And for (near) extremal black holes, quantum gravitational effects matter.
Kitaev, Maldacena,....

Geometry and Entanglement, Elias Kiritsis
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Epilogue

• In emergent quantum gravity, the space-time dimension and metric are

avatars of the strong entanglement of the underlying (many) microscopic

quantum degrees of freedom.

• The dynamics of the geometry emerges as thermodynamics and hydro-

dynamics emerge from quantum many-body systems.

• These are radical departures from Einstein’s ideas that permeated our

understanding of gravity and space-time till today.

• What do they tell us about the black-hole information paradox?

• What do they tell us about the second half-life of evaporating black-holes?

• Is the argument of Preskill+Harlow that the holographic correspondence

is a quantum error correcting code generally applicable?

• Is there a precise correspondence between tensor networks and gravity?
19



• Is the Kitaev/Maldacena conjecture (any quantum system with a maximal

Lyapunov exponent is dual to a black hole) true in general?

• How can we test these ideas in observable gravity?

• In all of the above, there were crucial contributions from other fields:

Quantum Information (Kitaev, Preskill), Condensed Matter and Statistical

Physics (Kitaev, Sachdev, Swingle) and recently the first experiments.
Jafferis+Zlokapa+Lykken+Kolchmeyer+Davis+Lauk+Neven+Spiropulu

• But, most of the work lies ahead.

Geometry and Entanglement, Elias Kiritsis
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THANK YOU!
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A quantum traversable Wormhole=Quantum

Teleportation

Jafferis+Zlokapa+Lykken+Kolchmeyer+Davis+ Lauk+Neven+Spiropulu

• It is known that the Sadchev-Ye-Kitaev model of 1d (quench) disordered

Majorana fermions is dual to 2d quantum gravity on AdS2.
Kitaev, Maldacena+Shang

• Kitaev slightly modified the SY model, and showed by explicitly solving

it that its quantum Liapunov exponent satisfied the Maldacena bound,

suggesting that it is dual to a black hole in two dimensions. This is known

as the Jackiw-Teitelboim or AdS2 black hole.

• One can consider two decoupled SYK models at finite temperature to

construct an entangled pair of two AdS2 black holes.
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• So far no traversable wormhole exists between the two SYK models.

• Jafferis, Gao and Wall had shown that a weak coupling between the two

SYK Models can induce quantum-induced traversability of the semiclassical

wormhole which is classically not traversable because of the singularity.

• This setup of a quantum-traversable wormhole was realized approximately

and experimentally
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• Due to experimental limitations the SYK models were ”sparsified”.

• Despite this, it was shown that the simplified model has all the tell-tale

properties of SYK model namely:

♠perfect size winding,

♠coupling on either side of the wormhole that is consistent with a negative

energy shockwave,

♠a Shapiro time delay,

♠causal time-order of signals emerging from the wormhole,

♠and scrambling and thermalization dynamics.

• The experiment was run on the 53-qbit Google Sycamore quantum pro-

cessor.
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Tensor Networks, Entanglement and Anti-de

Sitter Space

• Brian Swingle was between 2006-2010 a graduate student of famous condensed matter
physicist Xiao Gang Wen at MIT.

• His project was the study of tensor networks as ansätze for solving strongly-coupled 1d
problems.

• His curiosity brought him to sit in a string theory class, where he learned about the
AdS/CFT correspondence.

• In May 2009 he posted a solo paper on the ArXiV, where he argued that Tensor Networks
for quantum critical systems generate a discretization of AdS space via their entanglement
structure.

• The paper was submitted to the leading journal of the field (JHEP) and was rejected
after two years of back and forth.

• It was resubmitted in 2011 to Phys Rev D, and was accepted after one year.
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Quantum Chaos, Scrambling and Black Holes

• A classical chaotic system is one where infinitesimal changes in the initial

conditions are exponentially magnified in the later evolution (the ”butterfly

effect”).

{x(t), p(0)}PB =
δx(t)

δx(0)
∼ eλt

• λ is known as the (classical) Lyapunov exponent and controls the classical

chaotic behavior of a system.

• The quantum analogue of this condition defines the quantum Lyapunov

exponent.

{x(t), p(0)}PB → [x̂(t), p̂(0)] : ⟨ψ| [x̂(t), p̂(0)]2 |ψ⟩ ∼ eλt

and this can be generalized to arbitrary ”simple” operators in a QFT:

−⟨ [V (t),W (0)]2 ⟩β ∼



1

N
, t ≤ trelax,

1

N
eλt, trelax ≤ t ≤ tscrambling.
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• This is called scrambling and is associated to quantum chaos.

• This is correlated with the behavior of the out-of-time ordered correlator
(OTOC)

⟨ V (t)W (0)V (t)W (0) ⟩β ≃ 1−
eλt

N

• The Maldacena-Shenker-Stanford bound on quantum chaos:

λ ≤
2πT

ℏ
• Black holes saturate the bound!

• Kitaev has revamped the 1d-model of Sachdev-Ye with Majorana fermions
and quenched disorder and has shown that it saturates the Maldacena chaos
bound above.

• This 1-d theory in the thermal state, was shown to be dual to 2d JT
gravity and in particular to the AdS2 back hole.

• There is a conjecture: any system that saturates the Maldacena chaos
bound is dual to an gravitational Black hole.
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The modular Hamiltonian of entanglement

• Given a region A, we compute the entanglement density matrix ρA asso-

ciated to the region A, after summing all the rest in the theory that does

not belong to A.

• We define the modular Hamiltonian associated to the region A as HA
that satisfies

e−HA ≡ ρA , SA = Tr[HA e−HA]

• HA is Hermitian but possibly unbounded and has UV divergences etc, but

can be handled most of the time in more refined entanglement observables

(like relative entropy).

• It can be used to evolve the operators O of the subsystem A in a fictitious

time, α

O(α) ≡ eiαHA O e−iαHA , T r[ρAO(α)] = Tr[ρAO]

• For every entangling region A we have a modular Hamiltonian!.
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• It has been proposed, that the modular Hamiltonian of the entanglement

entropy between the black hole and a freely falling observer generates the

time coordinate for this observer.
Liu, Jafferis+Lambrou
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