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1 Chapter 1



2 Chapter 2

Section 2.2: Relativistic strings

e In equation (2.2.15) the last sign should be reverted to agree with the definition

47 (SSP i

T p=——n 9P _
T/ —detg 0gf 2

1
{aax 05X — §gaﬂgwavX - &;X} : (2.0.1)
Thanks to Richard Garavuso for bringing this to my attention

e Equation (2.2.34) should read

~ X/0X"

o=0

§S = —AT / PE6X'D,0_X,) — T / dr [X;,,CSX“

] (2.0.2)

o=0
Thanks to Moritz McGarrie for bringing this to my attention.

e Equations (2.2.38) and (2.2.40) should read respectively

1 .
TE (X2 4+ X"*) =0, (2.0.3)

s

1 .
Tl(]:TOl:e_QX'X/:O ) TOOZTll:

and

1 1

T++ - €2 8+X . 8+X 5 T__ - —8_X . 0_X 5 T+_ - T_+ - O (204)

in order to agree with the definition in (2.2.15).
Thanks to Richard Garavuso for bringing this to my attention

Section 2.3.2: Open strings
Equation (2.3.28) should read as

I
DD : X'(r,0) =2+ wlo+v20, Z X n in sin(no). (2.0.1)
neZ—{0}

Thanks to Jose-Ignacio Rosado-Sanchez for bringing this to my attention.



3 Chapter 3

Section 3.1: Covariant Canonical Quantization

e Equations (3.1.11) to (3.1.12) should be replaced by

0% 14 N=0 (3.0.1)
where N is level-number operator
N=> tpm- am (3.0.2)
m=1

For open strings afy = V20,p* and the mass-shell condition becomes

Pm? =N -1 (3.0.3)

. H oy
For closed strings, afy = gi}% and the mass shell condition becomes

m? = 4(N — 1) (3.0.4)

We can deduce a similar expression .....

Thanks to Eduard Balzin for bringing this to my attention.

Section 3.4.1: Open strings and Chan-Paton factors

e In equation (3.4.8) the order of 7q and 75" should be interchanged so that it is
compatible with later equations:

Q : psig) — e (g )i [P 5,57 ()

Thanks to Jose Rosado Sanchez for bringing this to my attention.

e The text between equations (3.4.10) and (3.4.15) should read
Unless ¢ is a sign, ¢* = 1, the only solution to (3.4.10) is y7q = 0. Taking the
determinant of (3.4.10) we obtain
N=1. (3.0.1)

Therefore both € and ¢ are signs.

We will now derive further constraints on e and (, and eventually classify the
solutions of (3.4.10). The strongest constraints can be obtained by considering
the massless vector states

A= o > " p ig) A - (3.0.2)
]

6



The vectors that will survive the ) projection have eigenvalue 1. Their CP wave-
functions A must satisfy
A= —cva M 75", (3.0.3)

where we used (3.4.5). The gauge group is the space of solutions of (3.4.13) where
A is hermitian.

So far, such constraints on the phases are true for any state of the open string.
However, for the vectors there is a further constraint: that their CP matrices form
a Lie algebra. This is necessary for the consistency of their interactions. Using,
(3.4.13) we obtain for the commutator of two matrices

Section 3.5: Path integral quantization

e Equation (3.5.1) on page 37 should be replaced by:
_ [ DgDXY s, (gxm)

‘/gauge

Z

where we used Minkowski signature for consistency with the rest of this section.

e Equation (3.5.6) on page 38 should be replaced by:

Vdet PPt = / DeDb o 5s S PEV I hbar Ve

Section 3.7: BRST primer

e Equation (3.7.6) should read

S(baF?) = ie[i BAF(¢) + bac®0o, F*($)] = ie(Sy + Ss) . (3.0.1)

Thanks to Eduard Balzin for bringing this to my attention.



Section 3.8: BRST in string theory and the physical spectrum

e Equation (3.8.1) on page 42 should become:

opX* = ie(ctOy +c ) X",
Spct = de(ctOy +c 0 )t (3.0.1)
opby = ie(TF +T9".

The following explanation may also helpful: The variation for the b ghosts is

different from (3.7.5) because we integrated out the antighost B. Indeed, this

field implements the gauge fixing condition via Sp = —1= [ By (g7 — hTF) +

B__(g=~ — h™7). The stress tensors now are modified because of this part by
Tiy — Tyt — Biy The g™ equations now imply Byt = T4 and this explains
the variation of the b ghosts above.

e Equation (3.8.3) on page 42 should become:

Tilj_ = (2b++8+c+ + 8+b++c+) s Tf}i = (Qb,,a,cf + 3,(),,67) s

e Equation (3.8.6) on page 43 should become:

C+ — Z Cn e—m(T-‘rU) e Z Cn e*in(Tfa) 7
byt = an e ) b =3 by, e )

e Equation (3.8.19) on page 45 should become:

Qp=Qot+Qi+ - , Qu=co(Ly—1) , Q1 =c1 L +c 1L +co(c_1bi+b_icp)



4 Chapter 4

Section 4.1: Conformal transformations

e On page 50 and after equation 4.1.7 the phrase “Indeed for d > 2, (4.1.7) implies
that the parameter € can be at most quadratic in z. 7 This is because (4.1.7) is
cubic in derivatives and non-degenerate.

should be changed to:

Indeed for d > 2, (4.1.7) implies that the parameter 0 - € can be at most linear in
x”. This is because the operator §,,00 + (d — 2)0,0, is non-degenerate.

Thanks to Lorenzo Battarra for bringing this to my attention.

e Equation (4.1.11) should read
P,=—i0, , Ju=1i(x.0,~1,0,) , K,=—i[2?0,—2x,(z-0)] , D=iz-0
(4.0.1)

in order to be consistent with the commutation relations.

Thanks to Eduard Balzin for bringing this to my attention.

Section 4.2: Conformally invariant field theory

e On page 52, in equations 4.2.2 and 4.2.3, & — &’ in the right hand side. Thanks
to M. McGarrie for bringing this to my attention..

e On page 53, and in between equations 4.2.8 and 4.2.9 the cross ratio should be
corrected to

212734

213724

Thanks to Lorenzo Battarra for bringing this to my attention.
Section 4.3: Radial quantization

e On page 54 in the paragraph above equation (4.3.2) the sentence “We already
saw that { ...... cylinder.” should be replaced by:

* We already saw that £y was the generator of dilatations on the plane, z — Az
so {y + £y corresponds to time translations on the cylinder.”



e On page 56, the phrase ”...where the last line is the desired result copied from
(4.2.4)” after equation (4.3.13) should be amended to ”...where the last line is the
desired result copied from (4.2.4), and is valid for primary fields only.”

Thanks to B. Pioline for bringing this to my attention.

e On page 56, last line, the term ”quasiprimary” should read ”primary”

Thanks to B. Pioline for bringing this to my attention.

Section 4.6: The Hilbert space

e In equation (4.6.6) on page 60, A (1,1) — A (L, 1)

2z

Thanks to B. Pioline for bringing this to my attention.
Section 4.7: The free boson

e Equation (4.7.9) on page 62 and the text/equations up to equation (4.7.11) should
be replaced by:

N N N
e 1 ] ]
<| | e PiX (zi, 1)> = 27 ( E pi> exp [—5 g pipi (X (2, %) X (2, %)) | ,

i=1 i=1 ij=1

where the second step in the above formula is due to the fact that we have a free
(Gaussian) field theory. The momentum conserving J-function originates in the
path integral from the zero mode integration of X. Introducing a short-distance
cutoff € we obtain

N N N

| | ‘/ 62 2 K% N 2 EQ 5
hE) )= Z ' = D iy S (Zitapi II L p2

<i=1 i(z“ Zl)> = 2m0 ( pz) eXp 4 Z DiPj log ‘ZU| o ( 1 ) €2P ’

i=1 ij=1 i=1
i#]

We observe that the momentum conservation is responsible for the IR divergences
to cancel from the correlator above. Moreover, the normal ordering of the expo-
nentials removes the dependence on the short distance cutoff € as this originates
from self-contractions inside a single exponential. We therefore obtain

N N N
1 ) 3 4 3
Gy = < Vi (2 Zz)> =m0 ( pi) o 4 pipjlog |Zij’2
i=1

i=1 4,j=1
Ve
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Section 4.8: The free fermion

e The sign of the fermion action (4.8.2) has changed to be compatible with the
OPE’s:

1 1 _ _
S = gy /d2x 'yt = %/dzz(wﬁw + o).

Thanks to Eduard Balzin for bringing this to my attention.

Section 4.9: The conformal anomaly
e The second sentence after equation (4.9.7) should read: Substituting in (4.9.7)

we find equality iff A = —c/12.
Thanks to Eduard Balzin for bringing this to my attention.

Section 4.12: Free fermions and O(N) affine symmetry

e The sign of (4.12.1) should be opposite:

™

S = Qi/d% V.

e The previous to last sentence before equation (4.12.28) should read: By going to
the basis 1+ = !Fih? it is easy to see that the Ji? eigenvalues of ¢ are +1.

Thanks to Eduard Balzin for bringing this to my attention.

11



Section 4.13.1: N = (1,1); superconformal symmetry

e The sign of the fermion action should be changed in (4.13.1)

_ 2 5 2 (13 TaT
S = QWEE/dZ@XaX+2ﬁ£§/d 2(YOp + o).

e The definition of the superfield in (4.13.14) should be amended to agree with the
change of sign of the action

X(2,2,0,0) = X + 0 + 00 + 00F

e Equation (4.13.14) should read

1

5= 272

/ d?z / dfdd DeX DyX .

Thanks to Eduard Balzin for bringing this to my attention.

Section 4.13.3: N = (4,0); superconformal symmetry

e The OPE in equation (4.13.31) should read

(NP () — 458 o 2J%(w) aJ(w) B T(w)
GY(2)G" (w) —(Z_w)3+2 Bex (Z_w)2+(z_w> + 20 —<Z_w)+(;071)

Thanks to Eduard Balzin for bringing this to my attention.

Section 4.14: Scalars with background charge

e The sign in in front of A in equation (4.14.17) must be opposite as below

Ll =L, , J =J tASmo.

Thanks to Harold Erbin for bringing this to my attention.

12



Section 4.15: The CFT of ghosts

e Equations (4.15.13) and (4.15.14) on page 84, should read

clz)=> 2" U N, | o =c,
n

bz)=> 2" b, , b =eb_,.

to account for the fact that NS and R sectors have different modding.
Thanks to B. Pioline for bringing this to my attention.

Section 4.16: CFT on the disk

e The sixth sentence before equation (4.16.1) should read Upon a further conformal

mapping w = =, the upper-half plane is mapped to the unit disk (the interior

of the unit circle) |w| < 1.

Thanks to Eduard Balzin for bringing this to my attention.

Section 4.18: Compact Scalars

e In equation (4.18.13) detG — detg

1 / dAm m 2
o2 = 5 [ @ /ety (= Y [ HAmml

mi,ma2

Thanks to Eduard Balzin for bringing this to my attention.

e Above equation (4.18.18) the correct reference to the appendix should be :

...(see appendix C.4) on the integer m.

Thanks to Eduard Balzin for bringing this to my attention.

e Equation (4.18.39) should read

det G _ Gt Biy) mi+n;7)(m;j+n;T
Zun(G,B) = o DN i ), (4.0.1)

G (V/anm)™

Thanks to Eduard Balzin for bringing this to my attention.

13



Section 4.20: Bosonization

e In equation (4.20.8), and (4.20,9), the n-functions are missing. The two equations
should therefore read:

1

1 m 9 .
= — exp |—=—|n+1m|" +m(m +a n—l—b}. 4.0.1
i o ol TP inn )+ )] - (40.0
e = ——— 3 exp |~ |n+ 7mf? (4.0.2)
o \/2_7—27]77 mne” 27—2

Thanks to Eduard Balzin for bringing this to my attention.

Section 4.20.1: Bosonization of the bosonic ghost system

e The sign of J? in equation (4.20.11) on page 113, should be changed to minus. Also
for compatibility with equation 4.14.1 we will change the sign of the background
charge Q.

Therefore the rest of the section should read:

. 1 1 1
T=—:J%: Q0] =——=(0¢)* + 96% , Q=1-2\ (4.20.11).

2 2 2 2
The boson ¢ has “background charge” because of the derivative term in its stress-

tensor. It is described by the following action
1 2 5, @ (2)
T

where R is the two-dimensional scalar curvature. Using (6.1.2 on page 154) we
see that there is a background charge of Qx/2, where y = 2(1 — g) is the Euler
number of the surface. This implies in practice that a correlator is non-zero if the
sum of the ¢ charges add up to Qx/2.

A direct computation shows that T has central charge ¢ = 1 + 3Q2. The original
central charge of the theory was ¢ = ¢ — 2, as can be seen from (4.15.9 on page
90). Thus, we must also add an auxiliary Fermi system with A = 1, composed
of a dimension-one field 7(z) and a dimension-zero field £(z). This system has
central charge —2. The stress-tensor of the original system can be written as

T =T+ Ty .(4.20.13)

14



Exponentials of the scalar ¢ have the following OPEs with the stress-tensor and
the U(1) current.

— 1
T(z) : e = |- a¢=Q) O |+ €™ 4 (4.20.14)
2(z—w)?  z—w
J(z) : 1) = 4w, . [Jo,: e?®®) ] = ¢ 1 e?) . (4.20.15)
Z—w

In terms of the new variables we can express the original b, ¢ ghosts as
o(z) = e®Pn(z) | b(z) = e *PE(2) .(4.20.16)

Finally, the spin fields of b, ¢ that interpolate between NS and R sectors are given
by e¥%/2 with conformal weight —(1F2Q))/8. Note that the zero mode of the field
¢ does not enter the definition of b, c. Thus, the bosonized Hilbert space provides
two copies of the original Hilbert space since any state |p) has a degenerate partner

&olp)-
Thanks to J. Florakis and E. Balzin for bringing this to my attention.

Section 4.21: Orbifolds

e In the middle of equation (4.21.7) a 1/2 should be removed and the (¢g)3 should
be put in the numerator.

gtwisted %Tr[(l—i—g)qLO_l/M q—ZO—1/24]

o 1 o
- (QQ) 1 1 1 1
T Doy
Ui Ui
— — 4.0.1
AR (40.1)

Thanks to Eduard Balzin for bringing this to my attention.

e In equations (4.21.22)-(4.21.26) R should be replaced by g.

Thanks to Eduard Balzin for bringing this to my attention.

Section 4.22: CFT on Other Surfaces of Euler Number Zero

e Equation (4.22.14) should read

e~ 51 n(it)
[, (1 — e mi@nii) =NilNy

n=0

ZbN = N;N,

C2,boson

(4.22.14)

Thanks to J. Florakis for bringing this to my attention.

15



e Equation (4.22.17) should read

. 00 dp e—2n£§p2t+%
Z =V CP — = 4.22.17
M2 ,boson /—oo 27T H?Zl(l . (_1)77,6—27T7’Lt) ( )
vV CP et vV OopP

(232t [y (1 — e ) (14 e~ 27@n=D8) — (270.)v/2tr /05 (2it)17(200)

Thanks to J. Florakis for bringing this to my attention.

e Equation (4.22.17) should read

‘ 3

Z3 boson = CPS(Ax) . +6(f1)ne—2m) = CP(Ax) 19;/(52 Zgzit()%t) (4.22.18)
Thanks to J. Florakis for bringing this to my attention.
Section: Exercises
e In exercise 4.5 the formula for the three point correlator should read
GO (z;, %) = Cras (4.0.1)

Arg Aoz Azi A1s Aoz —Agy ’
%12 "R93 231 12 23 ~31

Thanks to Sandy Kline for for bringing this to my attention.

16



5 Chapter 5

Section 5.1: Physical vertex operators

e In equation (5.1.5) on page 129, ¥ — X". Therefore the equation should read

. 2 oxvV,
T(Z)O(w,ﬂ]) = —Zpuﬁuyzﬁ + (1 +

@52) O(w, w) N DO (w, W) N

(z —w)? Z—w

e In the previous to last paragraph of page 129, the last sentence “In this context
...... by the ghosts ¢(z)¢(z).” should be replaced by :

“In this context, the physical vertex operators are the ones we found in the old
covariant case.”

Section 5.2: Calculation of tree-level tachyon amplitudes

e The footnote that is above equation (5.2.2) should read:

This is obtained from ¢(z) = >
(0|¢_16061]0) = —1

nez mor and (Ole_1coe1]0) = 1, while we use

Thanks to Eduard Balzin for bringing this to my attention.

e The first line of equation (5.2.5) on page 131 should read:

8 ] L / u
Siinee(s,t,0) = g2 (2m) 5 (Zm) [zl i

e In equations (5.2.1), (5.2.3) and (5.2.5) g, should be replaced by geosea to avoid
confusion. Later we use gs; as the dimensionless closed string coupling, while

here geosed = 522 Where rgg is the gravitational coupling of the bosonic string.

Therefore geosea 18 dimensionfull and provides the correct normalization of the
vertex operators.

e Equation (5.2.10) on page 131 and the sentence that precedes it should be replaced
by:

For the ghosts inserted on the Dy, we have ¢, = ¢, and therefore

(c(z1)c(22)c(z3)) D, = 212213223, {c(21)c(22)e(23)) D, = 212(21 — Z3) (22 — Z3) -

and so on.

17



e In equations (5.2.14), (5.2.15) and (5.2.16) g5 should be replaced by gopen to avoid
confusion. Here gopen is dimensionful with the same dimensions as geiosedabove

e Equation (5.2.13) on page 132 and the sentence that precedes it should be replaced
by:

Finally, for the ghosts inserted in RPy we obtain
<C<21)C(22)C(2’3)>Rp2 = Z12%13%23 <C(2’1)C(2’2)6(23>>Rp2 = 212(1+2123)(1+2223) .

and so on.

Section 5.3.1: The torus

e (Clarification: The last line on page 134, continuing at the top of page 135, “In
our case since we have no vertex operators..... [ d# = 757 should be replaced by:

In our case, since we have no vertex operators, we can directly divide by the
volume of the symmetry, [ d* =7, as was already specified in equations (4.17.2)
and (4.17.5).

Section 5.3.4: The Mobius strip

e Equation (5.3.24) must be slightly changed to agree with the corrected equation
(3.4.8)
> dl0lig) = DGl ) 05 i () = Tehdg']

i i

Section 5.3.5: Tadpole cancelation

e Equation (5.3.29) should be replaced by the following equation and text

- ! 2V s )2 /oo
T =T 5 Tes + T = 15 e s S ;"

The factor % in front of the cylinder tadpole takes into account the fact that

(5.3.16) gives the tadpole of oriented open strings, and an extra orientation pro-
jection is needed to obtain the cylinder tadpole of unoriented strings.
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6 Chapter 6

Section 6.1: The non-linear o-model approach.

e Clarification: In equation (6.1.12) V2¢ is the same as Og.

Thanks to Eduard Balzin for bringing this to my attention.

Section 6.3: Linear dilaton and strings in D < 26 dimensions

e The sentence above equation (6.3.3) should be modified as follows:

”Using also the Lj eigenvalues in (4.14.10 on page 88), we find that the operators
that satisfy the physical state condition Ly = 1 are....”

Also, below equation (6.3.3) the two sentences ”Such a background would have
been a tachyon ....... and it becomes massless in D = 1.” should be deleted.

Thanks to Eduard Balzin for bringing this to my attention.

Section 6.4: T-duality in non-trivial backgrounds

e Equation (6.4.2) should read

1

1 - By -Gy 5
0 0 ¢ =2~ logGu ,

Go==— , Gu=—" , Bu=_",
00 GOO ) 0 0 GDO

Thanks to Eduard Balzin who brought this to my attention.
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7 Chapter 7

Section 7.1: N = (1,1); superconformal symmetry

e The spacetime indices in several equations must be placed correctly for summation

1 . -
Sp' = Ar 2 / dPo/g [970.X .0 X" + it PP+

(X" Y0) (&X " ixbw“ﬂ . (7.0.1)

Gmatter = ZE_QwHaXM y Gmatter = ZE—Qi/JuaX# . (705)

V2 1 1

V2
Gmatter = Z€—2wM8X'LL ) Thatter = /2 a)(,ua)('u - ﬁwuawuu (707)

e The ghost supercurrent in equation (7.1.8) on page 156 should read:

Gghost = —cOf — 2vb— gac 15}

Thanks to B. Pioline for bringing this to my attention.

Section 7.2: Closed (type II) superstrings

e Footnote 1 should read

There is a subtlety here concerning the super-light-cone gauge. If 1) for example
has NS boundary conditions, then it can be set to zero. If it has R boundary
conditions, then it can be set to zero except for its zero mode, ) = ¢ = % A

similar remark applies to ¢
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Section 7.3: Type-I superstrings

e The text from above equation (7.3.3) until after (7.3.4) should be modified as
follows:

Similarly, in the RR sector, supersymmetry will imply that eg = 1. You are asked
in exercise 7.8 on page 184 to show, using (7.3.2), that the IIB bispinor (7.2.17)
transforms under () as

Q Fop Q7 = egQS,07 19, Q8,07 = g S,I%. S, = —erl), 9,5, =

= —gl'% FsT9, = —eg (I°) L (Fo)fﬁ = —ep (T° FTI%,5 .

We have added the extra sign ez above that comes from the transformation of
the ground state. We have also treated the left and right spinors S, and S, as
anticommuting with each other.

Using the -matrix properties (I'*)” = T°T*T and (I'Y)* = —1, we find that the
IIB forms transform as
k(k+1)
FHINZ"'ﬂk — €R <_1)kF#kﬂk71“'#1 = €R (_1) ’ FMl/—Q"'Hk ; k odd (7'3'4>
Therefore, for eg = 1, the two-index antisymmetric tensor survives, but the scalar
and the four-index self-dual antisymmetric tensor are projected out.

Thanks to J. Florakis for bringing this to my attention.

e Equation (7.3.14) must be changed to

A, Aa] = —€ks Yo ML AT] (70) ™ = — 70 M, AT (0)

Thanks to Eduard Balzin for bringing this to my attention.

Section 7.4: Heterotic superstrings

e The third paragraph of this section should read:

To remove the tachyon, we will also impose the usual GSO projection on the
left, namely (—1)2 = —1. Here, we will have two sectors, generated by the
left-moving fermions, the NS sector (space-time bosons) and the R sector (space-
time fermions). Also the non-compact space-time dimension is ten, the ¢! being
compact (“internal”) coordinates.

Thanks to Eduard Balzin for bringing this to my attention.
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Section 7.5: Superstring vertex operators

The whole sections is reworked below, in order to correct inconsistencies with other
parts of the book, and to also introduce normalized vertex operators for superstring
theories. Thanks to B. Piolin and E. Balzin for pointing out errors.

In analogy with the bosonic string, the vertex operators must be primary states of
the superconformal algebra. We first describe the left-moving part of the superstring
and therefore use chiral superfield language (see (4.13.13),(4.13.14 on page 79) where®

XH(2,0) = X*(2) + Eew(z«) : (7.0.1)

The left-moving vertex operators can be written in the form:

/dz /de V(z,e):/dz /de (%V_l(z)—l—e%(z)) :/szO. (7.0.2)

The conformal weight of V_; is % while that of V; is 1. The integral of V[, has conformal
weight zero. For the massless space-time bosons the vertex operator is2

VPhosm (e p 2 0) = ¢, : DXH X : (7.0.3)

yhoson(e 4y 2) = euw“e”"x Voo (e p,2) = € <(‘3X“ — %p X0 2/1“) ePX

(7.0.4)
where € - p = 0.

We would like to present the vertex operators in the covariant quantization. The
reason is that the fermion vertex has a simple form only in the modern covariant
quantization. It is useful to use the bosonization of the g — v system described in
section (4.20.1 on page 106) in terms of a scalar field ¢ with background charge @ = 2,
and the n — & system as

v(z) = e?n(z) , B(2) = e ?PIE(2). (7.0.5)

n has dimension one while ¢ has dimension zero. In general, the vertex operator : e :
has conformal weight —q — %. The spin fields of 3, that interpolate between NS and
R sectors are given by e*%/? with conformal weight —5/8 and 3/8. It should be noted
that the zero mode of the £ field does not appear in the bosonization of g — v system.
It introduces an extra redundancy in the new Hilbert space.

There is a subtlety in the case of fermionic strings having to do with the 3, v system.
As we have seen, in the bosonized form, the presence of the background charge alters
the charge neutrality condition®. This is related to the existence of super-moduli and

'Note that we use a normalization of fermions matching that of bosons, as explained in section
4.13.1

2See also exercise (4.39) on page 122.

3The notion of the charge neutrality condition was described in section 4.14 on page 82. Its
interpretation in terms of zero modes and the index can be found in section 4.15 on page 84.
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super-killing spinors. Therefore, depending on the correlation function and surface we
must have different representatives for the vertex operators of a given physical state
with different ¢-charges. The precise condition, derived in section 4.20.1 is that the
sum of ¢ charges must be equal to the Euler number of the surface, y.

Different representatives are constructed as follows. Consider a physical vertex
operator with ¢ charge ¢, V. It is BRST invariant, [@grst, V] = 0. We can construct
another physical vertex operator representing the same physical state but with charge
g+ 1. Itis Voo = [@prst, €V, and has charge ¢ + 1 since Qprst carries charge 1.
Since it is a BRST commutator, V., is also BRST-invariant. However, we have seen
that states that are BRST commutators of physical states are spurious. This is not the
case here since the £ field appears in the commutator and its zero mode lies outside
the ghost Hilbert space. The different ¢ charges are usually called “pictures” in the
literature.

In the covariant setup, the massless NS vertex operator becomes

VPoson(¢ g 2) = e @e ) X (7.0.6)

We can construct another equivalent vertex operator in the zero-picture as

{
Vboson o

§ (e, 2) = = Qe E()e e v 7Y =, (aX“—ép-ww“) e

(7.0.7)
The space-time fermion vertex operators can only be constructed in the covariant
formalism. For the massless states (p? = 0), in the canonical —% picture they are of
the form
Vfﬁrfgion(u,p, 2) =u®(p) : e ?/2 S, (2) PN ;| (7.0.8)
S, is the spin field of the fermions ¥* forming an O(10); current algebra, with weight
5/8 (see section 4.12 on page 71). The total conformal weight of V_;/, is 1. Finally, u®
is a spinor wave-function, satisfying the massless Dirac equation pu = 0.
The % picture for the fermion vertex can be computed to be

Vvlf%mion<u>p) = [@srsT,§(2) —felr/HQlion(u’p7 z)|
u®(p) e (I*)qp SP OXF P ... (7.0.9)
where the ellipsis involves terms that do not contribute to four-point amplitudes.

The ten-dimensional space-time supersymmetry charges can be constructed from the
fermion vertex at zero momentum,

1
Qo=— Pdz : e ®P?2 G (2): . (7.0.10)

271
It transforms fermions into bosons and vice versa

(Qa, VI3 (u, p, 2)] = VP (e = uaf,,p, 2) (7.0.11)

[Qa Vo™ (e, p, 2)] = VI (0 = ip"e” (y)r 1, 2) - (7.0.12)

There are various pictures for the supersymmetry charges also.

4We are using the same symbol for the vertex operator both in the old covariant and the BRST
formulation.
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Section 7.5.1: Open superstring vertex operators

In the open string, the vertex operators described above are the whole story with
the caveat that we must use a different normalization for the momentum in order to
accommodate the different size of the string. The gauge boson vertex operators are

VA = Gopen A® O € X Vi = Z\g/‘f’;“ A [0, X" — 2ip ] ePX (7.0.13)

where we have included the proper normalizations necessary for unitarity:.
The gaugino vertex operators are

Vs = GopenV/ls X* €72 5, € X (7.0.14)

Jopen is dimensionfull and is given by
Gopen = 21(2m) 20 g, (7.0.15)

Section 7.5.2: Type II superstring vertex operators

In the type II closed strings the vertex operators are products of two copies of the
supersymmetric chiral vertex operators. For NS-NS massless states they are

2 close ) ) _ .
VA 1 = e 09 = 2 o300 ] [0 | e

&
(7.0.16)
while for the RR massless bosons we obtain
Vo, = Sl onin g g (7.0.17)
—1/2,-1/2 — 2 : arp € : .0.
Finally for the NS-R gravitino we have
gcl%ed\/_ _
Ve e 92 5, X (7.0.18)
1,-1/2 — \/—
Gclose { —0 o ip-
|Z % |OXM = ot e 62 G X (7.0.19)

Jelosed 18 dimensionfull and is defined in terms of the ten-dimensional gravitational
coupling as
K 5
Gclosed = % = 477'26;193 (7020)

It is the same for all closed superstring theories.

Section 7.5.3: Heterotic string vertex operators

For the heterotic string theory, the left-moving part is supersymmetric and the vertex
operators are as discussed earlier. The right-moving part is non-supersymmetric and
the vertex operators are those discussed in chapter 5 on page 126. In particular, for the
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massless states they are currents multiplied by exponentials. We have only left-moving
pictures here.

The massless vertex operators for the graviton, antisymmetric tensor and dilaton
are

\/59 closed

_ ) 2 _ .
; PraXVerX |y = Z9doed (gxen p-¢¢")8X”e’p'X. (7.0.21)

VA — 7

while for the gravitino

« gclosed — S in- X
| % ce % S (2)0XH X (7.0.22)
127 "7 @

s

For the gauge bosons we obtain

a ﬁgclosed Ta _ip- a 2gclosed
VI = IS V= 2

(OX" — %p Sty Je X (7.0.23)

where J¢ is an anti-holomorphic O(32) or Eg x Eg current
Finally for the gaugini

Ve, = gil/Oz_"‘d L2 S (2)J0 X L (7.0.24)

In the heterotic case, geosea 1s still given by ([120).

Section 7.6.3: The type-I superstring

e Clarification of the starting point of equation (7.6.11) and associated corrections
to the same equations:

< dt Tho (VMBI _

AR = —i¢N / —
v =~ NV [ o = G 712 (it

According to the discussion above it, the more obvious starting point should be

< dt 1
NS .
AM2 = _ZCGNSNVm/O g m Zp Lp (7-0-1)

where the fermionic contribution according to (7.3.5)-(7.3.7) are

e

The factor of (—q)% comes from the lowest level of the vector representation that
survives the GSO Projection (and therefore transforms under €2) while the q s

N
T
I
(1~
—~
|
—_
~—
o
<
S
£
—~
|
RS
N—
)
N
—
|
)
N~—
w»—A
@\H
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1

comes from the #* function. According to (7.3.7) (—q)2 =i ¢ and splitting the
product into odd and even integers we obtain

ZF = 24 % % H 1+ q q2n—1)8
n=1
Using
o0 4 2 00 4/,2
2n _—4 2 2n1 _1194((])
H l+gq - q 4 H = 774<q2)

we finally obtain for the fermionic contribution
¥3(¢%) Vi(a?)
n*(¢*) n*(¢?)

The bosonic contribution according to (7.3.5)-(7.3.7) is

ZF—Z

1 1 1
M) g [0, (1 — (—q)”)8 g5 T2, (1 — 2m)B(1 + g2n1)8

where we have split the product into odd and even integers. Using

oo
][ 2n18_§

We therefore obtain

2

oo
L= =0 (ed)
n=1

1
05(¢*)n*(q?)

in agreement with (C.28) of appendix C. Putting everything together we obtain

Zp =

; Valg?) Di(e®) _ . 05(2it) 95(2it)

L) () T O3(2it) 02 (2it)

We now substitute in () above to obtain

Lplp =

> 1 3(2it) ¥4(2i
Aip, = _iC(iGNS)NVm/ il 0,(2it) 05 (241) (7.0.2)

o 8t (87202t)5 04(2it) n'2(2it)
Since exg = —i from equation (7.3.15) in the book we finally obtain

1 93 (2it) V4(2it)
8w202t)5 05(2it) n'2(2it)

> dt
S .
AJ\N42 = —ZQNVM)/O g (

that should replace the second equation of (7.6.11) in the book.

We now proceed to the transverse channel by doing the modular transformation

05(2it) = i\/é’f) , Ua(2it) = %\/2%) ;o Ua(2it) = 192(\/2%) , n(2it) = %
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and changing variable to £ = [ to finally obtain
AN = iy 2V /°° o () i)
(8m202)5 :

which replaces the third equation (7.6.11).

Along similar lines equation (7.6.12) should read

. < dt Y, (1) DL (it)
AR — _ N - b=0 b _
m, = ~ierCNVio /0 St (8m22t)° 12 (it)

. ot 0(2it) 0 (2t)!
e “’/o 8t (8m202t)° 1(2it)'205(2it)!

6 0o ¥4 4 ¥4 4
e B[y )

0 (2iL) " 9, (204)"

Thanks to Eduard Balzin for asking the relevant question.

Section 7.9: Anomalies

e The definition of the gauge transformation in the sentence above equation (7.9.2)
should be modified to:

OuA = DA = dA + [A, A]
Equation (7.9.2) should be modified to
§Feff 6Fef‘f
" =Tr | DN — =-Tr [ AD Tr [A D, J"
o=t [ o Gt [ A [ o,
and equation (7.9.3) should be modified to

(Sreff
Sqig e = / (VHe” + VVe!) 7 = —Q/E“V,,T‘“’.
%

Thanks to Eduard Balzin for bringing this to my attention.
e Equation (7.9.6) should read

o |

mixed

/ d"z ey Te[AF|Tr[Ry] + e Tr[ORo| Tr[Fyy |+
+e3Tr[ORo](Tr[F5])? + e Tr[AF)(Tr[R])7] (7.0.1)

Thanks to Eduard Balzin for bringing this to my attention.
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8 Chapter 8

Section 8.2: Open strings and T duality

e Equation (8.2.10) should read

XO(r,0) = 20%°0 — V2L, Z %e"’” sin(ko) .

keZ
e Equation (8.2.12) should read

)29(0:71')—5(9(0:0) - R (2mn + x; — xi) ~ R (—xi +x;5) -

Thanks to Eduard Balzin for bringing this to my attention.

Section 8.4: D-branes and RR charges

e Equation (8.4.9) should read

S,=1T, / AP eV detG + iTp/ Coi1

Thanks to Eduard Balzin for bringing this to my attention.

e Equation (8.4.15) should read

/ 6? —2& 11 —2& / gs ! Rp
Rp:R—p , € sze Rp%gszgsR—p , Tp:sz,

Thanks to Eric Perlmutter for bringing this to my attention.
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Section 8.5.1: The Dirac-Born-Infeld action

e Equations (8.5.1)-(8.5.4) should read

Spr = Tg/dwx e’q’\/— det(n,, +2m02F,,) (8.5.1)

Sp, =T [ dr e *\/—Giriv (8.5.2)

S, =T, / P e[ det(Gup + 2702 Fop) + T, / Cpir (8.5.3)

1
Sgp / d*¢ eaﬁBW&a:c“agx”—ir/ ds A,0sz" (8.5.4)
Mo

- A2 B,
Thanks to Eduard Balzin for bringing this to my attention.

e Equation (8.5.6) should have the opposite sign and be without the i:

Thanks to Eduard Balzin for bringing this to my attention.

e Equation (8.5.9) should read

S, = Tp/dp“g e*‘b\/—det(é‘aﬁ + ]—“ag)+Tp/ Cpi1 -

Thanks to Eduard Balzin for bringing this to my attention.

29



Section 8.5.2: Anomaly related terms

e Equations (8.5.10) and (8.5.12) should read

S, = Tp/dP“g e~/ —det(G + F)+Tp/ C ANTrle”] A G, (8.5.10)
U d?¢ e7® [ —det(G +J—“)+/(Cz + Cof)} (8.5.12)

Thanks to Eduard Balzin for bringing this to my attention.

S1 =

1
27l?

Section 8.7: T-duality and orientifolds.

e The text starting at the paragraph “We will reinterpret...” till after equation
(8.7.10) was changed as follows:

We will reinterpret the tadpole cancellation of the type I string in ten dimensions.
The Klein bottle introduces tadpoles that are due to one non-dynamical plane.
This is the Og orientifold plane. To calculate its tension we reason as follows.
The 32 p9 branes that cancel tadpoles generate an SO(32) group because of the
Q) projection. They are equivalent to 16 unitary branes and their images under €.
This tension (and the associated charge) is cancelled by the Og plane. Therefore

the Og plane has a tension
TP = —16 Ty (8.0.1)

Its energy and charge is cancelled by the Dy branes. The vacuum therefore con-
tains 16 Dg branes and their images under €2 that cancel the orientifold charge
and maintain a flat space.

Unlike D-branes, O-planes are non-dynamical in the sense that they cannot fluc-
tuate and therefore cannot carry degrees of freedom. This is as well, since a
fluctuating negative tension object has necessarily negative-norm states.

One-loop amplitudes were already calculated in section 5.3 on page 133 for the
bosonic string and in section 7.6 on page 170 for the superstring. In particular,
in the superstring case we have found that the tadpoles cancel in the presence for
N=2° Dy branes and their Q-images. T-dualizing on a circle, we will need 2% Dg
branes to cancel them since the other 2* are images.

On the other hand we know have two Og planes as the orientifold projection now
includes a space inversion in the ninth direction. Therefore,

TP = —8 Ty (8.0.2)
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Continuing further the T-dualization we conclude that the tension of an O, plane
1s

T = -2 T, (8.0.3)

The effective action of an O, plane is then

So, = —2'°T, {/ Pt e ®y/—det g + /dp+1f Cp+1:| : (8.0.4)

We should again stress that orientifold planes have no (intrinsic) dynamical de-
grees of freedom. They just carry charges (energy, R-R charge, etc.)

Section 8.8.1: The supergravity solutions

e Equation (8.8.9) should read

i H)
L7=» HZX(r) ’

Frorp =

-

Thanks to Eduard Balzin for bringing this to my attention.

Section 8.8.2: Horizons and singularities

e The text after equation (8.8.18) should read:

There is an inner Killing horizon at p = r_ and an outer horizon at p = r,. There
is no curvature singularity at the outer horizon. There is however a curvature
singularity at the inner horizon. We may calculate the scalar curvature in the
string metric for an extremal brane (ro = 0) to be

(p+1)(3—p)7({?—7)2 14 0677)] ~ (P+1)B—p)(p—7)*

R, = - —
4T L 4 (v — )t

4o

The exact form of the curvature scalar for a non-extremal D-brane is

(p=3)p—72 L7

R, =~
T G

(4Crro) P + L((p+ 1)r"* — (p = 3)rg 7))
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with

Thanks to Kostas Anagnostopoulos for bringing this to my attention.

e The text below equation (8.8.19) should read

It therefore seems that there is no singularity for p = 3. For 7 > p > 3 there is a
curvature singularity at p = r_. On the other hand, for —1 < p < 3 the curvature
scalar is regular at p =r_.

Thanks to Eduard Balzin for bringing this to my attention.

Section 8.8.3: The extremal branes and their near horizon ge-
ometry

e In equation (8.8.32) there should be no semicolon in the Riemann tensor:

—4 2(7—p)
L
c+(p) (%) (?) +-, > L

c-(p) (é>_4 (%)H +-, <L

Thanks to Kostas Anagnostopoulos for bringing this to my attention.

R

vV po
s R po R =

e In equation (8.8.34) there should be no semicolon in the Riemann tensor:

) oo L\ 1
gﬁ RHVPUR'MP ~ &80 (Z) NX

Thanks to Kostas Anagnostopoulos for bringing this to my attention.
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Exercises (Chapter 8)

e Equation (8.1E) should read

1

5= 2(2m(2)?

X, X

; /dt Tr {(XI+[At,XI])2+
gs s

Thanks to Eduard Balzin for bringing this to my attention.
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9 Chapter 9

Section 9.1: Narain Compactifications
e On page 223, the second sentence of the last paragraph of section 9.1 should read:

The two Majorana-Weyl gravitini and fermions give rise to eight D = 4 Majorana
gravitini and 56 spin—% Majorana fermions

Thanks to E. Balzin for bringing this to my attention.

Section 9.2: World-sheet versus space-time supersymmetry

e Equation (9.2.4) should read

Sal(2)Ca(w) = %ag‘d by (w) + Oz — w)

Thanks to E. Balzin for bringing this to my attention.
e The sentence below equation (9.2.8) should read

BRST invariance of the fermion vertex implies that the OPE (e=%/25,%0)(e?G)
has no single pole term.

Thanks to M. Tsulaia for bringing this to my attention.

Section 9.7.2: Consequences of SU(3) holonomy
e Equation (9.7.20) should read

Fij = tl“(JRij) = Rij kljkl .

Thanks to E. Balzin for bringing this to my attention.
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Section 9.10:N = 24 orbifolds of the type II string

e The sentence after equation (9.10.1) should read

corresponds to type IIB and ITA respectively.

Thanks to E. Balzin for bringing this to my attention.

Section 9.16.5: The Mbius strip amplitude

e The title of this section should read
The Mobius strip amplitude

Thanks to E. Balzin for bringing this to my attention.

Section 9.16.1:Open strings in an internal magnetic field

e Equation (9.16.14) should read

Y= BrY’ + (1) (W + Bry)|,_, =0 P BrY 4+ (-1)°(0° = Bryt)|,_ =0,

Thanks to E. Balzin for bringing this to my attention.

e Equation (9.16.18) should read

J 11@/’&(7
Yy — W
P+ 173, +

WA FiBr -

o=0

Thanks to E. Balzin for bringing this to my attention.
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Section 9.17:Where is the Standard Model

e Equation 9.17.3 should read

1 1 %
——— | TY[FF =
S4 49% I'[ I I} )

- o N[
g7 4mg?

Thanks to E. Balzin for bringing this to my attention.
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10 Chapter 10
Section 10.1: Calculation of heterotic gauge thresholds

e The sentence after equation (10.1.1) and equation (10.1.2) should be changed to

To simplify the superstring vertex operators in this chapter we will take p — —2p
in the vertex operators of section 7.5. Therefore the gauge boson vertex operators
are

V& = (0XF +i(p-p)yh) J* 2P (10.1.2)

This is done so that they are compatible with those of section 7.5. Moreover the
substitution of p — 2p is made in equations (10.1.4), (10.1.18), (10.3.1), (10.4.4).

Thanks to E. Balzin for bringing this to my attention
e Equation (10.1.16) should read

[Z] Cint [l()l]

heterotic __
G M- n
2 a,b=0

2ol —
9
i
DO =

<

Thanks to M. Tsulaia for bringing this to my attention

e Equation (10.1.20) should read

1672
Z=
91

=5 | — E 4 —= | Triy —— 1
872 ), 1 2 m@T( 1 ) Lint |:QI 11y [b]

1—loop even

Thanks to M. Tsulaia for bringing this to my attention

e Equation (10.1.21) should read
IR
1 d? 1
o (5)
1_100p 2 F 7—2 12
e Equation (10.1.22) should read

IR 2
= —b; log (%) -+ finite
1—loop s

1672

97

1672

97
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Section 10.2: On-shell infrared regularization

e Equation (10.2.15) should read

. d27' 1 7 lg[lﬂ 2 ]{5[ a
S [W S0 () oo - i 1 l”]

even

Thanks to M. Tsulaia for bringing this to my attention
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11 Chapter 11

Section 11.5: Self-duality of the IIB string

e Equation (11.5.1) should read

kg
2

guy y (I),:—CI) s Bé:CQ s Cé:BQ s 04/1:04

/ —
gyl/_e

e The sentence between equations (11.5.8) and (11.5.9) should read

We have two types of (point-like) BPS states in nine dimensions. The first class
consists of KK states on the torus with mass (27)2|ny + ne7|?/(124).

e Equation (11.5.9) should read

1+ na7|?
M121 = (m<27TR11)27'2T]L12>2 + R2 7_2 T )
11°'2

Section 11.10: Conifold Singularities and Conifold Transitions

e The caption of figure (11.6) should read as follows:

(a) The deformed conifold. (b) The conifold. (c) The resolved conifold. In all
cases the square at the base represents the sizes of S® and S*. In (b) the tip of
the cone is singular. In (a) it replaced by a finite size S®. In (c) it is replaced by
a finite size S?.

Thanks to Richard Garavuso for bringing this to my attention.
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12 Chapter 12

Section 12.3: Black hole thermodynamics

e Equation (12.3.11) on page 373 should be replaced by:

. 2
ds® ~ %—4T)u2d72 + du?® .
™+

e The line before equation (12.3.15) on page 373 starting "It is defined ...."” and the
two equations below should be replaced by

In the special case relevant to us here were the boundary surface is » =constant
the extrinsic curvature simplifies to

1
Kap = gn"Ouhay , K = h K g (12.3.15)

where n* is the unit normal to the boundary. Taking a sphere at fixed large r = rg
as the boundary we may evaluate the extrinsic curvature of the RN solution using

1 0 or,
[ “Z) = 12.3.1
" /Grr (87“> Grr (12:3.16)

e The first line of equation (12.3.18) on page 374 should be replaced by:

1 K T _
$2G Jy VK= ng|  =PgUf ) =

r=rg
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13 Chapter 13

Section 13.1: Large N gauge theories and string theory.
e Equation (13.1.5) should read

ab ycd ad cbé 1 ab ced
(XXM ~ (5 dghe 50 ) d) 5ij - (13.0.1)

Section 13.5: Bulk fields and boundary operators.
e Equation (13.5.2) should read

o2, u)|u=0 = ¢o(z) ,

e Equation (13.5.4) should read

<€f dte ¢i(z) Oi(x)>CFT4 = Zstring [Qbi(flf, u)|u:0 = u4_Ai¢i(l‘)} :

Section 13.8: Correlation functions.

e Equation (13.8.4) should read

¢'(u,2)],_y = u' " dy(2) .

Section 13.8.1: Two-point functions.

e Equation (13.8.5) should read

S = % / dx\/g [(09)* + m?¢?] = —% / d’z\/g ¢<D—m2>¢+% / &’z 0,(\/9 ¢ 0"9) .
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e Equations (13.8.10) to (13.8.14) assumed L = 1. To put back K the text should
read

1
Son—shell = —§/d4 r /99" d(u, 2)0up(u, x)| _, =  (13.8.10)

K(uv €T, xl)auK(ua xZ; x?)
u3

3
= —% /d4l“1 d*zy ¢o(x1) ¢o(z2) [ d'w

u=0
Substituting the near-boundary expansion (13.8.8) we obtain

d4$K(u7 €T; xl)a’uK(ua x; x2)

_|_i—1 + £u2A+—4/d4x 1
Cs |wy — zo|?2+ |z — xq |28+ |x — 29|22+
The first term on the right-hand side is a contact term that diverges as we ap-
proach the boundary. It must be removed by renormalizing the bulk action. The
way to do it is to move the boundary infinitesimally at u? = € < 1, add a coun-
terterm to remove it and then take the limit ¢ — 0. The appropriate counterterm
is a boundary term:
_L3 AN A

Seounter = € /d4x do(x)? = -57 d*z Vhe ¢(e,z)?, (13.8.12)

~ A_uPP=T46 (0 — a0) + (13.8.11)

2 . . . .
where hf; = £-6,; is the metric on the renormalization surface u® = e.

The relevant renormalized bulk action (to this order) is

1 A
S = _/ &/ [(00)> + m*¢?] + —/ d*z Vh ¢* . (13.8.13)
2 Ju, 2L Jonr,
With this subtraction, the second term in (13.8.11) will give a finite contribution
and all the rest will yield vanishing contributions. We may therefore write, to

quadratic order, after a simple rescaling of the sources ¢y — %
2

Sonfshell _ _1 /d4fL’1 d4$2 ¢0($1)¢0<x2) . (13814)

ren 9 |ZL’1 _ I2|2A+

Section 13.8.2: Three-point functions.

e Equation (13.8.17) should read as
1 3
S = §/d5x\/§ [Z(a¢i)2+m?¢?+2§¢l¢2¢3

i=1

in order to be compatible with the rest of the equations.
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Exercises for chapter 13

e In exercise 13.46 the third sentence should read:

Show that as the holographic energy scale U decreases we pass from the perturba-
tive SYM description to the Dy brane supergravity description , to the unwrapped
M, brane supergravity description to the A" = 8 SCFT description.
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14 Chapter 14

Section 14.1.2: Type ITA Dy, Branes and DLCQ.
e Equation (14.1.22) should read

1 R?
V=1 S+ O(R)
1+ 2%

Thanks to Rene Meyer for bringing this to my attention.

e The third sentence and after before equation (14.1.29) should read

In that limit, the ten-dimensional Planck scale is given by M% ~ R,/(3, — 0.
Although the gravitational interaction seems to become strong, the fact that
gs — 0 and (14.1.28) imply that for the energies in question we can neglect the
gravitational/closed string back-reaction to the Dy branes even if their number N
is large.

Thanks to Rene Meyer for bringing this to my attention.
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Appendix A

e On page 503, in equation (A.6) 2 — f(z) should be changed to z’ = f(2)

Thanks to Moritz McGarrie for bringing this to my attention.
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Appendix B

e Equation (B.1) should read

1
Ay = —=Ay yp,dx” dx™ - - dx"

P p'

Thanks to [gmar Cedrell Rosas Lopez for bringing this to my attention.
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Appendix D: Torroidal lattice sums

e Equation (D.1) should read

1 1
Spq = yym d*ov/det gg™Goz0, X0, X" + E/d2ae“bBa58aXaabXﬁ+

1 2 Ite I van T
+E d“o+/det g ZI: VIV +Y, (VX9

Thanks to E. Balzin for bringing this to my attention.
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Appendix E: Toroidal Kaluza-Klein reduction

e Equation (E.11) should read

~

YI:AI

« «

I _ A1 I qa A ol I pAa
, AH—Au—YaA“ , FW—FW+YQFW

Thanks to E. Balzin for bringing this to my attention.

e The sentence after equation(E.14) should read

...we obtain from (E.7)....

Thanks to E. Balzin for bringing this to my attention.

e The sentence after equation(E.18) should read

...we obtain from (E.8)....

Thanks to E. Balzin for bringing this to my attention.
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Appendix F

e Equation (F.2) should read

1 1
R,, — EQ’WR =2 |F,F'— ZguquaF'M , VIF,, =0.

Thanks to Eduard Balzin for bringing this to my attention.
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Appendix H

Section H.3: Type IIB Supergravity

e Equation (H.22) should read

1 10505 1 1
S 2/12/ v Q{R SRR UL vel ]

1 _
+W/C4/\G3/\G3,
1R

Thanks to Karol Plaka for bringing this to my attention.
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Appendix I

Section 1.2: N = 2, Supergravity

e In the last sentence of the paragraph above equation (I.13) on page 535, the
homogeneity relation Z! F; = 2 should be replaced by:

Z' Fy =2F

o1



Appendix K

Section K.1: The Minkowski signature AdS
e Equation (K.3) should read

Xo= Lcoshpcost , X, 9= Lcoshpsint,

e The sentence ”There is another set of coordinates (u,t,¥) with ru > 0, ¥ € R?
that are useful.” a bit above equation (K.9) should be changed to :

There is another set of coordinates (u,t,Z) with u > 0, ¥ € R? that are useful.

Section K.4: Fields in AdS

e There is an error in (K.30), and the value of £ = 1/6 quoted below it, is only cor-
rect for p = 2. We give below the text from the beginning of section K.4 till before
equation (K.31) where we have added several new equations and clarifications:

We will first consider a massive scalar field in AdS, o with action

S = %/dp”x\/g [(0¢)* + m*¢”] (14.0.1)
from which the (free) equation of motion follows
(O—-m*p=0. (14.0.2)

This can be solved by standard methods. In global coordinates, equation (K.7),
the solution with well-defined “energy” w is of the form

¢ =e“T F(0) Yi(,) , (14.0.3)

with Y;(€2,) the spherical harmonic on S, an eigenstate of the Laplacian on S?
with eigenvalue ¢(¢ + p — 1) and

F(0) = (sin ) (cos 0)** 4F(a,b, c;sin’0) , (14.0.4)

1 1 1

and

1 1
Ap=g(p+1) £ 5V (p+1)2+4m2L2. (14.0.6)
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To discuss the energy momentum tensor we must be more careful about the
conformal invariance of the action in IZT. The action as it stands, even when
m = 0, is not invariant under general conformal transformations ¢,, — €’g,.,
¢ — e~ 1P¢. For this to be true, we must add an extra term the couples the scalar
to the background curvature

S = % / " 2x\/g {(agb)? + (m2 + ﬁ]%) qﬂ (14.0.7)

For an AdS background the new term is just a redefinition of the mass, as the
curvature in AdS is constant. The new equation of motion is

O¢ = <m2 + ﬁ}z) 6= (m2 - p(ZTtQ» 6 (14.0.8)

where in the last equality we used the value of the constant curvature of AdS), .

The energy momentum tensor is given by

s 1 1 . a
p R 2
_P . nO- _
+8(p 1) (9.,0-V,V, + R, 5 G )"

the last term coming from the coupling of the scalar to the scalar curvature of
the background. Using the equations of motion we may rewrite the stress tensor
in the form

= ; . 21 p
T = 15Dy [0+ 29:00.0 = 9(00)°] = -39V, Vust (14.010)

+ G | — m + v R| ¢
I T ap+ 1) T 16+ D2(p + 2)

The trace is given by
2
T = —m7¢2 (14.0.11)

where we used once more the equations of motion (IZTA). It vanishes in the
massless case.

The sentence below equation K.34 should read:

“This is possible only when A is real”.

The second sentence below equation K.40 should read:

“It is the one that corresponds to the normalizable mode in Minkowski signature
and also to the A_ solution in (K.27)”.
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The next sentence should read:

“Note that, in contrast to the global case, the spectrum is now continuous.”

Equation (K.41) should read

¢(u7 :L’)’u:() = up+17A¢0(x) )

Equation (K.42) should read

(O m*K(u,z;2') =0 , K(u,2;2")|umo = uw?™72 §" (2 —2') .

Equation (K.43) should read

K(U, Q>|u:0 - up—i—l—A .

The sentence above equation (K.44) and equation (K.44) should be changed to:

As we argued in section 13.5 on page 429 we must impose the condition very close
to the boundary at u = €, namely K(e,q) = 172, We find

pt1l
B dtlg Ky(VE )
Ko,z — ') = 4 | s W) iy
€ 2P+ K, (Ve €)

The text after equation (K.44) and till the end of the subsection is rewritten
below to make it more clear.

We may alternatively construct the propagator in configuration space. We will
rotate to Euclidean space for convenience. You are asked in exercise 13.18 on
page 481 to verify that the function

UA

(u? + |z — 2'|?)”

f(uv €; '/I"/> = ) A(A —DP— 1) = m2L2 )

satisfies the massive Laplace equation everywhere.

Moreover, if x # ', f vanishes as u — 0, while for x = 2/, it diverges at u = 0.
We may compute

/dp+1x flu,z;2") = uPT 20 /OO _chde C, uPA
o "o (1+¢H)A :

o4



with ptl ptl pl
o _TIIr[a -0, wal[A -t
P - )

or[A] T[A]

where are usual €2, is the volume of the unit S? as in (8.8.11 on page 217). This
implies that

uA

; _ pH1I-A s(p+1) (.. _ ./
vllgl(l)(u2+|x—x’]2)A Cpu P (x —2a')

Therefore, the normalized bulk-to-boundary propagator is

['[A] u®

PET[A - ] (@ e — o)

KA(U,Z';I'/) =

To have the correct asymptotics we must generically choose A = A | the larger of
the two roots. Then the solution of the massive Laplace equation can be written
as

¢(u,$) = C;l /dp+13§'/ <u2 i ’

and asymptotes properly at the boundary, proportional to the leading solution.
This justifies our choice of branch.

uB+

x— 2/[2)As Po(a’) }}2% B(u, ) ~ ut= o)+,

Appendix K.4.3 on the bulk to bulk propagator is rewritten to be valid for general
dimension and to correct a few missprints:

The propagator is defined as usual as the inverse of the kinetic operator

up+2

(@ —mH)G(u,z;u,2') = LP+25(U — )Pz —a'),  (14.0.12)

where we are using Poincaré coordinates. With this normalization the solution
of the equation

(O—m?)p=J (14.0.13)
is solved by

o(u, z) = /du’dp+1x’\/§ Gu,z;u' ') J(u',x) (14.0.14)

There is however an issue of boundary conditions, at the boundary of AdS, s
that we will return to below.

To construct G we will use the invariant AdS,, distance

u? +u? + (z—a2')?
= 2uu<, S (14.0.15)
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The two linearly independent solutions properly normalized according to (IZTI12)
are

DA,

p+1

28+ T [Ay — B2 ] Ly

Ay AL +1
27 2

I—p
) ++ 9 )

Ga, (u,z;u,2") = —

Y (

(14.0.16)
and Ga_(u,z;u',2") where AL are given in (K.40). The linear combination
C Ga, + (1 = C)Ga_ is the general solution to ([T 12).

If we Fourier transform the x coordinates the propagator becomes

Ga,(u,z;u' 2"y = —

el dp—Hq [l/(qu)Ku(qu/>7 u<u
o/

(wu') —ig:(z—a')
+1
(2m)r I (qu") K, (qu), u >

where as usual v = A, — A_.

As one of the bulk points moves to the boundary, the bulk-to-bulk propagator
asymptotes to the bulk-to-boundary one

A

lim Ga(u, z;u', 2') = 4

AW
lim ST1o 2AKA(x,u ') (14.0.17)

For A > 1%1 it is Ga, that vanishes faster at the boundary.

In most applications, calculations are done at the regularized boundary at u = e.
It is necessary to define a bulk propagator GG, that vanishes at the regularized
boundary. The form suggested from ([ZI47) is

p+1

DI SR 1, (qe)
Ge “ul ! =G T (UU) ’ / —'Lq-(a:—I)KV Ku ! -
(U, T;u,x ) (U, r;u,x )+ Lp (27T)p+1 € (qu) (?'I:L) KV()QE) )
14.0.18
G, satisfies (Z1I132A) and
A-1
Ge,m;u', 2y =0 |, 0,G(e,z;u,2") = —ELP K (u',2";2) . (14.0.19)
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