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1. Introduction

The notion of W-algebras was introduced first by Zamolodchikov in the context of

2-d conformal field theories that possess additional symmetries generated by a collection

of higher spin, chiral fields {W s(z)}, [1]. Despite the complicated nature of their commu-

tation relations, W-algebras have provided a unifying conceptual framework for applying

the bootstrap (operator algebra) approach to a large class of Rational Conformal Field

Theories (RCFTs) that describe 2-d critical statistical models. The simplest example in

the class of extended bosonic conformal symmetries is the WN algebra generated by the

stress tensor T (z) and the chiral fields {W s(z)} with integer spin s = 3, 4, 5, ..., N . In this

case (and for any fixed value of N) there is a series of unitary CFT models parametrized

by a positive integer p = 1, 2, 3, ... which are minimal in the sense that the corresponding

number of representations of WN is finite, [2]. These theories are ZN symmetric and have

central charges,

cN
p = (N − 1)

[
1− N(N + 1)

(N + p)(N + p + 1)

]
= 2p + O(

1

N
) . (1.1)

The theories above can be identified with the coset models,

SU(N)1 ⊗ SU(N)p

SU(N)p+1

. (1.2)

The construction of all unitary models associated with the large N limit of W-algebras

poses an interesting problem in quantum field theory. Its solution might also be of some

value in mathematics because as we will see later, W∞ algebras are intimately related

with area-preserving diffeomorphisms of 2-manifolds. According to the sequence (1.1),

which has no upper bound in the limit N → ∞, the only unitary representations of

W∞ (if they exist as well defined quantum field theories) will occur with central charge,

c = 2, 4, 6, ..... However the number of conformal blocks becomes infinite in that limit

and the concept of minimality is not obviously helpful for solving the models. Moreover

for large N , the spectrum of anomalous dimensions collapses into three disjoint sets,

some tend to zero, some others to finite values and the remaining to infinite values. It is

the purpose of the present work to investigate the structure of the W∞ algebra using a

field theoretic representation which is appropriate for describing the simplest model with

c = 2. As a byproduct we will obtain a class of highest weight (hw) representations for

W∞.

The interest in the large N behavior of WN algebras arose from the observation that

W∞ is a deformation of the infinite dimensional symmetry algebra of area-preserving

diffeomorphisms , [3]. The commutation relations of the latter are of the form,

[W s
m,W s′

n ] = ((s′ − 1)m− (s− 1)n)W s+s′−2
m+n (1.3)
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where both s, s′ ≥ 2 and m,n ∈ Z. This algebra can be represented by the Poisson

bracket of functions W s
n = xn+s−1ys−1 on the two dimensional plane with (canonical )

coordinates x and y or equivalently by the smooth functions einxys−1 on the cylinder,

R × S1. At any rate, the structure (1.3) describes the leading highest spin contribution

to the commutation relations of WN at large N, provided that W s
n are identified with

the Fourier modes of the generating conformal fields W s(z) and W 2(z) = T (z). It

should be emphasized that the identification is purely algebraic and the area-preserving

diffeomorphism symmetry does not reflect the geometry of the 2-d world of CFTs. If

that were the case, (chiral) conformal transformations would be incompatible with area-

preserving diffeomorphisms . For this reason it is appropriate to introduce an auxiliary

surface (membrane) to interpret (1.3) geometrically.

The complete structure of W∞ may be described as a deformation of the symmetry

algebra (1.3). In particular, the results of [3] suggest that for any given s and s′, the

commutation relations of the area-preserving diffeomorphism algebra and W∞ differ from

each other by local functionals of the generating fields with spin less than s + s′ − 2.

Since both infinite dimensional algebras satisfy the Jacobi identity (associativity), the

deformation terms cannot be arbitrary; they are 2-cocycles of the algebra (1.3) with non-

trivial coefficients in general. There have already been several results in the literature

concerning the nature of these terms, [3,4,5], but at the moment there does not seem to

be a unique answer. This is not very surprising because as N → ∞, the limit of WN

might not be uniquely defined.∗ Different limiting procedures can give rise to inequivalent

expressions for the 2-cocycle terms, while the leading structure (1.3) remains unchanged.
† Algebraically, there is no a priori way to single out one deformation from the others.

It is the representation theory of the symmetry algebra in question that will provide a

definite realization for the commutation relations of W∞. This is our main motivation for

being interested in a definite (perhaps the simplest) bosonic field theoretic representation

of W∞ with c = 2. Of course the CFT model we have in mind is the theory of ZN

parafermions in the limit N →∞.

In section 2 we discuss a realization of the W∞ algebra proposed in [5] in terms of a

free complex boson with c = 2. In section 3 we present a class of highest weight unitary

irreducible representations of the universal W∞ algebra. In section 4 we elucidate the

relation of this realization with the limit of the ZN parafermionic theory as N → ∞.

Finally, section 5 contains our conclusions and further comments.

2. A bosonic realization of the PRS W∞ algebra

∗We thank E. Witten for emphasizing this point repeatedly.
†Large N limits come in at least three distinct classes, as suggested by the Murray-von Neumann

theory of factors.
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The starting point in what follows, is the linear deformation of the area-preserving

diffeomorphism algebra described by,

[W s
m,W s′

n ] = ((s′ − 1)m− (s− 1)n)W s+s′−2
m+n + q2(s−2)cs(m)δs,s′δm+n,0+

+q2gss′
2 (m,n)W s+s′−4

m+n + q4gss′
4 (m,n)W s+s′−6

m+n + · · · (2.1)

where the sequence of .... terms terminates with W 2
m+n if both s, s′ are either even or

odd and with W 3
m+n otherwise. Here,

cs(m) =
c

2
m(m2 − 1)(m2 − 4)...(m2 − (s− 1)2)

22(s−3)s!(s− 2)!

(2s− 1)!!(2s− 3)!!
(2.2)

with c being the value of the central charge in the Virasoro subalgebra and,

gss′
2r (m,n) =

ϕss′
2r

2(2r + 1)!
N ss′

2r (m,n) (2.3)

where,

ϕss′
2r =

r∑

k=0

(−1
2
)k(

3
2
)k(−r − 1

2
)k(−r)k

k!(−s + 3
2
)k(−s′ + 3

2
)k(s + s′ − 2r − 3

2
)k

, (2.4)

N ss′
2r (m,n) =

2r+1∑

k=0

(−1)k

(
2r + 1

k

)
(2s− 2r − 2)k[2s

′ − k − 2]2r+1−k·

·[s− 1 + m]2r+1−k[s
′ − 1 + n]k . (2.5)

In the formulae above the symbols (a)k and [a]k denote

(a)k ≡ a(a + 1)(a + 2)...(a + k − 1) , (2.6a)

[a]k ≡ a(a− 1)(a− 2)...(a− k + 1) (2.6b)

with (a)0 = [a]0 = 1.

This algebra was first introduced in [5] from purely algebraic considerations and its

compatibility with the Jacobi identities was verified (to a great extend) with the aid

of symbolic manipulations. The linear structure of the commutation relations (2.1) is

consistent with the expectation that the symmetry algebra of higher spin theories (in

any number of space-time dimensions) will involve no quadratic or higher polynomial

terms if we include the generators of all transformations with spin s ≥ 2. In more

physical terms this means that consistent gauge interactions of higher spin massless

fields become possible when an infinite tower of fields with all possible (integer) values

of spin is introduced . In this sense, (2.1) describes a particular large N limit of the

chiral operator algebra WN . We will refer to this limit as the universal W-algebra of

Pope, Romans and Shen (PRS). The main task is to construct an explicit representation

of it with central charge c = 2. Later we will see that our representation has a natural

interpretation (and in fact it was motivated by) the theory of Z∞ parafermions.
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Let us consider a massless free complex boson φ(z) in 2-d with a two-point function

normalized as follows,

〈φ(z)φ(w)〉 = 〈φ̄(z)φ̄(w)〉 = 0 , 〈φ(z)φ̄(w)〉 = − log(z − w) . (2.7)

The standard stress tensor of the theory is,

W 2(z) ≡ T (z) = − : ∂zφ∂zφ̄ : (2.8)

and it has the standard operator product expansion (OPE),

T (z)T (w) =
1

(z − w)4
+

2T (w)

(z − w)2
+

∂wT (w)

(z − w)
+ · · · (2.9)

where · · · stand for non-singular terms. ¿From now on these terms will be ignored

consistently because they do not contribute to the commutation relations. Also, : :

stands for minimal normal ordering (subtraction of the pole). Clearly, the central charge

in (2.9) is c = 2 and the Fourier modes‡ W 2
n of the stress tensor satisfy the Virasoro

algebra,

[W 2
m,W 2

n ] = (m− n)W 2
m+n +

1

6
m(m2 − 1)δm+n,0 . (2.10)

Next we extend this representation to the full PRS algebra by introducing the follow-

ing ansatz,

W s(z) ≡ B(s)
s−1∑

k=1

(−1)kAs
k : ∂k

z φ∂s−k
z φ̄ : (2.11)

for all s ≥ 2. The coefficients As
k and B(s) are positive numbers that will be calculated

shortly. However before we proceed any further, a few remarks are in order. It is ob-

vious from dimensional analysis that the operators in (2.11) have scaling dimension s,

although they are not necessarily primary fields. Also the operators in (2.11) involve only

derivatives of the U(1)⊗U(1) currents, ∂φ and ∂φ̄ and no polynomial powers. Therefore,

the ansatz (2.11) is bound to produce an operator algebra with linear determining rela-

tions. Moreover, due to the presence of the alternating sign (−1)k in (2.11), the operators

W s(z) will be even (odd) under the interchange φ ↔ φ̄ for s even (odd), provided that

As
s−k = As

k. In view of this symmetry, we expect that the OPE of W s with W s′ will

involve W s′′ with s′′ = s + s′− 2, s + s′− 4, s + s′− 6, · · · only, which is the main feature

of the PRS algebra.

With these explanations in mind we proceed to calculate the coefficients As
k. Notice

that there is no central term in eq. (2.1) if s 6= s′ (which means that W s is a quasiprimary

operator). Since we assume that the universal W-symmetry is unbroken, i.e. 〈W s(z)〉 = 0

for all s, we have

〈W s(z)W s′(w)〉 ∼ δs,s′

(z − w)s+s′ . (2.12)

‡The Fourier modes of W s(z) are defined as W s(z) ≡ ∑
n∈Z W s

nz−n−s.
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This equation alone is sufficient to determine the form of As
k uniquely up to an overall

normalization constant which we denoted by B(s) in (2.11). Explicit calculation shows

that,

〈W s(z)W s′(w)〉 = B(s)B(s′)
I(s, s′)

(z − w)s+s′ (2.13)

with,

I(s, s′) = (−1)s
s−1∑

k=1

s′−1∑

l=1

(−1)k+l(s + l − k − 1)!(s′ + k − l − 1)!As
kA

s′
l . (2.14)

The condition I(s, s′) = 0 for s 6= s′, puts severe constraints on the form allowed for As
k.

We find that there is a unique solution to these conditions (up to normalization) given

by,

As
k =

1

(s− 1)

(
s− 1

k

)(
s− 1

s− k

)
. (2.15)

Notice that this solution enjoys the desirable property, As
k = As

s−k and yields A2
1 = 1§.

Some explanation is required about the general proof of our statement. To establish

the desired result it is sufficient to show that I(s, s′) = 0 for s′ = 2, 3, ..., s− 1 and for all

s > 2. Using (2.15), we have that I(s, 2) ∼ ∑s−1
k=1(−1)kk!(s−k)!As

k ∼
∑s−1

k=1(−1)kk
(

s−1
k

)
,

which is identically zero for s > 2. This is easily shown using the binomial expansion

of (1 − x)s−1, differentiating once with respect to x and setting x = 1 at the end of the

calculation. One can prove the rest of the identities I(s, s′) = 0 with 3 ≤ s′ ≤ s− 1 in a

similar way. We only point out that for general s′ the binomial expansion of (1 − x)s−1

must be differentiated at least s′ − 1 times before setting x = 1. Extending this process

to s′ = s we arrive at a (non-trivial) identity that will help us normalize appropriately

W s. In particular, the following is true for all s ≥ 2,

I(s, s) =
(2s− 2)!

s(s− 1)
. (2.16)

We reach an agreement with the standard normalization of the central terms in the

commutation relations of the PRS algebra provided that,

B(s) = qs−2 2s−3s!

(2s− 3)!!
. (2.17)

Then the ansatz (2.11) yields an infinite tower of higher spin fields of the form,

W 2(z) = − : ∂φ∂φ̄ : , (2.18a)

W 3(z) = −2q : (∂φ∂2φ̄− ∂2φ∂φ̄) : , (2.18b)

§The coefficients As
k appear in the definition of the (1,1) Jacobi polynomials, P

(1,1)
s−2 (x). The value of

I(s, s′) in (2.14) follows directly from the orthogonality relations of these polynomials.
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W 4(z) = −16q2

5
: (∂φ∂3φ̄− 3∂2φ∂2φ̄ + ∂3φ∂φ̄) : , (2.18c)

W 5(z) = −32q3

7
: (∂φ∂4φ̄− 6∂2φ∂3φ̄ + 6∂3φ∂2φ̄− ∂4φ∂φ̄) : , (2.18d)

W 6(z) = −128q4

21
: (∂φ∂5φ̄− 10∂2φ∂4φ̄ + 20∂3φ∂3φ̄− 10∂4φ∂2φ̄ + ∂5φ∂φ̄) : (2.18e)

etc. Here, q is the deformation parameter of PRS. It is worth pointing out that only W 3

is a primary conformal field.

Next, we will show that the expressions we have for W s(z) with As, B(s) given by

(2.15) and (2.17) respectively, not only reproduce the correct form of the central terms

in (2.1) but also provide a representation of the full PRS algebra with c = 2. Before we

delve into the general case, let us present the result of a sample (yet non-trivial) OPE

calculation: using (2.18) and (2.7) we find that,

W 3(z)W 4(w) = q2 64 · 12

5

[
W 3(w)

(z − w)4
+

1

3

∂W 3(w)

(z − w)3
+

1

14

∂2W 3(w)

(z − w)2
+

1

84

∂3W 3(w)

(z − w)

]

+5

[
W 5(w)

(z − w)2
+

2

5

∂W 5(w)

(z − w)

]
. (2.19)

In terms of Fourier modes (2.19) translates into,

[W 3
m,W 4

n ] = (3m− 2n)W 5
m+n + q2 64

35
[5m(m + 1)(m + 2)− 5(m + 1)(m + 2)(n + 3)+

+3(n + 2)(n + 3)(m + 2)− (n + 1)(n + 2)(n + 3)]W 3
m+n (2.20)

which agrees with (2.1) for s = 3, s′ = 4. Similarly, one may verify that for other choices

of s, s′, OPEs of the fields in the tower (2.18) yield precisely the commutation relations

of the PRS algebra.

In general, the OPE W s(z)W s′(w) assumes the form,

W s(z)W s′(w) = q2(s−2) 2
3s−7s!(s− 1)!(s− 2)!

(2s− 3)!!

δs,s′

(z − w)s+s′+

+B(s)B(s′)
s+s′−2∑

l=1

Rss′
l (∂φ, ∂φ̄)

(z − w)l
(2.21)

where,

Rss′
l =

s−1∑

k=1

s′−1∑

k′=1

(−1)k′As
kA

s′
k′ [(−1)s (s− k + k′ − 1)!

(s− k + k′ − l)!
: ∂s+k′−lφ ∂s′−k′φ̄ : +

+(−1)s′ (k + k′ − 1)!

(k + k′ − l)!
: ∂s′−k′φ ∂s+k′−lφ̄ :] .

(2.22)

Notice that the expression (2.22) satisfies the condition,

Rss′
l (∂φ, ∂φ̄) = (−1)s+s′Rss′

l (∂φ̄, ∂φ) (2.23)
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which is consistent with the Z2 grading, W s → (−1)sW s induced by the exchange of the

two U(1) currents. Moreover, for any fixed value of l, the field Rss′
l has scaling dimension

s + s′ − l. Therefore there is a unique resolution of all Rss′
l with 1 ≤ l ≤ s + s′ − 2 in

terms of the conformal fields W s+s′−2, W s+s′−4, · · · . In particular the symmetry of the

problem alone guarantees the existence of numbers {λss′
l;0 , λss′

l;2 , λss′
l;4 , ...} such that ,

Rss′
2r = λss′

2r;0W
s+s′−2r + λss′

2r;2∂
2W s+s′−2r−2 + λss′

2r;4∂
4W s+s′−2r−4 + · · · (2.24a)

Rss′
2r−1 = λss′

2r−1;0∂W s+s′−2r + λss′
2r−1;2∂

3W s+s′−2r−2 + λss′
2r−1;4∂

5W s+s′−2r−4 + · · · (2.24b)

The series (2.24) will terminate with derivatives of W 2 if s + s′ is even and derivatives of

W 3 if s + s′ is odd. Of course it is possible some of the λss′
l to be zero.

We may substitute (2.24) in (2.21) and compute the commutation relations of the

resulting infinite dimensional algebra. We use,

[W s
m,W s′

n ] =
∮

C0

dw

2πi
wn+s′−1

∮

Cw

dz

2πi
zm+s−1W s(z)W s′(w) (2.25)

where Cw is a contour around w and C0 a contour around zero. The linearity of the

decomposition (2.24) ensures that the relations we obtain for the commutators [W s
m,W s′

n ]

with s, s′ ≥ 2 and m,n ∈ Z are of the PRS type. Also, the Jacobi identity (associativity)

is automatically satisfied by construction. Of course in our case, the structure constants

are uniquely determined by the numerical coefficients λss′
l . To find their values (and hence

prove that the operators (2.11) provide a representation of the universal W-algebra with

c = 2), we must substitute (2.11) in (2.24) and compare with (2.22) for all l. This

way we obtain linear systems of algebraic equations for the unknown coefficients λss′
l .

Results of some explicit calculations are given in the appendix. It is possible to verify

directly that they yield the PRS structure constants for the commutation relations of

the corresponding spin fields. However the combinatorics of the problem becomes quite

complicated when s and s′ are arbitrary and so far we have not been able to extract the

general solution for λss′
l in closed form. Therefore we have to find an alternative and more

systematic way to compare our OPE results with the coefficients of the PRS algebra.

At this point we recall that in 2-d CFT, the structure constants C ij
k of any closed

operator algebra of quasiprimary fields,

Ai(z)Aj(w) =
∑

k

Cij
k(z − w)∆k−∆i−∆j [Ak(w) + derivatives] (2.26)

are determined unambiguously using the 3-point functions, [6]

〈Ai(z1)A
j(z2)A

k(z3)〉 =
Γijk

z
∆ij

12 z∆ik
13 z

∆jk

23

(2.27)

by,

Γijk =
∑

k′
Cij

k′G
k′k (2.28)
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where,

〈Ai(z1)A
j(z2)〉 =

Gij

z
∆i+∆j

12

δ∆i,∆j
(2.29)

and zij = zi− zj, ∆ij = ∆i +∆j−∆k, etc. In our case, conformal invariance implies that

〈W s1(z1)W
s2(z2)W

s3(z3)〉 =
1 + (−1)s1+s2+s3

zs12
12 zs13

13 zs23
23

B(s1)B(s2)B(s3)K
s1s2
s3

(2.30)

which vanishes for odd values of s1 + s2 + s3, consistent with the Z2 grading of the

W-fields (2.11) under the interchange φ ↔ φ̄. Using Wick’s theorem for the free-boson

representation of the W-generators we have obtained all 3-point functions (2.30) in closed

form. The coefficients Ks1s2
s3

turn out to be,

Ks1s2
s3

= (−1)s1+s2

s1−1∑

n=1

s2−1∑

m=1

s3−1∑

k=1

(−1)n+kAs1
n As2

mAs3
k

zs3−s2+m−n
12 zs2−s1+n−k

13 zs1−s3+k−m
23

·

·(s1 + m− n− 1)!(s2 + k −m− 1)!(s3 + n− k − 1)! . (2.31)

In (2.30) we have displayed explicitly the correct singularity structure of the corre-

lation functions. Therefore conformal invariance guarantees that the prefactor Ks1s2
s3

is

in fact independent of z1, z2, z3. Although this is not obvious by simple inspection of

(2.31) one may find amusing (?) to verify this statement explicitly for different values of

si. For this reason we may choose z1 = 1, z2 = 0, z3 = −1 in order to evaluate Ks1s2
s3

.

Setting s1 = s, s2 = s′ we find that in the special case s3 = s + s′ − 2 ,

Kss′
s+s′−2 =

2

ss′

(
2s− 3

s− 1

)(
2s′ − 3

s′ − 1

)
(s + s′ − 2)!(s + s′ − 4)! . (2.32)

This identity is highly nontrivial and so far we have not been able to prove it analytically.

However, we checked its validity thoroughly using numerical methods. Putting everything

together we obtain

〈W s(z1)W
s′(z2)W

s+s′−2(z3)〉 = (s + s′ − 2)
cs+s′−2

z2
12z

2(s−1)
13 z

2(s′−1)
23

(2.33)

where,

cs+s′−2 = q2(s+s′−4)23s+3s′−13 (s + s′ − 2)!(s + s′ − 3)!(s + s′ − 4)!

(2s + 2s′ − 7)!!
(2.34)

is the coefficient of the 2-point function of W s+s′−2, (c.f. (2.21)). Taking into account

the normalizations (2.27-2.29) we conclude that

W s(z)W s′(w) = (s + s′ − 2)
W s+s′−2(w)

(z − w)2
+ · · · (2.35)

for s, s′ ≥ 2. In the notation introduced in (2.24) this is equivalent to

B(s)B(s′)λss′
2;0 = s + s′ − 2 . (2.36)
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Conformal invariance fixes automatically the OPE coefficients of the derivative terms

as well. In general let Ai, i = 1, 2, 3 be quasiprimary operators and

A1(z)A2(w) = C12
3 (z − w)−∆12 [A3(w) +

∞∑

n=1

κn(z − w)n∂n
wA3(w)] . (2.37)

We can compute the 3-point function 〈A1(z1)A
2(z2)A

3(z3)〉 in two ways. First we know

that it must have the form (2.27). Second we can compute it using the OPE (2.37).

Matching the coefficients of the Laurent expansion in z12 of the two expressions for the

3-point function we obtain

κn =
∆13

2∆3

(∆13 + 1)

(2∆3 + 1)
· · · (∆13 + n− 1)

(2∆3 + n− 1)
≡ (∆13)n

(2∆3)n

. (2.38)

In our case, (2.38) fixes the coefficient of ∂W s+s′−2,

B(s)B(s′)λss′
1;0 = s− 1 (2.39)

which together with (2.36) generate the commutation relations (1.3) that describe the

leading (highest spin) structure of the PRS universal W-algebra.

Similarly we may compute the coefficient of any other term in the OPE (2.21) by

evaluating Kss′
s′′ for s′′ = s+ s′−4, s+ s′−6, · · ·. Howeverm, we have no general analytic

proof that all the remaining (subleading) structure constants of our algebra coincide with

that of PRS for arbitrary s, s′. Nevertheless we have verified it extensively using symbolic

manipulation programs.

The advantage of using 3-point functions to determine the coefficients λss′
l relies on

the fact that we can obtain closed expressions for the 3-point functions in terms of triple

sums (c.f. (2.30),(2.31)), which we can then apply to any specific case separately.

3. Highest weight representations

It is obvious from the preceding that the W∞ algebra we constructed is a subalgebra in

the enveloping algebra of the U(1)⊗U(1) current algebra generated by i∂φ, i∂φ̄. The W-

generators are bilinears in the current modes. Thus, highest weight (hw) representations

of the U(1) ⊗ U(1) algebra decompose into representations of the PRS algebra with

c = 2. In fact, a very simple and wide class of hw representations of the PRS algebra are

furnished by hw representations of the U(1)⊗ U(1) current algebra.

The standard SL(2) invariant vacuum |0〉 is also invariant under the PRS algebra,

W s
n|0〉 = 0 , n ≥ 1− s . (3.1)

A state |Q〉 will be a hw state of the PRS algebra if it satisfies,

W s
n>0|Q〉 = 0 , W s

0 |Q〉 = Qs|Q〉 (3.2)

9



where, in particular, ∆ ≡ Q2 is the (left) scaling dimension. It is obvious that the

standard hermiticity condition of the U(1)⊗U(1) current algebra translates into (W s
n)† =

(−1)sW s
−n for the PRS algebra. Also, in analogy with the hw representations of the

Virasoro algebra, the states |Q〉 can be created from the vacuum by local operators

VQ(z), VQ(0)|0〉 = |Q〉. Then, the hw conditions (3.2), translate into the following OPE,

W s(z)VQ(w) = Qs
VQ(w)

(z − w)s
+ O[(z − w)1−s] . (3.3)

It is easy to see that the vertex operators,

Va,ā(z) =: exp(iaφ + iāφ̄) : (3.4)

are primary (hw) operators of the PRS algebra with charges,

Qa,ā
s = (−1)sqs−2 2s−3[(s− 2)!]2

(2s− 3)!!
[1 + (−1)s]∆ , 2∆ = |a|2 . (3.5)

These operators have zero charges under the odd W-generators. This does not mean,

however, that the odd part of the algebra acts trivially on the representation module. In

fact we can prove that the vertex operators (3.4) exhaust all hw representations of the

PRS algebra with c = 2. The proof relies on the connection of the construction given

above to the theory of Z∞ parafermions and will be dealt with in the next section. Also,

as we will see later, this automatically yields the (reduced) character formulae for hw

irreducible unitary representations of the PRS algebra with c = 2,

χā
a(q) ≡ Tr[qL0− c

24 ] =
q
|a|2
2
− 1

12

∏∞
n=1(1− qn)2

. (3.6)

Here, q =exp(2πiτ) depends on the modular parameter τ and should be distinguished

from the PRS parameter q appearing in (3.5). Equation (3.6) implies in particular that

an affine irreducible U(1) ⊗ U(1) representation decomposes into (and in fact coincides

with) exactly one W∞ irreducible representation.

The vertex operators (3.4) provide the first concrete class of hw, unitary representa-

tions of the W∞ algebra.

4. Z∞ parafermions

The construction described in the previous section is inspired and closely related to

the theory of Z∞ parafermions. The ZN parafermion algebra can be described in two

complementary ways, either as the chiral algebra of the coset SU(N)1⊗SU(N)1/SU(N)2,

(c.f. (1.2)), or as that of the coset SU(2)N/U(1). We will pursue the second approach in

order to avoid unnecessary complications dealing with the large N limit of SU(N).
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The ZN parafermions can be defined using the SU(2) level-N current algebra, [7],

Ja(z)J b(w) =
N

2

δab

(z − w)2
+ iεabc J

c(w)

z − w
. (4.1)

In particular, we set, [8]

J3 = i
√

N/2 ∂ρ , J± =
√

Nexp(±
√

2

N
iρ) ψ±1 , 〈ρ(z)ρ(w)〉 = − log(z − w) (4.2)

and the OPE of the parafermions ψk assumes the form

ψk(z)ψk′(w) = ck,k′(z − w)−
2kk′

N (ψk+k′(w) + O(z − w)) , (4.3a)

ψk(z)ψ−k(w) = (z − w)−2
k(N−k)

N [1 +
k(N − k)(N + 2)

N(N − 1)
(z − w)2Tψ(w) + ...] , (4.3b)

where,

ψk = ψ†−k , ψN+k = ψk , ψ0 = 1 (4.3c)

and Tψ is the parafermionic stress tensor. We point out that at N = ∞, SU(2) “flat-

tens” and becomes a U(1)3 current algebra. This follows by simple rescaling of the

SU(2) currents in (4.1) as Ja(z) → N−1/2Ja(z). Then, the large (level) N limit of the

SU(2) current algebra is well defined and involves no infinities. Considering the coset

SU(2)/U(1) means removing the scalar field ρ from the spectrum.

The spin of the parafermions ψk is given by ∆k = k(N−k)/N for k = 0, 1, 2, · · · , N−1.

As N → ∞, the scaling dimension of ψ±k, ∆±k = k(1 − k
N

) → k . Thus N = 2 and

N = ∞ are the only two cases where the parafermionic algebra becomes local. For

N = ∞, the discrete ZN⊗ZN symmetry of the system is promoted to affine U(1)⊗U(1).

In this limit, strictly speaking, the discrete symmetry becomes a global continuous chiral

symmetry. However in 2-d statistical models at criticality, such a symmetry becomes

automatically local and the U(1) ⊗ U(1) currents can be identified with ψ1 = i∂φ and

ψ†1 = i∂φ̄. Also, ψk ∼ (∂φ)k, ψ†k ∼ (∂φ̄)k are expressed as composite fields for k ≥ 2.

The (integer spin) chiral algebra of the ZN theory contains (for all 2 ≤ s ≤ N) a

unique field of spin s which emerges on the right hand side of (4.3b). Then, according

to (4.3b) the W-generators appear in the non-singular terms of the operator product of

∂φ and ∂φ̄ and therefore must be of the form advocated in (2.11). It is quite standard

to consider as the symmetry algebra of the ZN parafermion theory either the algebra

(4.3) (with fractional spins) or equivalently the WN which is formed out of “composite”

parafermion fields. For each parafermionic primary field there corresponds a finite number

of primary fields of the WN algebra, [8,9].

As the level N of the SU(2) current algebra (4.1) becomes large, the Hilbert space

of the parafermion theory decomposes into three interesting classes of primary fields.

The first class, denoted by C0, encompasses the fields whose dimensions approach zero.
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The second, CF , contains the fields that reach finite scaling dimensions, while the third,

C∞, contains the operators that have unbounded dimensions as N → ∞. The class

C∞ deserves a study in its own right and we suspect that there might be non-trivial

structure hidden in it. Here, we mainly deal with CF and we will comment briefly on C0.

For simplicity, as we explained earlier, it is more convenient to consider the large (level)

N limit of the SU(2) WZW model first and then translate the results to the parafermionic

coset (1.2) with p = 1.

Let [j] be a hw representation of SU(2) with highest spin j, which contains 2j + 1

states labeled by m, with −j ≤ m ≤ j. All such 2j +1 states are hw with respect to WN

and the m = j state corresponds to the parafermionic primary field, [8,9]. Also the affine

SU(2) primary fields are labeled by their spin, j = 0, 1
2
, 1, ... and the third component m,

−j ≤ m ≤ j. It is known that their dimension is given by ∆j = j(j+1)
N+2

. In analogy with

the parafermionic case, we have three sectors of fields as N → ∞. C̃0 contains primary

fields at finite (fixed) j with weight ∆j ∼ 1
N

, C̃F contains spins j ∼ √
N and C̃∞ contains

spins j ∼ N . The fields in C̃0 form a closed operator algebra. This statement turns out

to be trivial because the OPEs of the C̃0 representations follow exactly the group theory.

In particular, the OPE coefficients calculated in [10] reduce to the SU(2) Glebsch-Gordan

coefficients. For completeness we point out that the statement we made above for C̃0 is

also true for any collection of fields with ∆ → 0, due to dimensional arguments.

For the fields in C̃F the situation is more interesting. Let us parametrize them using

their dimension ∆ = lim j→∞
N→∞

j(j+1)
N+2

, which is finite provided that j/
√

N is held fixed. (It

is obvious that any real value for ∆ can be obtained this way.) Now, if we analyze the

OPE coefficients in this regime we will find that the (3-point) coupling C(∆1, ∆2, ∆3) is

exponentially suppressed as e−β
√

N , unless one of the following relations holds
√

∆1 =
√

∆2 +
√

∆3 (4.4)

or cyclic permutations. This is precisely the composition law for abelian vertex operators!

Since the SU(2) currents in the large N limit become abelian, the primary fields in the

C̃F sector must be of the form : exp[ia3ρ + iaφ + iāφ̄] :, where ρ was introduced in (4.2)

and

i∂φ(z) ≡ lim
N→∞

N− 1
2 J+(z) = ψ1(z) , i∂φ̄(z) ≡ lim

N→∞
N− 1

2 J−(z) = ψ−1(z) . (4.5)

The parameter a3 is proportional to the eigenvalue of the zero mode J3
0 . In this language,

the W∞ primary fields can be obtained by factoring out the ρ-field dependence and

therefore they assume the form (2.11). The rest of the representation is obtained in the

standard way by acting with the lowering operators of the U(1) currents ∂φ and ∂φ̄. This

construction proves that the representations of the PRS W∞ algebra are isomorphic to

the representations of the U(1)⊗ U(1) current algebra, as we alluded to in the previous

section.
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Next, we analyze further the structure of these representations by deriving their

character formulae. Recall that the character of an affine SU(2) representation with spin

j is given by, [9]

χj(τ, z) ≡ Trj[q
L0− c

24 e2πiJ3
0 ] = i

ϑ2j+1,N+2(z|τ)− ϑ−2j−1,N+2(z|τ)

ϑ1(z|τ)
(4.6)

where,

ϑm,N(z|τ) =
∑

n∈Z+m/2N

e2πiN(n2τ−nz) (4.7)

and ϑ1(z|τ) is the standard ϑ-function. The reduced character, is obtained from (4.6)

by setting z = 0 and provides the building blocks of the SU(2) WZW partition func-

tion in the absence of background fields. Then, the corresponding characters of the hw

representations of the WN algebra are given in terms of the string functions cl
m, with

l = 2j,

χl(τ, z) =
k∑

m=1−k

cl
m(τ)ϑm,k(z|τ) . (4.8)

The characters are χl
m = ηcl

m, where η is the Dedekind η-function. Now by taking the

N →∞ limit for the class of C̃F representations we find,

χj(τ) =

√
∆

N

e2πiτ∆

η3
+ O(

1

N
) (4.9)

which means that the Z∞ parafermionic characters are given by (3.6), as advertized.

We should mention at this point that there is a RWN algebra which constitutes

the real counterpart of the complex WN algebra studied in this paper. The algebra we

have already studied is obtained from the chiral algebra of the coset model SU(N)1 ⊗
SU(N)1/SU(N)2 and has c = 2 in the limit N →∞. On the other hand, the real coset

O(N)1 ⊗O(N)1/O(N)2 has c = 1 (for all N) and can be identified with the sequence of

Z2 orbifold models with radius R = N
√

2. It is known, [11], that these models have a

chiral algebra generated by the stress tensor, a spin-4 field (which is quartic in the U(1)

current) and a field of spin N which is represented by the vertex operator : cos(
√

2Nφ) :.

The rest of the fields with spin 6, 8, · · · appear in the OPE of the basic fields with spin

2,4,N. As N → ∞, the field : cos(
√

2Nφ) : decouples and we are left with the RW∞
algebra generated by fields with even spin only. It can be shown that these fields are

given (up to normalization) by,

W 2s(z) ∼
2s−1∑

k=1

(−1)kA2s
k ∂kφ∂2s−kφ (4.10)

where A2s
k has been defined in (2.15) and φ is a single real scalar field. Hence, RW∞ is

the quotient of the W∞ by the ideal of fields with odd spins.
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5. Conclusions and future directions

In this paper we presented a realization of the PRS W∞ algebra with c = 2 in terms

of a free complex boson. In our construction associativity is manifest. We also gave a

class of irreducible hw representations of this algebra in terms of vertex operators. To

our knowledge this is the first construction of highest weight representations for W∞.

The whole line of thought was motivated by the large N limit of ZN parafermions. We

presented an analysis of the structure of the underlying W-algebra together with its

parafermionic Hilbert space, when N becomes large. In particular we noticed that the

hw representations of the W∞ algebra we constructed emerge naturally as the limits of

hw representations of the WN algebra. This enabled us to prove that they are unitary

and irreducible and to give also a character formula. However we neglected in our dis-

cussion some subsets of the Hilbert space that were not relevant (at least directly) to the

construction we presented. It might be worthwhile to study further the C∞ class of fields

and analyze its structure. Also, it would be interesting to extend our results for values

of central charge c > 2.

The need to investigate the structure of WN algebras as N → ∞ arises not only in

problems of 2-d CFT but also in other areas of mathematical physics. Some (rather

curious) connections of W∞ with the infinite dimensional (hidden) symmetry algebra of

Euclidean self-dual 4-d spaces (gravitational instantons) have already been discussed in

the literature and we refer the reader to [3,12] for further details. (See also [13,14] for

a complementary point of view on some related issues of hyper-Kahler geometry). Here

we only intend to comment briefly on the relevance that large N limits of W algebras

seem to have in the theory of “universal” systems of integrable non-linear differential

equations.

Let us consider the KP hierarchy of non-linear differential equations (see for instance

[15] and references therein) described by the evolution,

∂Q

∂tr
= [(Qr)+, Q] (5.1)

where Q is a formal pseudo-differential operator,

Q = ∂z + q1(z, ti)∂
−1
z + q2(z, ti)∂

−2
z + · · · (5.2)

and (Qr)+ denotes the purely differential part of Qr. Then for every fixed positive integer,

r, we obtain a system of infinitely many coupled non-linear equations of the form,

∂qi

∂tr
= F

(r)
i (q, q′, q′′, · · ·) , i = 1, 2, · · · (5.3)

where F
(r)
i are certain differential polynomials in the q-variables, determined by (5.1). It

is known that all KdV systems of SL(N)-type hierarchies (whose members are parametrized
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by r) are special cases of (5.1). For each value of r, their embedding in the KP hierarchy

is described simply by the requirement that Q is the (unique) N-th root of a differential

operator LN ,

QN ≡ LN = ∂N
z + uN−2(z)∂N−2

z + · · ·+ u0(z) . (5.4)

Then, the equations (5.3) reduce to a system of N − 1 independent differential equations

and the rest are functionally related to them.

At this point recall that the Hamiltonian structure of the KdV systems can be formu-

lated using the commutation relations of the Gelfand-Dickey algebra GD(SL(N)) (see for

instance [16] and references therein). For N = 2 this reduces to the standard description

of the KdV equation in terms of the Virasoro algebra, [17]. On the other hand, it has

been established that Gelfand-Dickey algebras provide a classical Hamiltonian framework

for all WN symmetry algebras with N ≥ 2 (see [18] and references therein). Therefore it

is natural to view the full unrestricted KP hierarchy as a universal KdV system associ-

ated with a large N limit of WN algebras. This observation alone suggests an interesting

reformulation of the problem (5.1) and its integrability properties¶. We suspect that

there is a deeper connection among the KP hierarchy, the algebra of area preserving dif-

feomorphisms (1.3) and its unitary representations studied in this paper. We also think

that a better understanding of these issues will hopefully clarify the different realizations

of WN in the limit N →∞. Work in this direction is in progress.

Large N limits also became popular recently in the context of Universal Yang-Mills

theory [19] and non-perturbative 2-d quantum gravity [20], where certain structures of

the type described above seem to emerge. It is highly plausible that there exists a unified

formulation of various large N limits in terms of the Hilbert space theory of factors.

Subsequent specification of a Hamiltonian will generate a KP-type hierarchy. Such issues

beg for a better understanding and will be considered elsewhere in more detail.
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Note Added

¶D. Fairlie and L. Dickey have raised this point independently. It is also transparent from a footnote
in Morozov’s paper, [4], that A. Radul has been working on similar ideas.
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After this work was complete, we became aware of reference [21], where the idea

to use U(1) affine algebras in order to realize W∞ was presented independently (but

rather abstractly). In contrast, the results we describe here are explicit and quite natural

in the context of 2-d CFTs. It might be interesting to generalize our field-theoretic

representation to the lone star W∞ algebra, also introduced in [5].
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Appendix

We summarize the results of the OPE W s(z)W s′(w) for (s, s′) =(2,2), (2,3), (2,4),

(2,5), (2,6), (3,3), (3,4), (4,4). The numerical coefficients λss′
l that we omit in these cases

are identically zero. We have,

λ22
1;0 = 1 , λ22

2;0 = 2 , λ23
1;0 =

1

2q
, λ23

2;0 =
3

2q
, λ24

1;0 =
5

16q2
, λ24

2;0 =
5

4q2

λ24
4;0 = 12 , λ25

1;0 =
7

32q3
, λ25

2;0 =
35

32q3
, λ25

4;0 =
30

q
, λ26

1;0 =
21

128q4

λ26
2;0 =

63

64q4
, λ26

4;0 =
105

2q2
, λ26

4;2 = 12 , λ26
5;0 = −120 , λ26

6;0 = 240

λ33
1;0 =

1

2q2
, λ33

1;2 =
2

5
, λ33

2;0 =
1

q2
, λ33

2;2 =
9

5
, λ33

3;0 = 6

λ33
4;0 = 12 , λ34

1;0 =
5

16q3
, λ34

1;2 =
2

7q
, λ34

2;0 =
25

32q3
, λ34

2;2 =
12

7q

λ34
3;0 =

8

q
, λ34

4;0 =
24

q
, λ44

1;0 =
75

256q4
, λ44

1;2 =
15

16q2
, λ44

1;4 =
3

14

λ44
2;0 =

75

128q4
, λ44

2;2 =
75

16q4
, λ44

2;4 =
10

7
, λ44

3;0 =
135

8q2
, λ44

3;2 = 8

λ44
4;0 =

135

4q2
, λ44

4;2 = 36 , λ44
5;0 = 120 , λ44

6;0 = 240

Notice that in (2.21), B(s)B(s′) appears as a prefactor.
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