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1 Introduction

Affine Lie algebra was discovered independently in mathematics [1] and physics [2]. The

first representations [2] were constructed with world-sheet fermions [2, 3] to implement

the proposal of current-algebraic spin and internal symmetry on the string [2]. Examples

of affine-Sugawara constructions [2, 4] and coset constructions [2, 4] were also given in the

first string era, as well as the vertex operator construction of fermions and SU(n)1 from

compactified spatial dimensions [5, 6]. The group-theoretic generalization of these con-

structions [7, 8, 9] and their applications to the heterotic string [10] mark the beginning

of the present era. See [11, 12, 13, 14] for further historical remarks on affine-Virasoro

constructions.

The original approach of Bardakci and Halpern [2, 4] was recently resurrected in the

general affine-Virasoro construction L = Lab ∗
∗JaJb

∗
∗ [15, 16, 17] on the currents Ja of

affine g∗. The resulting Virasoro master equation for the inverse inertia tensor Lab = Lba

(and the generalization to include linear terms in Ja [15, 16]) contains the Sugawara and

coset constructions, the linear conformal deformations† , and a presumably large number

of new constructions. Geometric identification of the master equation as an Einstein-like

system on the group manifold G [16] indicates that classification of all solutions will be

a formidable program.

The master equation has so far yielded two new solutions, the generalized non-

compact spin-orbit construction [2, 26, 15] with generically-irrational central charge, and

a continuous unitary solution on SU(2)4 [17] with c = 1. Witten’s recent nested coset

constructions [27] and the unitary non-compact coset constructions with continuous cen-

tral charge‡ [28] are also solutions of the master equation.

We report here a quasi-systematic investigation of the Virasoro master equation,

including organizational principles (Section 2), consistent ansätze (Section 3) and large

classes of new unitary solutions (Sections 4-8). In particular:

1. The space of affine-Virasoro constructions is organized by K-conjugation into affine-

Virasoro nests, so that all Sugawara, coset and nested coset constructions are in

the simple class of Sugawara nests based on the Sugawara construction Lg. New

constructions L#
g similarly generate new affine-Virasoro nests.

2. The expected number of solutions at level x of g shows that most solutions await

∗Related ideas are discussed in [18]
†Linear conformal deformations [11, 19] unify and contain a) the c-fixed conformal deformations,

which generalize continuous toroidal [2, 20, 13, 21, 22] and orbifold [23, 24] compactifications, and b)
the c-changing conformal deformations, which generalize the Fairlie-Feigin-Fuchs construction [25].

‡In contrast to [28], our unitary constructions with irrational central charge, described below, work
entirely on the Hilbert space of compact groups.
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discovery. The a priori relative abundance of central charge types is

irrational À rational (1.1a)

non− unitary À unitary (1.1b)

irrational unitary À rational unitary (1.1c)

with continuous solutions occurring only sporadically. In fact, unitary irrational

nests on compact g are so copious in these ansätze that their number is already

approaching the number of all unitary Sugawara nests. We expect that further work

will confirm dominance of unitary irrational central charge over unitary rational

central charge on compact g.

With consistent ansätze for the master equation, we announce the following new

unitary solutions g#
x on the currents of gx:

1. Unitary continuous constructions with rational central charge

Cartan g#; SU(2)#
4 ; (SU(2)x × SU(2)x)

#, x 6= 4 (1.2)

which we call quadratic conformal deformations. SU(2)#
4 is the solution of [17].

These SL(2, R)-preserving deformations generally terminate at unitarity limits

which are Sugawara and coset constructions h and g/h, and, as discussed in the

Appendix, each of the constructions contains a continuous family of (1,0) states

across the deformation. The physical content of these examples should be com-

pared to particular c-fixed SL(2, R)-preserving linear conformal deformations [11],

where an analogous (1,0) phenomenon is familiar.

2. Unitary discrete constructions with generically-irrational central charge

(SU(2)x)
q≥3
# ; simply-laced g# (1.3)

which may be the dominant unitary solution type on compact g. Simply-laced g#

is rational for g = SU(2), so SU(3) and (SU(2))3 are the smallest manifolds on

which we have found unitary irrational central charge. The chiral constructions

(1.3), and their unitary irrational affine-Virasoro nests, should be considered for

promotion to unitary irrational conformal field theories.

All the new solutions, including the spin-orbit constructions [2, 26, 15], involve no

more than a single square root, although every case begins with a large system of coupled

quadratic equations. This indicates that the master equation is a special algebraic system,

with a deep structure we do not fully understand. A few phenomenological remarks in

this direction are included in Section 9.
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2 The Virasoro Master Equation

The general affine-Virasoro construction is [15, 17]

L = Lab ∗
∗JaJb

∗
∗, [L(m), L(n)] = (m− n)L(m+n) +

c

12
m(m2 − 1)δm+n,0 (2.1)

with symmetric normal ordering Tab = ∗
∗JaJb

∗
∗ = Tba on the currents of affine g [1, 2]

[J (m)
a , J

(n)
b ] = if c

ab J (m+n)
c + mGabδm+n,0. (2.2)

Analysis of the system (2.1)-(2.2) results in the Virasoro master equation and central

charge

Lab = 2LacGcdL
db − LcdLeff a

ce f b
df − Lcdf f

ce f
(a

df Lb)e,

c = 2GabL
ab (2.3)

for the inverse inertia tensor Lab = Lba.The construction is completely general since g is

not necessarily semi-simple or compact. In particular, to obtain levels xI = 2kI/ψ
2
I of gI

in g = ⊕IgI with dual Coxeter numbers h̃I = QI/ψ
2
I , take

Gab = ⊕IkIη
I
ab, f d

ac f c
bd = −⊕I QIη

I
ab (2.4)

where ηI
ab is a Killing metric of gI . The geometric form of the master equation and central

charge [16]

R̂ij + gij = g
(g)
ij , c = dim g − 4R (2.5)

is an Einstein-like system on the group manifold G, where the inertia tensor Lab defines

the left invariant metric gij = ea
i Labe

b
j: R̂ij is the Ricci tensor Rij plus (torsion)2 terms,

R is the curvature scalar, and g
(g)
ij is the left-right invariant Sugawara metric.

We remark on some general properties of the master equation which will be useful in

the analysis below:

1. SL(2, R)-invariance. The vacuum |0〉 of affine g satisfies

Jm≥0
a |0〉 = Tm≥−1

ab |0〉 = Wm≥−2
abc |0〉 = 0 (2.6)

where Wabc is the three-current operator of [15]. It follows that all solutions of the

master equation are SL(2, R)-invariant with Lm≥−1|0〉 = 0. This is particularly

interesting in the comparison of quadratic with linear [11] conformal deformations,

since the c-fixed linear conformal deformations must be at least linear-loaded to

preserve the SL(2, R)-invariant vacuum.

2. The affine-Sugawara construction [2, 4, 8] Lg is

Lab
g = ⊕ ηab

I

2kI + QI

, cg =
∑

I

xIdim gI

xI + h̃I

(2.7)

for arbitrary levels of any g, and similarly for Lh when h ⊂ g.
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3. K-conjugation invariance [2, 4, 15]. If Lab and Lab
g are solutions, then so is the

K-conjugate partner L̃ of L,

L̃ab = Lab
g − Lab, c̃ = cg − c, (2.8)

while the corresponding K-conjugate operator pairs L(m) and L̃(n) commute. The

coset constructions [2, 4, 9] L̃ = Lg/h are obtained for h ⊂ g with L = Lh.

4. Affine-Virasoro nests. If gm ⊃ gm−1 ⊃ ... ⊃ g1 ⊃ g and L#
g is any construction with

central charge c#
g on g, then repeated embedding by K-conjugation produces the

affine-Virasoro nest {L(n)[L
#
g ]} on gm,

L(n)[L
#
g ] = Lgn − L(n−1)[L

#
g ] =

n∑

i=1

(−1)n+iLgi
+ (−1)nL#

g ,

c(n)[L
#
g ] =

n∑

i=1

(−1)n+icgi
+ (−1)nc#

g , n = 0, 1, ..,m (2.9)

associated to L(0)[L
#
g ] = L#

g . An element L(j) of the nest commutes with its

nearest neighbors L(j±1) at the operator level. We will also use the coset notation

gm/gm−1/../g1/g
# for the general nest since the embedding is independent of L#

g .

The simple class of Sugawara nests gm/../g with L#
g = Lg contains all affine-

Sugawara, coset and nested coset [27] constructions, but there are many distinct

nests based on new L#
g .

5. Vertical-horizontal structure. A two-dimensional structure emerges for affine-Virasoro

space, with subgroup nesting as the vertical direction (g above h when g ⊃ h). The

horizontal direction is the set of all constructions at fixed g, which contains the

subset of irreducible constructions

{L#
g } : (L#

g )(0) = Lg , (L#
g )(1) , (L#

g )(2) , .... (2.10)

which are not obtainable by nesting from below. The irreducible constructions nest

upward into a cascade of solutions at large g. It is important to emphasize that even

one new (L#
g )(1) over all levels of arbitrary g generates a set of affine-Virasoro nests

whose dimension equals that of all the Sugawara nests. The list (1.3) of irreducible

unitary irrational constructions shows that we are already approaching this point

on compact g, and more unitary L#
g are expected with further work.

6. Counting. The dimension of the horizontal space is estimated as follows. The

master equation on g is a set of dim g(dim g +1)/2 quadratic equations on an equal

number of components Lab = Lba of the inverse inertia tensor. Moding out by dim g

inner automorphisms of g and subtracting the trivial pair (Lg, 0), we find that

NK(g) = 2e(g) − 1 , e(g) =
1

2
dim g(dim g − 1)− 1 (2.11)
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non-trivial, possibly complex, K-conjugate pairs are expected for arbitrary level

of any g. The result (2.11) shows that the cascade at large g is exponential, and

evaluation on small g, e.g. NK = 227 − 1 for g = SU(3), demonstrates that a very

large number of new irreducible constructions L#
g await discovery. The number of

distinct pairs can be less than NK due to degeneracy and/or physical identity of

constructions. The a priori relative abundance of solution types is given in (1.1).

7. Unitarity. Each K-conjugate pair is either unitary or non-unitary with possible

unitary subspaces §. Unitary constructions are recognized by L(m)† = L(−m) when

the currents J (m)†
a = J (−m)

a act in a positive-definite unitary representation of g [9],

which is satisfied for real Lab on compact g.

8. Spectrum. Partial spectral results are obtained for general Lab ∗
∗JaJb

∗
∗ via the

highest weight construction given for g, h and g/h in [12]: if {RI
(r)} are the known

quantum irreducible representations of affine g with matrix representation {Ta},

[J (m)
a , RI

(r)] = RJ
(r+m)(Ta)

I
J , (2.12)

then the states formed with the highest non-vanishing modes r(0) of R,

|∆M〉 ≡ RI
r(0)|0〉χIM , Lab(TaTb)

J
I χJM = ∆MχIM (2.13)

are Virasoro highest weights of Lab ∗
∗JaJb

∗
∗. The conformal weights ∆M are the

eigenvalues of the effective Hamiltonian H = LabTaTb. There is an easy explicit

version of the unitarity argument [9] in this case. When Lab is real on compact g,

we have hermitian H, real ∆M and unitary χ, so the states {|∆K〉} in (2.13) are

unitary transformations of the affine highest weight states {RI
r(0)|0〉} of g. Positivity

of the space {|∆M〉}, and hence ∆M ≥ 0 , follows from positivity of the unitary

affine highest weight states.

3 Consistent Ansätze for the Master Equation

The numerical equality of restrictions and unknowns in the master equation, and hence

the solvability of the system, reflects closure under OPE of the operator subset {LabTab, ∀Lab}.
Similarly, a consistent ansatz {Lab(ansatz)} ⊂ {Lab} for the master equation is one that

maintains numerical equality of equations and unknowns, indicating closure of the oper-

ator subset {Lab(ansatz)Tab}.
§As examples, non-compact coset constructions and the non-compact spin-orbit constructions (ε = −1

in [15]) are quasi-unitary (non-unitarity controlled by signs of the Killing metric), and this class often
admits unitary subspaces [2, 4, 26, 28]
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We discuss consistent ansätze for level xg = 2k/ψ2
g of g simple and compact in the

Cartan-Weyl basis, for which

Gab = k ηab , ηAB = δAB , ηαβ = δα+β,0 (3.1a)

fA α
α = fα −α

A = −iαA , fα β
γ = −iNγ(α, β) (3.1b)

Nγ(α, β) = N−β(−γ, α) = −N−γ(−α,−β) (3.1c)
∑
α

αAαB = Qgδ
AB ,

∑

β+γ=α

N2
α(β, γ) = Qg − 2α2 (3.1d)

with A,B = 1, · · · , rank g and α, β, γ are roots of g. The general affine-Virasoro con-

struction takes the form

L =
∑

AB

LABTAB +
∑

αβ

LαβTαβ + 2
∑

αA

LAαTAα (3.2a)

c = 2k(
∑

A

LAA +
∑
α

Lα,−α) (3.2b)

and we require for unitarity that

LAB = LBA = real , LAα = LαA = (LA,−α)∗ , Lαβ = Lβα = (L−α,−β)∗ (3.3)

so Lα,−α, ∀α is real. Among the dimg inner automorphisms, the unitary transforma-

tion exp(i
∑

A φAJ
(0)
A ) further allows the choice of rank g phases in {Lαβ, LAα}, and we

explicitly choose Lαα = real, ∀α for SU(2)q × U(1)p subgroups below.

The simplest consistent ansatz is entirely on Cartan g with only LAB 6= 0, so that the

master equation simplifies to

LAB = 2k
∑

C

LACLCB (3.4)

with no root operators included. There are at least two other ansätze intermediate

between (3.4) and the full master equation.

The ansatz on which we focus below involves only the components {LAB, Lρ,±ρ} in

L =
∑

AB

LABTAB +
∑

ρ>0

(2Lρ,−ρTρ,−ρ + LρρTρρ + (Lρρ)∗T−ρ,−ρ) (3.5a)

c = 2k(
∑

A

LAA + 2
∑

ρ>0

Lρ,−ρ) (3.5b)

for some subset of roots {ρ} of g. The set {ρ} always includes −α for unitarity when

α ∈ {ρ}. The necessary condition that no root-quartet of {ρ} satisfy

α + β = γ and α− β = δ , α, β, γ, δ ∈ {ρ} (3.6)
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is obtained on substitution of the ansatz into the master equation. This condition is

satisfied by the roots of simply-laced g and the master equation takes the form

LAB = 2k
∑

C

LACLCB +
∑
ρ

(|Lρρ|2 − (Lρ,−ρ)2)ρAρB +
∑

ρC

Lρ,−ρρCLC(AρB) (3.7a)

Lρρ


1− 4kLρ,−ρ − 4χρ − 2

∑

α+β=ρ

Lβ,−βN2
ρ (α, β)


 =

∑

α+β=ρ

LααLββN2
ρ (α, β) (3.7b)

Lρ,−ρ = 2(k− ρ2)|Lρρ|2 +2(k + ρ2)(Lρ,−ρ)2 +
∑

α+β=ρ

(2Lρ,−ρ−Lβ,−β)Lα,−αN2
ρ (α, β) (3.7c)

χρ ≡
∑

A B

LABρAρB, (3.7d)

after some algebra in this case.

Another consistent ansatz keeps LAB, Lαβ 6= 0 for root subsets {ρ} which satisfy

α± β 6= γ and hence α · β = 0, α, β ∈ {ρ}. The master equation in this case

LAB = 2k
∑

C

LACLCB +
∑

αβ

|Lαβ|2αAβB +
∑

αC

Lα,−ααCLC(AαB) (3.8a)

Lαβ[1−∑

A B

LAB(α + β)A(α + β)B] =
∑
ρ

(2k − (α− β) · ρ)LαρL−ρ,β (3.8b)

is a more general description of any (SU(2))q × U(1)p subgroup of g.

The intersection of the ansätze (3.7) and (3.8) is the simplest starting point beyond

the Cartan ansatz (3.4). We define a restricted SU(2)q × U(1)p subsystem by keeping

only LAB, Lρ,±ρ 6= 0 for {ρ} any subset of the roots of SU(2)q×U(1)p, so that α±β 6= γ,

α · β = 0, α, β ∈ {ρ}. Then (3.7) may be written for k 6= ρ2 as¶

LAB = 2k
∑

C

LACLCB +
∑

ρ>0

1− 4χρ

2k

(
2ρAρB

k − ρ2
χρ +

∑

C

ρCLC(AρB)

)
(3.9a)

Lρ,−ρ =
1

4k
(1− 4χρ) , (Lρ,ρ)2 =

1

16k2
(1− 4χρ)(1 +

k + ρ2

k − ρ2
4χρ) (3.9b)

where we have solved (3.7b)-(3.7c) to obtain Lρ,±ρ 6= 0 in terms of LAB. Only the simple

system (3.9a) on Cartan g need be solved in this ansatz, and exceptional cases with

k = ρ2 are examined separately with (3.7).

The same set of equations (3.9) describes a collection of submanifolds as follows: Any

solution of (3.9a) for fixed values of

Q ≡ order(LAB) = rank(SU(2)q × U(1)p) = q + p (3.10a)

¶The derivation of (3.9) from (3.7) chooses Lα,−α = 0 (rather than the Sugawara value Lα,−α
g =

(k + α2)−1/2) when Lαα = 0, so (3.9) is K-conjugation invariant only for R ≡ dim{ρ > 0} = q. The
conjugate partner L̃ = L(SU(2)q ×U(1)p)−L of any solution L of (3.9) solves (3.7) on SU(2)q ×U(1)p

for all R ≤ q.
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R ≡ dim{ρ > 0} ≤ q ≤ Q (3.10b)

applies uniformly over the (Q,R) space of submanifolds

(Q,R) : SU(2)Q−n × U(1)n , n = 0, 1, · · · , Q−R (3.11)

with dim(Q,R) = Q−R + 1. Only the simplest case, SU(2)q with Q = R = q (all roots

in play) is studied explicitly below, although a further remark is included at the end of

Section 7.

4 Cartan g#

The general solution of the master equation (3.4) on Cartan g is

LAB =
1

2k

∑

C

ΩACΩBCθC , c =
∑

A

θA (4.1)

with Ω ∈ SO(rank g) in the adjoint and θA = 0 or 1. This solution, Cartan g#, and its

K-conjugate partner g/Cartan g# with central charge cg −∑
A θA, are our first examples

of quadratic conformal deformations: Cartan g# contains

N = c(rank g − c), c = 1, 2, · · · , rank g (4.2)

continuous parameters for arbitrary level of simple g.

Continuous spectrum is verified for simple highest weight states of Cartan g#. E.g.,

the results

E(−1)
α |0〉, ∆α = x−1

g

∑

A

(
∑

B

αBψ−1
g ΩBA)2θA (4.3a)

T
(−2)
αβ |0〉, ∆αβ = x−1

g

∑

A

(
∑

B

(α + β)Bψ−1
g ΩBA)2θA , α + β 6= γ, 0 (4.3b)

are obtained for fixed roots α, β of g with the commutation relations of [15]. We also

computed the Cartan SU(3)#
x splittings of the quantum irreducible representations 3, 3̄

of SU(3)x, obtaining the conformal weights

∆(θ8 = 1) =
1

12x
((cos φ +

√
3 sin φ)2 , (cos φ−

√
3 sin φ)2 , 4 cos2 φ) (4.4)

from (2.13) with the Gell-Mann basis Ta =
√

α2λa/2 and φ the angle of Ω.

The structure of Cartan g# will recur below in the following connections:

1. The full master equation (2.3) for simple compact g degenerates at high level into

an analogous system

Lab ' 2k
∑

c

LacLcb ' 1

2k

∑
c

ΩacΩbcθc, Ω ∈ SO(dimg) (4.5a)
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lim
k→∞

c = 0, 1, · · · , dim g (4.5b)

when the high level behavior of the components is Lab = O(k−1). All Sugawara

nests and all the new constructions below (except SU(2)#
4 , (SU(2)2 × SU(2)2)

#)

fall in this class ‖.

2. The vertex-operator construction [5, 6, 7] implies that

Tα,−α = α−2αAαBTAB ; Tαβ = 0, α · β > 0 (4.6)

for level one of simply-laced g. These identities underlie the equivalence L(g1) =

L(Cartan g1) [5, 29, 13] and imply here that all new constructions on the operator

subset {TAB, Tα,±α} will degenerate to Cartan g# for level one of simply-laced g.

This remark applies to all the new solutions below.

5 SU(2)#

The single root subansatz

LAB = λαAαB , α > 0 (5.1)

in (3.9a) is only a basis choice for SU(2). The resulting single equation for the parameter

λ

λ(k − 2α2)(1− 2λα2(k + α2)) = 0 , k 6= α2 (5.2)

shows a continuous solution at k = 2α2, in agreement with [17], and there are no other

new solutions in the system. The full solution L#
η (λ) obtained from (3.5b),(3.9b) and

(5.2) is

Lα,−α =
1

8α2
(1− 4λα4) , (Lαα)2 =

1

64α4
(1− 4λα4)(1 + 12λα4) (5.3a)

− 1

12
≤ λα4 ≤ 1

4
, k = 2α2 , c = 1 (5.3b)

with η = ±1 the sign of Lαα. The unitary range in (5.3b) is decided so that Lαα is real,

and the solution is non-unitary outside this range. We call the unitary solution SU(2)#
4

since it has intrinsic level x = 2k/α2 = 4 when measured by its own root.

SU(2)#
4 is closed under K-conjugation on the SU(2) submanifold

L̃#
η (λ) = L(SU(2) , k = 2α2)− L#

η (λ) = L#
−η(

1

6α4
− λ) (5.4)

‖The distinct asymptotic master equation LacGcdL
db ' 0 governs the high-level behavior Lab =

O(ky), y > −1. It follows that this class contains only non-compact (or non-unitary) constructions,
such as the spin-orbit construction [15] with y = −1/2. We have not analyzed the asymptotic central
charges of this class beyond the spin-orbit construction, for which c approaches integers and half-integers
between 0 and dimg.
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which shows that K-conjugation in this case is reflection about the center, λα4 = 1/12,

of the continuous range plus a sign change of Lαα. The endpoints of the deformation

are known constructions, SU(2)4/U(1) at λα4 = −1/12 and U(1) at λα4 = 1/4. There

is another U(1)′, SU(2)4/U(1)′ pair at the quarter-points λα4 = 0, 1/6, and a countable

set of points in the interior at which the coefficients are rational.

Generically continuous spectrum of the deformation is verified for the highest weight

states corresponding to the quantum irreducible representations j = 1/2, 1, 3/2 and 2 of

SU(2)4. The eigenvalue problem (2.13) in this case is the completely asymmetric SU(2)

top for these spins and, e.g., the conformal weights

∆(j = 1) =
1

8

(
2(1− 4λα4) , 1 + 4λα4 ± η

√
(1− 4λα4)(1 + 12λα4)

)
(5.5)

are obtained for the L# splitting of spin one. The weights corresponding to j = 3/2, 2

are also continuous and totally split , while ∆(j = 1/2) = 1/16 is independent of the

deformation. This spectral data suggests that SU(2)#
4 is a chiral version of the line of

Z2 orbifold models at c = 1, where the two primary fields with fixed dimension 1/16 are

the twist fields of the orbifold line.

The construction is regular-embedded along with g/SU(2)#
4 , c = cg − 1 at levels

xg = x
α2

ψ2
g

=

{
2, 4 for SO(2n + 1), Sp(n), F4

4 other g
(5.6)

across all simple g. Other affine-Virasoro nests of SU(2)#
4 include irregular embeddings

∗∗ and semi-simple embedding such as SU(2)m × SU(2)n/SU(2)#
m+n=4.

6 (SU(2)× SU(2))#

The two-root subansatz in (3.9a)

LAB = λααAαB + λαβα(AβB) + λββAβB, α, β > 0 (6.1)

with α± β 6= γ, α · β = 0 is a basis choice for SU(2)× SU(2). It gives

λα(k − 2α2)(1− 2λαα2(k + α2)) = 2k(k − α2)λ2
αββ2 (6.2a)

λβ(k − 2β2)(1− 2λββ2(k + β2)) = 2k(k − β2)λ2
αβα2 (6.2b)

λαβ

(
2k − α2 − β2 + 4[λαα2(α4 − k2) + λββ2(β4 − k2)]

)
= 0 (6.2c)

for k 6= α2 or β2 on substitution in (3.9a). We factor out (SU(2)#
4 )2 by requiring λαβ 6= 0,

which linearizes (6.2c).

∗∗The particular case SU(3)1/SU(2)#4 is included in Cartan SU(3)#1 .
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When α2 = β2, this system has a continuous solution for all k 6= α2, 2α2. With λα

the deformation parameter, we obtain the eight solutions L{η}(λα)

λβ =
1

2α2(k + α2)
− λα , λ2

αβ =
λα(k − 2α2)

2kα2(k − α2)
(1− 2λαα2(k + α2)) (6.3a)

Lα,−α =
1

4k
(1− 4λαα4) , Lβ,−β =

1

4k

(
k − α2

k + α2
+ 4λαα4

)
(6.3b)

(Lα,α)2 = (Lβ,β)2 =
1

16k2
(1− 4λαα4)

(
1 + 4λαα4 k + α2

k − α2

)
, (6.3c)

from (6.2) and (3.9b), with {η} ≡ (ηα, ηβ, ηαβ) the signs of Lαα, Lββ and λαβ. The

following unitary ranges

k =
1

2
α2 : 0 ≤ λαα4 ≤ 1

12
,

1

4
≤ λαα4 ≤ 1

3

k =
3

2
α2 : − 1

20
≤ λαα4 ≤ 0 ,

1

5
≤ λαα4 ≤ 1

4

k =
x

2
α2 , x ≥ 5 : 0 ≤ λαα4 ≤ 1

x + 2

(6.4)

are then determined from the squared relations in (6.3a,c), with x = 2k/α2 the intrinsic

level. The result for the central charge

c =
3x

x + 2
, x 6= 2, 4 (6.5)

is uniform across the series, which we call (SU(2)x × SU(2)x)
#, x 6= 2, 4.

The construction is closed under K-conjugation on the SU(2)× SU(2) submanifold

L̃#
η (λα) = L(SU(2)x × SU(2)x)− L#

η (λα)

= L#
−η(

1

2α2(k + α2)
− λα),

(6.6)

which maps between disconnected ranges in (6.4). The endpoints of the deformation are

coset constructions on the currents of SU(2)x×SU(2)x of the type SU(2)x×U(1)/U(1)′,

each endpoint involving different SU(2)′s and U(1)′s in this case. With (2.13), we verified

continuous behaviour of the L# conformal weights corresponding to (0, 1
2
), (1

2
, 0) and

(1
2
, 1

2
) of SU(2)x×SU(2)x. The construction (SU(2)x×SU(2)x)

#, x 6= 2, 4 has the central

charge of SU(2)x, so its physical content should be compared to the one-parameter torus

deformations of SU(2)x.

The simplest affine-Virasoro nests of (SU(2)x × SU(2)x)
# are L# and Lg − L# at

levels

xg 6=
{

2, 4 of SO(4), SO(5), Sp(2) and rank g ≥ 3 (long roots)

1, 2 of Sp(n ≥ 4) (short roots)
(6.7)
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across simple compact g.

In this case, there are also new deformations at the exceptional point k = α2 (x = 2)

which complete the series

(SU(2)x × SU(2)x)
# , x 6= 4 (6.8)

as announced in the Introduction. Choosing λαβ as the deformation parameter, we find

sixteen unitary solutions L#
ηρ

(λαβ, θρ) = (SU(2)2 × SU(2)2)
#,

(Lρ,ρ)2 =
1

16α4
(1− 16λ2

αρα
8) , Lρ,−ρ =

θρ

4α2
, λρ =

1− θρ

4α4
(6.9a)

−1

4
≤ λαβα4 ≤ 1

4
, c = 1 +

1

2
(θα + θβ) (6.9b)

with ρ = {α, β}, ηρ the sign of Lρρ and θα, θβ = 0 or 1. The relation

L#
ηρ

(λαβ, θρ) + L#
−ηρ

(−λαβ, 1− θρ) = L(SU(2)2 × SU(2)2) (6.10)

shows closure of the level two construction under K-conjugation. The endpoints of the

deformation are identified as various U(1)′s, SU(2)× U(1)/U(1)′ and

SU(2)× SU(2)/U(1).

With (2.13), we have computed the L# conformal weights

∆(1/2, 0) =
1 + θα

16
, ∆(0, 1/2) =

1 + θβ

16
(6.11)

corresponding to these spins of SU(2)α
2 ×SU(2)β

2 , and verified that ∆(1/2, 1/2) is contin-

uous. The physical content of the constructions with c = 1, 2 should be compared with

toroidal and orbifold models, while the construction with c = 3/2 should be compared

with the line of theories Z2 orbifold × Ising fermion, where the fixed dimensions (6.11)

correspond to the spin fields of the fermion, the twist fields of the orbifold, and their

products.

7 (SU(2))q#

The q-root subansatz in (3.9a)

LAB =
q∑

i,j=1

λij√
ρ2

i ρ
2
j

ρA
i ρB

j , λij = λji , ρi · ρj = δijρ
2
i , ρi > 0 (7.1)

is an appropriate basis for (SU(2))q, but we discuss only the case ρ2
i = α2 for simplicity.

The system (3.9a) on Cartan g becomes

λii(k − 2α2)(1− 2λii(k + α2)) = 2k(k − α2)
∑

j 6=i

λ2
ij (7.2a)
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λij(k − α2)[1− 2(k + α2)(λii + λjj)] = 2k2
∑

m6=i,j

λimλmj , i 6= j (7.2b)

for k 6= α2 with χi = α2λii.

At this point, we study only the further subansatz with the highest possible symmetry

among the roots,

q ≥ 2 : λii = λd , ∀ i ; λij = (−1)θ(i)+θ(j)λo , i 6= j , λo 6= 0 , (7.3)

where θ(i) = 0 or 1, i = 1, .., q. The system (7.2) degenerates to the pair of quadratic

equations

λd(k − 2α2)(1− 2λd(k + α2)) = 2k(k − α2)(q − 1)λ2
o

λo(k − α2)(1− 4λd(k + α2)) = 2k2(q − 2)λ2
o

(7.4)

one of which is linear for λo 6= 0.

We obtain the family of discrete solutions

LAB = α−2


λd

q∑

i=1

ρA
i ρB

i + λo

q∑

i6=j

(−1)θ(i)+θ(j)ρA
i ρB

j


 (7.5a)

Lρ,−ρ =
1

4k
(1− 4λdα

2) , (Lρρ)2 =
1

16k2
(1− 4λdα

2)(1 + 4λdα
2 k + α2

k − α2
) (7.5b)

λd =
1

4(k + α2)
(1 + ηF ) , λo = ηF

α2 − k

2k2(q − 2)
(7.5c)

c =
q

2(x + 2)
[3x + η(x− 4)F ] , F =

[
(q − 2)2x3(x− 4)

q2x3(x− 4) + 64(q − 1)(x− 1)

] 1
2

(7.5d)

where η = ±1 and x = 2k/α2 is the intrinsic level of each SU(2). The signs of {Lρρ}
may be chosen independently, and the set, which is closed under K-conjugation, contains

22q solutions. The central charge in (7.5d) is generically irrational across the family,

although it asymptotes to correctly-bounded integers q +1, 2q−1 at high level, in accord

with (4.5b).

The solution is also generically unitary, with (SU(2)x)
3, x = 1, 3 the only non-unitary

points. Rational unitary points are as follows: q = 2 is a point in (SU(2)x × SU(2)x)
#;

level four is a point in (SU(2)#
4 )q; (SU(2)1)

q≥4 with c = 1, q − 1 and (SU(2)3)
4 with

c = 3, 21/5 are identifiable as points in Cartan g# and g/Cartan g# for these groups;

finally, the exceptional case x = 2 contains known h and g/h.

This leaves the unitary generically-irrational family

(SU(2)x≥5)
q≥3
# , (SU(2)3)

q≥5
# , c > 3 (7.6)

which we call (SU(2)x)
q≥3
# . The central charge

c((SU(2)5)
3
#) =

45

14


1− 1

3

√
5

1637


 ' 3.1551 (7.7)
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is the lowest irrational value in the construction.

Study of subansätze with lower symmetry than (7.3) may produce further new con-

structions on (SU(2))q and will also determine whether any part of the construction (7.5)

is continuous. Continuous solutions are unlikely for irrational central charge since the

previous deformations included points of h or g/h.

We close this section with a few remarks on (SU(2))q×U(1)p. The appropriate basis

in (3.9a) is

LAB =
Q∑

i,j

λijΓ̂
A
i Γ̂B

j , Γ̂i · Γ̂j = δij (7.8)

with Γ̂i = αi/
√

α2
i , i = 1, 2, · · · , q the positive roots of SU(2)q and Γ̂i, i = q+1, · · · , q+p =

Q the basis of U(1)p. We are also free to choose the number R = dim{ρ > 0} of root

pairs for which Lρ,±ρ 6= 0 in (3.9a). It is clear from the basis (7.8) that a single (Q,R)

set of equations (3.9) applies over the (Q,R) space of submanifolds (3.11).

The simplest example beyond our previous work is the space (Q = 2, R = 1) which

includes both SU(2) × U(1) and SU(2) × SU(2) with one root pair Lα,±α 6= 0. The

system for this case has continuous solutions on SU(2)1 × U(1)1 and SU(2)1 × SU(2)1,

which, being level one, are equivalent to constructions on Cartan g#.

8 Simply-Laced g#

For simply-laced g we have

dimg = (h̃ + 1)rank g ,
∑

α+β=γ

1 = 2(h̃− 2) , N2
γ (α, β) =

ρ2

2
(8.1)

so that all terms in the consistent ansatz (3.7) are known. We explore simply-laced g

only in the maximally-symmetric subansatz

LAB = λρ−4
∑
ρ

ρAρB = λρ−2h̃δAB (8.2a)

Lρ,±ρ = ρ−2L± real , ∀ ρ (8.2b)

for which L = ρ−2(λh̃
∑

A TAA+L+
∑

ρ Tρρ+L−
∑

ρ Tρ,−ρ) is the corresponding operator

construction. The coupled system

λ(1− xh̃λ− 2h̃L−) = L2
+ − L2

− (8.3a)

L+(1− 2(x + h̃− 2)L− − 4h̃λ− (h̃− 2)L+) = 0 (8.3b)

L− = (x− 2)L2
+ + (x + h̃)L2

− (8.3c)

c = xh̃ rank g (λ + L−) (8.3d)
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is obtained on substitution into (3.7). Linearization of (8.3b) for L+ 6= 0 leads to a

quartic equation whose four solutions are as follows.

The first K-conjugate pair of solutions

λ = 0 , L− =
1

h̃ + 2(x− 1)
, L+ = − 1

h̃ + 2(x− 1)
(8.4a)

c =
xh̃ rank g

h̃ + 2(x− 1)
(8.4b)

λ =
1

h̃(h̃ + x)
, L− =

x− 2

(h̃ + x)(h̃ + 2(x− 1))
, L+ =

1

h̃ + 2(x− 1)
(8.4c)

c =
x(x− 1)(h̃ + 2)rank g

(h̃ + x)(h̃ + 2(x− 1))
(8.4d)

has rational central charges. The level one solution in (8.4c)-(8.4d), with c = 0 for all g,

reduces to Lab = 0 on application of the level one identities (4.6).

These constructions are unfamiliar but not new. To see this, note that the operators

{i(Eα − E−α) , ∀α > 0} in g (not necessarily simply-laced) generate a subgroup h ⊂ g

such that g/h is a symmetric space with dimh = dimΦ+(g). This is the symmetric space

with maximal dimg/h at fixed g. The first solution (8.4a) is expressed in terms of these

operators as

Lh = − ρ−2

h̃ + 2(x− 1)

∑

ρ>0

∗
∗(Eρ − E−ρ)

2 ∗
∗ (8.5)

and it is not difficult to check that this is the correctly-embedded Sugawara construction

for the subgroups h in the complete list of symmetric spaces

SU(n)x

SO(n)2x

(n ≥ 4) ,
SU(3)x

SU(2)4x

,
SU(2)x

U(1)x

(8.6a)

SO(2n)x

SO(n)x × SO(n)x

,
(E6)x

Sp(4)x

,
(E7)x

SU(8)x

,
(E8)x

SO(16)x

(8.6b)

with maximal dimension across simply-laced g. The K-conjugate solution (8.4c) is there-

fore the set of corresponding coset constructions for g/h.

The second K-conjugate pair, which we call simply-laced g#,

λ =
1

2h̃(h̃ + x)
[1− ηB−1(2h̃2 + h̃(4− x)− 2x2 + 10x− 16)] (8.7a)

L− =
1

2(h̃ + x)
[1 + ηB−1(xh̃− 6x + 16)] , L+ = −ηB−1(x− 4) (8.7b)

c =
x rank g

2(h̃ + x)
[h̃ + 1 + ηB−1(h̃2(x− 2) + h̃(12− 5x) + 2x2 − 10x + 16)] (8.7c)

B ≡
√

h̃2x2 + 4h̃(x3 − 13x2 + 40x− 32) + 4(x4 − 10x3 + 41x2 − 80x + 64) (8.7d)
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(η = ±1) is unitary with generically-irrational central charge across all levels of simply-

laced g.

The operator form of the construction

L = ρ−2


λh̃

∑

A

TAA +
1

2
(L+ − L−)

∑

ρ>0

∗
∗(Eρ − E−ρ)

2 ∗
∗+

+
1

2
(L+ + L−)

∑

ρ>0

∗
∗(Eρ + E−ρ)

2 ∗
∗


 (8.8)

shows complete symmetry among the roots of g, according to the ansatz, but asymmetry

among the h and Cartan g + R = g/h components of the symmetric space. Similar

structure on symmetric spaces was seen in the spin-orbit constructions [15].

Simply-laced g# is rational for SU(2)x, SO(4)x and also for x = 1, 2, 4 and for h̃ = 2n,

x = n+3. All these points may be identified with known h and g/h as above. The lowest

irrational central charges of the construction are found at level three,

c(SU(3)#
3 ) = 2

(
1− 1√

73

)
' 1.7659 (8.9a)

c(SO(6)#
3 ) =

45

14

(
1− 1

5
√

2

)
' 2.7597 (8.9b)

c((E6)
#
3 ) =

39

5

(
1− 14

13
√

19

)
' 5.8729 (8.9c)

c((E7)
#
3 ) =

19

2

(
1− 137

19
√

697

)
' 6.9054 (8.9d)

c((E8)
#
3 ) =

124

11

(
1− 407

31
√

1969

)
' 7.9374 (8.9e)

and the central charge of SU(3)#
3 in (8.9a) is the lowest irrational value we have found.

More generally, the central charges in (8.7c) increase irrationally with x and rank g at

fixed η, and approach correctly-bounded integers at high level

lim
k→∞

c = dim Φ+(g) +
1 + η

2
rank g (8.10)

as they should according to (4.5b).

We also remark on the irrational conformal weights ∆ = c/6x of SU(3)#
x , computed

with (2.13) for the 3 or 3̄ of SU(3)x; these weights apparently lie in a general family of

one fermion conformal weights ∆(one fermion) = c/2c(free fermions) derived for fermionic

Sugawara constructions in [12].

This completes the study of the maximally-symmetric subansatz (8.2) for simply-laced

g in (3.7). More general subansätze are obtained as follows. A convenient basis in (3.7)
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is LAB =
∑

i,j λijα
A
i αB

j with {αi, i = 1, 2, · · · , rank g} the simple roots of simply-laced

g. General analysis of (3.7) proceeds with the Cartan matrix of g. Subansätze with the

symmetry of the Dynkin diagram of g are automatically consistent: as an example, the

α ↔ β symmetric subansatz for g = SU(3) in (3.7),

LAB = λα(αAαB + βAβB) + λαβα(AβB) , α, β > 0 (8.11a)

Lβ,β = (Lα,α)∗ , Lβ,−β = Lα,−α , Lγ,±γ = real , α + β = γ (8.11b)

gives five coupled quadratic equations and a linear equation when Lρρ 6= 0.

9 Discussion

Our excursion into affine-Virasoro space has been successful. The master equation is so

far analytically tractable, and there is every indication that the growing list of irreducible

analytic unitary constructions

Cartan g#; SU(2)#
4 ; (SU(2)x × SU(2)x)

#, x 6= 4 ; ....

(SU(2)x)
q≥3
# ; simply-laced g# ; .... (9.1)

is only the beginning of a much larger picture.

We are impressed with the abundance of unitary constructions in these ansätze, which

augurs the possible dominance of irrational unitary over rational unitary solutions on

compact g: the quadratic deformations are non-unitary outside their indicated ranges and

four discrete non-unitary points were found on (SU(2))3. Indeed, the pair of constructions

on (SU(2)3)
3 with c = (1− iη/

√
39)27/10 is the only non-unitary irrational construction

encountered.

Our work here was primarily within the operator ansatz {TAB, Tρ,±ρ} of (3.7), and

we studied only maximally-symmetric subansätze for the larger groups. The {TAB, Tαβ}
ansatz (3.8) for SU(2)q × U(1)p remains essentially unstudied, and we have indicated

subansätze with lower symmetry within {TAB, Tρ,±ρ} for future study. It is also likely

that other consistent ansätze can be found, involving, for example, the operators TAα

which appear in the spin-orbit construction.

All new solutions of the master equation, including the generalized spin-orbit con-

struction, involve no more than a single square root, although every case began with

large systems of coupled quadratic equations. This surprise indicates a deep structure in

the master equation which we do not understand beyond the following phenomenological

remarks:
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1. K-conjugation invariance on a given manifold G effectively reduces a (2n)th-order

algebraic equation to nth order, as seen in

0 =
n∏

a=1

(x− xa)(x− x̃a) =
n∏

a=1

((x− 1

2
xg)

2 − (xa − 1

2
xg)

2) (9.2)

when xa + x̃a = xg. As a result, subsystems of up to three coupled quadratic

equations can be solved analytically.

2. The role of K-conjugation from submanifolds of G is more important. The high

order of the equations on a given manifold G, and the exponential growth of NK(g)

in (2.11), is partially explained by affine-Virasoro nests from submanifolds H ⊂ G.

The deficit on G is the set of irreducible solutions L#
g on G, which are obscured

by the nesting from below. The phenomenon is that nesting has so far provided

enough rational solutions, and other known solutions, on each manifold to further

factor the ansätze down to a single quadratic equation for each new L#
g .

The existence of these new constructions opens a variety of other directions. One

direction is to find the affine-V irasoro master action for all solutions to the master

equation, generalizing [30] for the simple coset constructions. Another direction involves

alternate routes to further c > 1 theories, such as generalized Feigin-Fuchs constructions

[11]. An idea here is to begin with infinite-dimensional unitary representations of non-

compact groups with complex spin (e.g. the j = −1
2

+ iλ representations of SL(2,R))

and raise c by adjusting imaginary c-changing deformation parameters to obtain real

conformal weights.
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Appendix: Quadratic Deformation Operators and (1,0)

States

A general quadratic conformal deformation is a continuous family of affine-Virasoro op-

erators Lab(λ) ∗
∗JaJb

∗
∗ whose coefficients solve the Virasoro master equation [15, 17]

2Lab(λ) = Lcd(λ)Lef (λ)Rcdef
ab , c(λ) = 2GabL

ab(λ) (A.1)

with λ a set of continuous parameters. The K-conjugate partner L̃ of L is well-defined

by

L(λ) + L̃(λ) = Lg , c(λ) + c̃(λ) = cg (A.2)

since the Sugawara construction Lg is not quadratically deformable by the currents of g

[15].

Any solution of the linearized master equation†† about the point λ

δab(λ) = δcd(λ)Lef (λ)Rcdef
ab (A.3)

defines a quadratic deformation operator δab(λ) ∗
∗JaJb

∗
∗ of L(λ) such that

L(λ + δλ) ' L(λ) + δ(λ) , c(λ + δλ) ' c(λ) + δc(λ) , δc(λ) = 2Gabδ
ab(λ) (A.4)

is also Virasoro in a neighborhood of λ. Moreover, according to (A.2), the operator −δ(λ)

is automatically a deformation operator of L̃(λ) with δc̃(λ) = −δc(λ). The commutator

of the Virasoro operator L(m)(λ) with its deformation operator δ(n)(λ)

[L(m)(λ), δ(n)(λ)] =
1

24
δc(λ)m(m2 − 1)δm+n,0 + q(m,n)Ma(λ)J (m+n)

a

+
1

2
(m− n)δ(m+n)(λ) + Nabc(λ)W

(m+n)
abc

(A.5a)

M e(λ) = Lab(λ)δcd(λ)Qabcd
e , N efg(λ) = Lab(λ)δcd(λ)Sabcd

efg, (A.5b)

q(m,n) =
1

6
(m + n + 1)(m + n + 2)− 1

2
(m + 1)(n + 1), (A.5c)

follows with (A.1) and the OPE of [15], where the tensors Q,S and the three-current

operator Wabc are also defined.

It is instructive to translate this commutator onto the state

|δ(λ)〉 = δ(0, λ)|0〉 = δ(−2)(λ)|0〉, δ(z, λ) =
∑
m

δ(m)(λ)z−m−2 (A.6)

††Solutions of the linearized master equation (A.3) correspond to metric deformations δgij (about a
metric gij) which solve the linearized Einstein equation δR̂ij + δgij = 0 in the geometric formulation
[16].
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created by the deformation operator on the SL(2, R)-invariant vacuum. The result

L(0)(λ)|δ(λ)〉 = |δ(λ)〉+
1

2
Ma(λ)J (−2)

a |0〉 (A.7a)

L(1)(λ)|δ(λ)〉 = Ma(λ)J (−1)
a |0〉 (A.7b)

L(2)(λ)|δ(λ)〉 =
1

4
δc(λ)|0〉 , Lm>2(λ)|δ(λ)〉 = 0 (A.7c)

is obtained with (A.5)-(A.6) and the vacuum structure (2.6). No c-changing quadratic

deformations (δc 6= 0) have yet been found, and, in fact, all the deformation exam-

ples (Cartan g#, SU(2)#
4 and (SU(2)x × SU(2)x)

#, x 6= 4 ) of the text realize only a

particularly interesting special case of the generic relations (A.5a) and (A.7).

Using the explicit form of L(λ), δ(λ) in each case, we have verified that

δc(λ) = Ma(λ) = 0 ⇔ [Lm≥0(λ)− δm,0]|δ(λ)〉 = 0 (A.8)

in all the examples, so that |δ(λ)〉 is a (1,0) Virasoro highest weight state of L(λ) through-

out each of the known quadratic conformal deformations.

A simple example of this phenomenon is easily checked as follows: The endpoint

theories λα4 = 1/4, −1/12 of SU(2)#
4 are L = T33/2k and L̃ = L(SU(2)x)− L at x = 4,

where the deformation operator δ = ∂L#/∂λ reduces to δ ∼ Tαα. The relation (4.3b) of

the text shows that the state T (−2)
αα |0〉 is Virasoro highest weight of L and L̃ with

∆αα = 2− ∆̃αα =
4

x
(A.9)

for any level x. It follows that T (−2)
αα |0〉 is a (1,0) highest weight state of both L and L̃

when x = 4, in accord with (A.8).

Conversely, states satisfying (A.7) or (A.8) correspond directly to deformation oper-

ators satisfying (A.5a) or

[L(m)(λ), δ(n)(λ)] =
1

2
(m− n)δ(m+n)(λ) + Nabc(λ)W

(m+n)
abc (A.10)

when δ(−2)(λ)|0〉 is (1,0) across the deformation. The W-term in (A.10) is not generally

zero. According to (A.10), the deformation operators which create the (1,0) states are

not (1,0) primary fields of L(λ), the term “1
2
(2, 0) operators” being more descriptive.

The (1,0) phenomenon (A.8) further motivates physical comparison of the quadratic

deformation examples with particular c-fixed SL(2, R)-preserving linear deformations

[11], where the analogous (1,0) states across the deformation are DAJ
(−1)
A |0〉, A ∈

Cartan g.
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