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Abstract

The problem of deriving linear differential equations for correlation
functions of Rational Conformal Field Theories is considered. Tech-
niques from the theory of Fuchsian differential equations are used to
show that knowledge of the central charge, dimensions of primary
fields and fusion rules are enough to fix the differential equations for
one and two-point functions on the torus. Any other correlation func-
tion can be calculated along similar lines. The results settle the issue
of “exact solution” of Rational Conformal Field Theories.
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1. INTRODUCTION

Following the pioneering work of BPZ, [1], and the recent interest in string
theories as theories unifying the known forces of nature there has been con-
siderable activity in trying to understand two-dimensional Conformal Field
Theory (CFT), which is the underline building block of string theories and
describes two-dimensional critical statistical systems.

The big advantage of the program of CF'T is that it reduces the problem
of solving a continuum field theory to an almost algebraic problem, that of
analysing the representations of the two-dimensional Conformal Group and
of finding ways to tie them together into a sensible quantum field theory. The
use of representations of the Conformal Group bypasses a by now intractable
problem in higher dimensions, that of finding a classification scheme, (a basis)
for the operators of a Quantum Field Theory.

There are two major problems in the context of CFT. The first is classi-
fying all possible CFT’s. The second is to solve them exactly. So far both
problems escape solution and it seems that a more mature understanding of
the framework of CF'T is needed along with some probably new mathemat-
ics. Attempts so far in these directions focused into considering subclasses of
CFT’s that present simplifying features. Such classes include G/H models
and Rational CFT’s. There are some partial classifications at hand like that
of unitary theories with ¢ < 1, [2], or RCFT’s with ¢ =1, [3]

There is a variety of mathematical tools used so far, more or less success-
fully, to deal with the aforementioned problems. Our concept of a CFT was
considerably advanced by the nice work of [4] which defined CFT in terms
of vector bundles on moduli spaces.* Despite the fact that such an approach
focuses on objects that are “marginal” in traditional treatments of Quantum
Field Theory, it is very suitable to the use of powerful mathematical tools in
order to study the CFT.

Most of the concrete results that exist so far pertain to RCFT’s. For
us an operational definition of RCFT is a CFT with the property that any
correlation function has a finite number of blocks. There has been a lot of
approaches to the classification problem of RCFT’s. Most of them are al-
gebraic in character and use as basic quantities the monodromy matrices of
various correlation functions, [6-11]. The analytic problem has been mainly

*A more rigorous approach based on the same idea was developed later in [5].



ignored until recently, with a few exceptions, [12]. However in the last year
it has been recognized that differential equation techniques may be in fact
a very powerful tool in both the classification and especially in the exact
solution of RCFT’s, [13-22]. The existence of such linear differential equa-
tions for correlation functions was recognized in the pioneering work of BPZ.
They were derived from the null vectors of the Virasoro algebra. RCFT’s
are always “minimal models” of some extended chiral algebra and one would
expect differential equations coming from the null vectors of that algebra. In
fact the picture of CFT in terms of flat vector bundles guarantees the exis-
tence of such differential equations. Such differential equations can, not only
be used to solve the theory but for classification purposes as well, [16,18].

In some previous work, [18], we applied the machinery of Fuchsian Differ-
ential Equations, (FDE), to study the classification problem for characters
on the torus. In this paper we are going to focus on other objects of CFT.
Some basic general techniques in this direction were introduced in [16]. Here
we are going to give a complete description of procedures that allow one to
determine completely differential equations for any correlation function of
RCFT.

Our results are as follows. We first describe how one can determine dif-
ferential equations for one-point functions on the torus. Information for such
one-point functions is crucial in determining differential equations for two-
point functions on the torus which is a basic object in CFT. We prove that
knowledge of the value of the central charge, dimensions of the primary fields
and fusion rules is enough to determine differential equations for any correla-
tion function of the theory. The crucial step is to be able to deal successfully
with the two point function on the torus. Its determination fixes at the same
time the structure constants of the theory as well as basic algebraic objects
as the braiding and fusion matrices. Basic tools include the theory of FDE’s
and the associated Riemann-Hilbert problem as well as the theory of isomon-
odromic deformations and function theory on the appropriate surface. We
would like at this point to apologize in advance for the concerned reader
since at several points we preferred to sacrifice mathematical rigor in favour
of clarity(?).

The structure of the present paper is as follows. In section 2 we give a
semi-intuitive discussion of the emergence of (projectively) flat vector bun-
dles in RCFT and how one can, formally, from the knowledge of the bundle
structure derive differential equations for the sections. We follow the ap-



proach of [23] based on his solution of the R-H problem on analytic varieties.
In section 3 we deal extensively with differential equations for one-point func-
tions on the torus. We show how the techniques developed for characters,
[18], can be applied also for one-point functions and we discuss certain is-
sues that arise, in particular the subject of apparent singularities. In section
4 we focus on the two-point functions on the torus. We show how we can
determine the appropriate differential equation by using information about
one-point functions on the torus as well as its degeneration properties when
the torus degenerates to the four-punctured sphere. In particular we show
that the reducibility of the monodromy representation of the equation on
the sphere provides with enough constraints that fix the differential equa-
tion uniquely. In section 5 we discuss the case of other correlation functions.
We present techniques based on isomonodromic deformations which are very
helpful in determining differential equations for higher-point functions. Sec-
tion 6 contains our concluding remarks. In appendix A we discuss some
explicit examples of degeneration of the differential equation for two-point
functions on the torus. In appendix B we present the proof that factorization
of the monodromy group on the sphere provides enough conditions on the
differential equation for the two-point functions on the torus. In appendix
C we discuss an example of determining a two-point function on the torus
when the two operators are not conjugate. Finally in appendix D we discuss
a calculational technique for solving the equation for two-point functions on
the torus by mapping them on the branched sphere and then using standard
contour-integral representations.

2. FLAT VECTOR BUNDLES ON RIEMANN SURFACES
AND LINEAR DIFFERENTIAL EQUATIONS.

Friedan and Shenker, [4], provided a description of Conformal Field The-
ory (CFT) in terms of flat vector bundlest on Riemann surfaces and their
factorization algebra. The use of vector bundles rests on the by now familiar
concept that if one knows the value of the central charge, critical exponents
and how conformal blocks transform under the appropriate modular group of
the relevant surface with punctures then this is enough to define the theory.

'In fact the appropriate bundles are projectively flat due to the conformal anomaly. In

it was shown how this can be taken into account. ;From now on we will omit the term
4] it h how thi be taken int t. (B ill omit the t
“projective” for simplicity. We will come back to it when appropriate.



Consider a correlation function on a given Riemann Surface. If we choose
a homology basis on the surface we can define the holomorphic and anti-
holomorphic conformal blocks as the contributions of the various channels
specified by the chosen homology basis. The conformal blocks depend analyt-
ically on the moduli of the punctured surface. A different choice of homology
basis would give a different choice of conformal blocks. The requirement is
that the physical correlation function is independent of the choice of the ho-
mology basis.® The correlation function should also transform appropriately
under global diffeomorphisms of the surface.

The concept of the vector bundle arises from the previous remarks. Thus
the base space is the Teichmiiller space of the punctured Riemann surface and
the fiber over a particular point is a vector space generated by the conformal
blocks at that point. The vector bundle is holomorphic since the conformal
blocks vary holomorphically over moduli space. The group of the bundle is
generically GL(n, C') where n is the dimensionality of the fibers (the number
of conformal blocksY). The action of the modular group of the punctured
surface on the fibers defines a way of transport in the bundle space and hence
a connection. This connection is locally flat (the associated curvature is zero).
Consequently the modular group defines a homeomorphism (representation)
from the fundamental group of the base space to GL(n,C). When this
representation is irreducible then n is the rank of the vector bundle. The
conformal blocks are sections of the flat vector bundle described above.

One of the questions that are of central interest in this paper, is the
following: To what extend, knowledge of the global data specifying the vector
bundles in question is enough to determine the sections analytically? This in
standard language would be called “exact solution” of the respective CFT.
Associated to the previous question is the following: What is the minimum
amount of data enough to specify the solution of the theory?

The approach here would be to use the global data of a specific vector
bundle in order to determine a Linear Differential Equation of the Fuchsian
type (FDE), whose solutions form a basis for the sections of the bundle and
are thus the building blocks of the appropriate physical correlation function.
We will now sketch the general procedure, due to Deligne, [23], which, given

§This property usually comes under the term duality and it equivalent to the associa-
tivity of the operator algebra of the CFT.

YSince in this paper we are focusing on Rational CFT’s, this number is finite by
definition.



a local system of vector spaces with prescribed global transformation prop-
erties determines a FDE whose solutions are the holomorphic sections of the
associated vector bundle.

Let M be a for concreteness a compact Riemann surface and S a set of
m points on M. Consider the homeomorphism p : m (M — S) — GL(n,C).
We will determine a FDE with “monodromy group” isomorphic to p. This
can be done in the following steps, [23],

(1) Take a local system V of n-dimensional vector spaces on M — S
associated to the representation p.

(2) The local system V determines in a canonical way a holomorphic
vector bundle U on M — S with a flat connection, V so that V is generated
by the horizontal (covariantly constant) sections of U, V = [¢ € U : V& = 0].

(3) Extend the pair (U, V) to a pair (U, V) onto the whole of M, where
U is a holomorphic vector bundle on M and V is a meromorphic connection
on M with simple poles on S.

(4) To derive a Linear Differential Equation, take a holomorphic section,
¢ of the dual bundle, U*. Consider the local system (b(V) of meromorphic
functions as a sub-sheaf of Oy_g. Then ¢(V) is isomorphic to V and the
differential equation with solution sheaf ¢ (V) is the desired one. This equa-
tion is of the Fuchsian type since the connection V on M has at most single
poles. The procedure above can be always carried out provided one allows
for extra “apparent” singularities in the FDE, (see [24]).

3. CHARACTERS AND ONE-POINT FUNCTIONS ON THE
TORUS.

In reference [16] a classification procedure was proposed for characters
of RCFT’s relying on linear differential equations. In [18] advantage was
taken from the fact that such equations are of the Fuchsian type to constrain
them considerably by using standard results on the solution of the Riemann-
Hilbert problem in the case of one variable. In this section we are going to
expand on reference [18] since this seems to be necessary in the subsequent
discussion of one-point functions on the torus, a subject that has only been
touched upon in [18].

Information about one-point functions is crucial in determining gross fea-
tures of two-point functions on the torus. This is certainly apparent from
reference [16] where a procedure for determining differential equations for



two-point functions was developed. As we shall see the arguments presented
there will turn out not to be enough in the general case and the purpose of
the next section is to clarify what is really needed in order to be able to write
down a differential equation for any two-point function in a RCFT provided
we know its characters.

So let’s turn our attention first to characters of RCFT. Let fi(q), i =
1,...,n be the n characters of a RCFTI. They are functions of the modulus
of the torus and transform under a finite-dimensional representation of the
modular group of the torus, I'. The action of I' restricts the characters to
the fundamental region of I' which is a compact Riemann surface of genus
zero with three orbifold singularities at 7 = 4, €>™/3, joo of respective orders
2,3, 00. In order to avoid complications arising from the finite order orbifold
points it is more convenient to work on the fundamental region of I'(2) C
I' which is a six-fold cover of ordinary moduli space and it is analytically
isomorphic to the three-punctured sphere. We choose the analytic coordinate
on the punctured sphere to be,

- [ o0

in which case the three punctures (corresponding to 7 = ic0) are at x =
0,1, 00, the second order orbifold point, 7 = 7 is mapped to x = —1,2,1/2
and the the third order orbifold point is mapped to z = e*/3 = p.

The general arguments presented in the previous section imply that the
characters, f;, satisfy an n-th order differential equation in x with coefficient
functions being rational functions of x. This equation should be of the Fuch-
sian type with regular singularities at 0,1,00. It should also be modular
invariant, that is form invariant under S : * — 1 —z and 7' : ¥ — 5.
Standard arguments in RCFT** imply that the solutions should not contain
logarithmic singularities anywhere on the sphere and they should not have
poles or branch cuts away from the punctures.

Such an equation in general will contain “apparent” singularities when
the Wronskian has zeros away from the punctures. A singularity is called
“apparent” when the monodromy around it, is trivial, [24]. This is achieved

IOur notation and conventions are those of [18].
**See for example [18§]



when all the indices of that singularity are non-negative integers and loga-
rithmic singularities around that point are absent. The presence of apparent
singularities is generically important to provide always a solution to the
Riemann-Hilbert problem: Given a monodromy representation, p : m1(S,) —
GL(n,C), to find a FDE realizing that representation'’, S, being the three-
punctured sphere. The reasoning for the above can be based on simple pa-
rameter counting, [24]. An important point used in [18] was that for an n-th
order FDE the number of apparent singularities is bounded from above, [25].
To be more specific an n-th order FDE with three regular singularities must
have at most (n — 1)(n — 2)/2 apparent singularities. This fact along with
modular invariance which implies that apparent singularities come in groups
of two, three or (generically) six, poses important constraints on the relevant
equations.

By taking into account all the above we can write the most general such
n-th order FDE as,

D"f+> pi(z)D'f =0 (3.2)
i=1
where the D" are differential operators that are defined in appendix A of [18]

and
(Q2(2)Qi(@)]F T ™ Q. (2)

P e = D I, Qu (o) 33
with,
Qula) = (= a)a— D)(a— 14 a)(a— =)+ )+ ) (34a)

Q)= —a+1 . Qi(x):(:r—i—l)(x—Q)(x—;) (3.40)

The number N in (3.3) is bounded above according to the discussion of the
previous paragraph. For example when n = 2,3 then N = 0, when n = 4
then NV < 2 and potential apparent singularities must be only at the images
of the orbifold points and so on.

The indices around z = 0 are related to the central charge, ¢ and the
dimensions of the primary fields, A;, of the maximal chiral algebra of the

By construction here, a monodromy representation is equivalent to a representation
of the modular group of the torus, I'.



theory. If we assume that the dimensions are non-negative then the smaller
index should be equal to —5, (corresponding to the character of the identity
representation, fy) and the rest should be equal to —:5 + 2A;. The indices
around x = 1, oo are related to those around x = 0 by the modular invariance

of the equation. The Fuchs relation* is, [16],

n—1
2n(n—1)+nc—24 Z A; =4l (3.5)

i=1
where n is the order of the equation and [ is a non-negative integer, (I # 1).
[/6 is the number of zeros of the Wronskian in moduli space, where a zero at
the third order ramification point counts as 1/3, at the second order point

1/2 and is integer elsewhere inside moduli space.

There are of course some extra severe constraints on the solutions of the
FDE. The character of the identity, fy, when normalized so that there is a
single identity operator, should have integer Fourier coefficients. Explicitly,

[e.e]
fola) = ¢ 31 (1+ 3" anq") (3.6)
n=1
with a,, integers. If one wants a unitary theory then it is necessary (but not
sufficient) that all Fourier coefficients be non-negative integers. In general the
normalization of characters corresponding to representations other than the
identity is not obvious. This however can be done, [16,18,22], using modular
invariance. There are also extra constrains. One can calculate the action of
the modular transformation S on the characters which is nothing else but
the monodromy matrix S;; of the transformation  — 1 —z. Then using the
Verlinde formula the number of couplings N;jj, of three representations 1, j, k
(“Fusion rules”) can be calculated and they should be non-negative integers.
There are examples of solutions which pass all the previous tests but fail the
last, [16].

JFrom now on we will assume that we know a collection of characters
calculated along the lines specified above. In particular all we need to know
is ¢, A; and the fusion rules, Njjp.

Let’s now focus our attention on un-normalized one-point functions on
the torus. Since translation invariance is still a good symmetry of the torus

HTt is equivalent in this case to the Riemann-Roch theorem for the Wronskian in the
moduli space of the torus.



such one-point functions are independent of the position of the operator in
question. They only depend on the modulus of the torus. For concreteness
consider the one point function of an operator ®(z, z) of dimension (A, A).
We will be considering the holomorphic blocks of this correlation function.
The number of blocks is uniquely specified by the fusion rules. Call g;(¢) the
block corresponding to the i-th representation going around in the loop. If
® belongs to the j-th representation then the representation i going around
the loop contributes only if NV;;; # 0. Thus as ¢ — 0 the blocks behave as,

gi(q) ~ ¢ =T [1 4+ O(q)] (3.7)

Under modular transformations the blocks transform among themselves.
However since a general modular transformation involves a change of scale
the modular transformation matrices are 7-dependent. Another way to put
this is that since the operator ® has non-zero dimension the g; transform as
forms of weight A. Thus if we define new “blocks” by fi(7) = g;(7)n~22(7),
where 7 is the standard Dedekind n-function then the f; transform under a
modular transformation A with weight zero, that is like characters,*

fi(AT) = (MA)ijfj (1) (3.8)

where M, is 7-independent. The behaviour of f; as ¢ — 0 now becomes,

_ct2A
filg) ~q ™

Thus the f; transform exactly like characters and their indices around z = 0
can be read off (3.9). The whole machinery of differential equations that was
applied to characters can, at no extra cost, be applied to the redefined blocks
of the one-point functions.

Let’s indicate some points in special cases before we embark in general
statements. We would like to study the one-point functions of descendants
of the identity operator in theories with two blocks. Such theories were
classified in [18]. The dimension of the non-trivial representation is related
to the central charge by A = % Consider a descendant field of the identity
at level N > 0. Its dimension is by definition N. The number of blocks of

its one-point function is the same as the number of characters, namely two.

TR+ O(q)] (3.9)

*Note that since the n-function has no zeros or poles inside moduli space, it only changes
the order of the poles at infinity leaving the rest of the analytic structure unaltered.
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All two character theories satisfy the Fuchs relation, (3.5), with [ = 0. The
indices of the one point function of the previous operator satisfy (3.5) which
by repeated application gives [ = N. For N=1 we are talking about the
one-point function of a current. But there is no such equation with [ =1 as
indicated above. Thus the one-point function of the currents must vanish.
For N = 2 the Wronskian must have a single zero at the third order orbifold
point. Thus the second order equation with this property is,

g 20 —1 Qi(x) Qa(7)
3a(e—1)  Male— 1)Q,) [2(x — 1)Q, (@)

where p1,p2,a need to be determined. Fixing the indices at z = 0 gives
po=—%p = —6(161“44). Since | = 2 the indices at x = p must be (0,2)
since the other possibility, (1,1), contains logarithms. This determines a to
be equal to p. Thus the equation is completely determined. The characters

of the respective theory satisfy,
s 22e—1 , clc+4) Qyz)

See—1Y 144 w@-np~ " (3.11)

fl/ +

'+ p2

Sf =0 (3.10)

Then it is not hard to show that if y is a solution of (3.11) then f = [z(z —
1)]§% is a solution of (3.10). The statement above transformed into the
standard one-point function says that it is the derivative with respect to
7 of the associated character. Since the stress-energy tensor is one of the
descendants at level two, this is hardly surprising. What we showed though,
is that any descendant at level two will have the same one-point function as
the stress-tensor.

Let’s continue and see what happens at N = 3. There the Wronskian
must have a single zero at 7 = i. The index scheme there should be (0,2).*
Going through the same procedure as before we arrive at the equation,

(c+6)(c=2) Qy2)
144 [z(z — 1)]

221 Q) ],

Ul O P g VN0

3/ =0

(3.12)
However the solutions of (3.12) contain logarithmic singularities at = =
—1,2,1/2 unless ¢ = 2. In this case the two independent solutions are

*Two indices, in general, should never be equal. There is no way one can avoid loga-
rithmic singularities in such a case.
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fo =constant, f1 ~ Q,(x)[z(z — 1)]73. Thus the only non-zero one-point
function at level three over the identity exists for the ¢ = 2 two-character
theory. Of course this theory can be identified with the £k =1 SU(3) critical
WZW theory so the previous results is certainly not surprising. The impor-
tant point is that it was derived without that knowledge. The differential
equations “know” what kind of theory they are dealing with.

At N = 4 the Wronskian has a double zero at the third order point.
There are two possible schemes, either (0,3) or (1,2). In the first case the
equation is,

" g 2z —1 _ é Ql(x) I (C+ 8)(C - 4) Qp(x)
for [3x(1: 1) 3a(r— 1)@,,(9:)] / 44 e - 1P

f=0
(3.13)
This contains logarithmic singularities unless ¢ = 4 (k=1, SU(8) WZW

model), in which case, fo =constant, f; = Q;(z)[z(x — 1)]"!. In the sec-
ond case the equation is,

f//+ g 20 —1 _ % Ql(x) f/_ <C+ 8)(C B 4) Qa(.flf) f —0
3e(w—1)  3a(—1)Q,) UL = DQ, @

, (3.14)

If we set f(a) = —“6’322(25?;)’23““ then Q,(z) in (3.14) is determined by

fla) = 6&*;0%. The solution to (3.14) is again simple in terms of the
characters of the corresponding theory. That is,

a[d®  220-1 d Q,(x)
= NN | — 2 - ~ P\
for(z) = [z(z — 1)) ldxg + 32w — 1) dm] Xo,1(2) e 1)]%X0,1(=T)
(3.15)

For N = 5 the equation has apparent singularities at both orbifold points.
Its explicit form is,

221 5 Qa() (c+10)(c—6) Q,(z)

1" !
— = — =0
L e S R o po 1)@@)@@)] / 1 - DP
(3.16)
with a satisfying, f(a) = %. As before, when ¢ # 6 the equation contains

logarithmic singularities. Thus the one-point function at level five is only non-
zero for the ¢ = 6 theory in which case fy =constant, f; = Q%(z)[z(x — 1)] 3.

We will finally discuss the N = 6 one-point functions since in this case
the Wronskian, having [ = 6 can a zero anywhere inside moduli space. We
will distinguish three cases.

11



(i) The Wronskian has a triple zero at the third order point. There are
two possible sets of indices at that point, (0,4) and (1,3). The (0,4) scheme
has always logarithmic singularities. The equation with (1,3) is the following,

2 2z -1 B Qi(z) , (8=1¢)(c+12) Q. () _
sale—1) Cae- 0@ T - ne,ap! =°
(3.17)

with f(a) — 6 = 36%/(8 — ¢)(c + 12). Its solutions are fo1 = Q,(z)Lxo .

(ii) The Wronskian has a double zero at the second order point. There
are two possible schemes at that point, (0,3) and (1,2). (0,3) turns out to
always contain logarithmic singularities. The equation for the (1,2) scheme
is,

f//+

2 2z -1 Q% () (8—c)(c+12) Q,(7)Qa(x)

!/
32— a-vam |’ Tt me-vo@p’ Y

(3.18)
with 4f(a) +3 = 7776/(8 — ¢)(c + 12). The solutions are fo; ~ Q;(x)[x(z —
D™ xo0,1-

(iii) The Wronskian has a single zero anywhere else inside moduli space.
Thus the associated differential equation will have an apparent singularity
at a point a and its images. The scheme there can only be (0,2) and the
equation with such a scheme and the appropriate indices at = = 0 is,

221, Q0)Q; polet12E—c) Q@)@(x) .
3z(r—1) z(r — 1)Qqu(x) 144 [z(z — D]2Qu(z)”

(3.19)
The extra undetermined parameter which is b in (3.19) is fixed by requiring
absence of logarithmic singularities. It may seem surprising at first that the
solution to (3.19) is in fact an appropriate linear combination of solutions of
(3.17) and (3.18). Set g(z) = Q;(2)[z(z — 1)]7'x + £Q,(x)-L x where x is a
solution of (3.11). Then ¢ is a solution of (3.19) with a determined implicitly
as a function of x and c,

f//+

f//+

3(24rK%p — 26K — 3) 3(72K%u? — 60K2 1 — 240k — 9 + 56K + 156)

fla) = , f(0) =

4(3K%2u — K+ 3) 43 + 2)(3r%p — K+ 3)
(3.20)

This feature is an example of an isomonodromic deformation. All the equa-
tions (3.19) with a varying in moduli space generate the same representation

12



of the modular group which, as can be seen from the solution g is the same
as the one of the respective characters. Later on we will use this property to
mod-out this redundancy.

Finally let’s study an example of a one-point function of a non-trivial
primary operator and its descendants. Consider the primary operator of s}pin

one in the k£ = 3 SU(2) WZW model. Due to the fusion rules, [%] ® [%

0] ® [1], [1] ®[1] = [0] @ [1] there are two blocks for the one-point function of
any descendant of the spin-one operator. Let ® 5 be any secondary operator
at level N. Then Ay = A1+ N = % + N, the dimension of the spin one-half
primary is Ay, = 3 and the central charge is ¢ = % The leading behaviour

20
as ¢ — 0 is as follows,

(Pn)1/2 .

fij2 = e [1+O(q)] (3.21a)
<CI)N> 1 _2N—1 1
fi= o ~q 2 Ti[1 4+ O(q)] (3.210)
The subscripts indicate the representation that goes around the loop. ;From

(3.5) we obtain that the Wronskian must have Y1 zeros in the interior of

moduli space. Thus in the case of the primary itself the Wronskian must
have a single pole somewhere. But this is not allowed, thus the one-point
function must vanish. Again the reader might think that this is trivial since
the primary transforms non-trivially under SU(2) so its one-point function
was bound to vanish due to global SU(2) invariance. But as we argued in a
previous situation what was used was a bunch of characters from which we
could get the fusion rules a la Verlinde. Proceeding, at N = 1 we have a
Wronskian with no zeros and the equation is nothing else but the equation
for the characters of the £ = 1 SU(2) WZW model! Thus the characters of
the £ = 1 theory are the one-point function blocks of the k£ = 3 theory. At
N = 2,1 =1 and as before the one-point functions vanish. At N = 3, the
one-point functions are covariant derivatives of the k=1 characters, fi/51 ~
[z(x — 1)]2/3%%)71 and so on. One can be a little bit more general in the
case of SU(2) WZW models. First any one-point function of an operator
belonging to a half-integer spin representation is necessarily zero due to the
fusion rules. For a descendant at level N of a representation with integer
spin, I, the Wronskian must have | = (k — 21 + 1)(N — I)/2 zeros inside

moduli space. It immediately follows that descendants up to level I — 1 have
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vanishing one-point functions. The first non-zero one-point function occurs
at level N = I.

At this point it is instructive to come back and understand the meaning
of the bound on the number of apparent singularities. As mentioned above
for a second order equation one can produce all possible monodromy repre-
sentations by restricting to the case without any apparent singularities. To
put it differently, if one constructs a second order differential equation with
an arbitrary number of apparent singularities then its solutions are related to
the solutions of a second order differential equation without apparent singu-
larities by a combination of the two following procedures, taking (covariant)
derivatives and/or multiplying by rational functions. Of course in our case
we like to avoid poles in the interior of moduli space so we can multiply only
by rational functions with poles at 0, 1, co. This sheds also some light into the
following question. If we are searching for equations whose solutions should
serve as characters of some RCFT why not examine any possible equation
instead of the minimum set that reproduces the relevant representations of
the modular group? The answer is that if one found such an equation that
its solutions have integral Fourier coefficients then either the solutions would
be related to characters found already by multiplying by a polynomial in the
j-function or they will be one-point functions of descendants of the identity
in some other theory. It is, for example, obvious that the one-point function
of the stress tensor of a RCF'T will have blocks with integral Fourier coeffi-
cients. However such blocks cannot be used as characters. There are various
reasons for this. One that they correspond to characters in a theory with a
non-SL(2,C) invariant vacuum, second the fusion rules, N;j, will fail to be
non-negative integers.! The arguments above are not special to second order
equations but hold in general, [18].

One can describe a general argument which does not rely on group invari-
ance that one-point functions of dimension one chiral operators must vanish.
If the number of blocks in a theory is n then using (3.5) one can show that
the Wronskian of the equation for the one-point functions in question must
have [ = 5. Since [ must always be a non-negative integer, when n is odd the
argument is obvious. If n is even, we assume that the zeros of the Wronskian
are at the same point, that is, there is multiple zero there. If they are not

"This was verified explicitly in several cases of second order equations, [26], as for
example the ones presented in [22].
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then the following argument is even stronger. Let N;, ¢ = 1,...,n be the
indices at the apparent singularity. They must be non-negative integers and
not any two of them equal to each other (otherwise the solutions contain
logarithms). The Wronskian has a zero at the apparent singularity of order
at most [n/4]*. This implies that > | N; < (2n* —n)/4. Suppose that none
of the N; is zero, then I | N; > n(n + 1)/2 which is incompatible with the
previous inequality. Thus one of the indices there must be zero. Using the
general form of the differential equation, (3.2), we can see that the solutions
will contain logarithms unless one of the indices around = = 0 is also zero. In
that case the equation reduces to a (n — 1)-order equation. The Wronskian
though continues to have the same order of zeros inside moduli space. Since
n — 1 now is odd, the statement is proven.

An important issue both with characters and one-point functions is the
phenomenon encountered in the previous analysis of the one-point functions
of descendants over the identity at level six. There, the differential equation
had an apparent singularity at a point inside moduli space which could be
continuously varied. This a special case of a so-called isomonodromic de-
formation. Since this is an important issue we are going to say a few more
things about it.

In general consider a FDE that depends analytically on certain continu-
ous parameters. The question of isomonodromic deformations is equivalent
to finding the conditions under which the monodromy data are independent
of the parameters mentioned above. A trivial case of the above is when there
are apparent singularities that can be moved around. It is trivial in the sense
that by arranging that a singularity be apparent one imposes that the mon-
odromy there is trivial. However in general this will affect the monodromy
around the non-apparent singular points. In practice what this means is the
following. Consider a modular invariant differential equation that contains
apparent singularities only at the third order orbifold point. Then there are
continuous deformations of the solutions that have apparent singularities at
generic points inside moduli space. An easy way to find such continuous
families is the technique already employed. One solves the equations with
(compatible) apparent singularities at the third and second order points and
then constructs an interpolation.

There are less trivial cases of isomonodromic deformations. In such cases

*This happens if the apparent singularity is at the third order point.
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there are real singularities that can be continuously varied. Such is the case
for example for the equations for the two-point functions on the torus when
written on the branched sphere as it is done in Appendix D. There there
is a non-apparent singularity at a point that depends on the modulus of
the torus. However since this modulus dependence was introduced via the
transformation from the torus to the sphere and on the torus the singular
point z = 0 is certainly fixed, this again corresponds to an isomonodromic
deformation that is taken care of, automatically. Still it is amusing to note
that this rather trivial case generates easily solutions to non-linear Painlevé
type equations which are associated with isomonodromic deformations of
second order FDE'’s.

Where the issue seems certainly to be non-trivial is in the case of higher
correlation functions like five point functions on the sphere or genus two
characters. We are going to discuss such cases in section 5.

4. TWO-POINT FUNCTIONS ON THE TORUS.

In this section we are going to analyze two-point functions of RCFT’s on
the torus. It is well known that a knowledge of two-point functions of the
torus is enough to determine the structure constants of the CFT. Our aim
will be to try to determine linear differential equations that the blocks of
two-point functions satisfy. This approach was initiated in [16] where such
questions were discussed. What we will show here is that the data coming
from the characters are enough to determine the differential equations for the
two-point functions and consequently the two-point functions themselves'.
In the process we will explain what we need in order to write down such
differential equations by giving a concrete algorithm.

To set up the problem we will consider the two-point function of an opera-
tor ¢ of dimension A on the torus. The two-point function can be non-zero in
general even if the two operators are not the same. This turns out to provide
no extra difficulties and we will comment on it in due time. Translational
invariance on the torus being intact, the two-point function depends on the
distance between the two insertion points, z, and the modulus of the torus, 7.
The number of blocks can be easily calculated from the fusion rules. In the
particular basis where we fuse first the operators ¢, the blocks are labelled by

tThis, in general does not mean that any data coming from the characters will give
consistent two-point functions. There are extra constraints that they must satisfy, [8].
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the representation coming out of the fusion process and the representation
going around in the loop, (in a way consistent with the fusion rules), see
fig. 1. Let fi(z), i = 1,2,...,n be the blocks of the two-point function in
question. They generate a representation of the mapping class group of the
twice punctured torus. This group is generated by the action of the following
transformations on the moduli space, T} : 2 — 2+ 1, Ty : 2 — 2z + 7 and the
usual modular transformations, S : 7 — —%, z—=2T:7—>717+1,2— 2

The blocks can be viewed as the solution of an n-th order linear differential
equation in the variable z,

oy f+ Xn:qi(z)ﬁgfif =0 (4.1)
i=1

The following properties of (4.1) follow from the requirements of CFT*. The
coefficient functions are meromorphic functions on the torus, that is doubly-
periodic (elliptic) functions with singularities which are poles. In fact (4.1)
should be Fuchsian with the only regular singularity being at z = 0, any
other singularities of the coefficient functions ¢; being apparent singularities.
In order for z = 0 to be a regular singular point ¢;(z) should behave around
z =0 as, ¢i(z) ~ 27" or less singular. Analogous statements should be true
around possible apparent singularities. (4.1) should also be invariant under
the mapping class group in order that its solutions generate a representation
of it. Invariance under 7} 5 is guaranteed by ¢;(z) being elliptic. Invariance
under S, T implies that,

qi(z, 7+ 1) =q(z,7) (4.2a)
e —i) — rig(z,7) (4.2b)

;From (4.2) we immediately learn that ¢;(—z) = (—1)%g(2).

There are a few things on elliptic functions that will be of use. Let g(z)
be an even elliptic function, that is g(—z) = g(z). Then g(z) can be uniquely
determined by its zeros and poles elsewhere than z = 0. Its generic form is,

Il — pla)
9 = [ [o(z) = o) (43)

tFor more details the reader is referred to [16].
$For more details see any book on elliptic functions
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©(2) is the standard Weierstrass function which is the unique elliptic function
(up to a constant) which is holomorphic on the torus except at z = 0 where
it has a double pole. If b; lies on the a-homology cycle then g(z) in (4.3)
has a single pole at b; and another single pole at 1 — b;. If b; lies on the
b-homology cycle then g(z) has a single pole at b; and another one at 7 —b;.
If b; is a half-period, (%, % 1%), then g(z) has a double pole there. Finally if
b; is anywhere else on the torus then g(z) has a single pole at b; and another
at 1 + 7 — b;. Similar remarks hold for the zeros of g(z). The order of the
pole of g(z) at z = 0 is 2(M — N) in accord with the standard result that the
number of zeros should be equal to the number of poles. If g(z) is an odd

elliptic function then it can be written as,

i]\il[p(z) B p(%)] (4'4)

T2 [p(2) — p(bi)]

which has a pole of order 2(N—M)+3 at z = 0. ;jFrom (4.4) it is obvious that
there is no holomorphic function on the torus with a single pole at z = 0.9
The information above will be crucial in counting parameters in equation
(4.1).

The coefficient functions ¢;(z) can be written in terms of the Wronskians ,
Wi(2), as qi(z) = W;/W where W (z) is the standard Wronskian. In particu-
lar ¢1(z) = —0.logW. W;(z) is an elliptic function with poles only at z = 0.
As we will show in the sequel, we will be able to determine the order of the
pole of W(z) at z = 0 from knowledge of appropriate one-point functions.
Suppose that W (2) has a pole of order 2N% at z = 0.* Our previous discus-
sion of elliptic functions implies that, W (z) ~ [T, [p(2) — 9(zi)]. Then in
order that (4.1) be Fuchsian the coefficient functions must be of the following
form,

)]

9(z) = ¢'(2)

I [p(2) — p(w;

2~ [T o) — i) 2 (4.50)
Q2k+1(2) ~ p’(2> z]\i—il_k_l[p<z> _ p(wl)} k > 1 (45b)

[ lp(z) —p(z)]

YThis means that z = 0 is the Weierstrass point of the torus and the “gap” there is 1.

§Similar remarks hold for a pole of odd order.

*The Wronskian cannot have a zero at z = 0 because that would imply that it has a
pole somewhere else, a situation that is not allowed in CFT.
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while ¢;(2) is as always the logarithmic derivative of the Wronskian. The
coefficients of proportionality in (4.5) should be z-independent modular in-
variants. In principle they should be rational functions of the j-function. But
since we would like the indices of (4.1) to be ordinary numbers and not to
vary with 7 this fixes the coefficients to be just ordinary numbers. Thus sim-
ple counting shows that an equation of order 2n depends on n? + (2N + 1)n
coefficients which consist of the zeros and poles of the coefficient functions
¢i(z) as well as the proportionality coefficients. If the order is 2n+1 then the
respective number of coefficients is, n?+2(N +1)n+N. When the Wronskian
has a pole of order 2N + 3 at z = 0 then things change accordingly,
N

W(z) ~ ¢'(2) [1lp(2) — p(2)] (4.6)
i=1
while (4.5) are still true. The counting of parameters is also the same in this
case.

The positions of the zeros parametrized by z; of the Wronskian should
be apparent singularities of (4.1). This implies some extra conditions on
the parameters amounting to imposing that the monodromy matrix around
them is trivial. For (4.1) the number of such conditions is N(n—1)I. Taking
the above into account, an equation of order 2n depends on n? + n + N
undetermined parameters while one of order 2n+1 on n?+2n+ N parameters.

We will now come to the important issue of the indices of (4.1) around
z = 0. Let the fusion rule for our operator ¢ be, [¢] ® [¢] = ®;[¢;] where [¢;]
stand for representations of the chiral algebra of the theory. ;From figure 1
we understand that for each family [¢;] the number of blocks contributing will
be equal to >=; Nyj;. In particular since the identity representation will always
appear in the fusion process™ and the identity couples to any representation
going around in the loop, we will obtain at least m blocks for the two point
function, where m henceforth will denote the number of representations in
the theory. Let’s focus now on the blocks generated by the intermediate
family, [¢;]. We will write the contribution to the OPE [¢] ® [¢] coming from
the i-th family as,

$(2)9(0) ~ 2722237270, (0) (4.7)

ISee for example, [24].
**This is because we study the two-point function of conjugate operators. If this is not
the case, then the identity will not appear.
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The previous equation is written schematically. OPE coefficients have been
suppressed as well as sums at a given level of the representation. If we write
the blocks as Laurent series in z then the coefficients will be appropriate
one-point functions of the operators appearing in the fusion process. Let the
number of blocks coming from the i-th family be N;. Then their behaviour
as z — 0 will be of the form z=22+8i+ni 5 = 1 2 .. N; and the n; ap-
pearing will be the first N; levels such that there exists at least one operator
in that level with a non-zero one-point function. The integers n; have been
called “gaps” in [16] and have been assumed to be additional input informa-
tion. As our discussion in the previous section made clear these numbers are
determined from the character data.

A rather simple example might help the reader understand the basis for
the previous discussion'’. Consider the k = 1 SU(2) WZW model. Let ¢

be the spin one-half primary field. Then, since [1] ® [1] = [0] there are two
blocks in its two-point function corresponding to the identity coupling to the
two representations going around in the loop. In (4.7) the first contribution
comes from the identity itself giving a behaviour z~'/2. The next contribution
would come from a level-one operator in the identity representation, that is
a current. But one-point functions of currents vanish. Thus we must look
at level-two where we get the stress-tensor with a non-vanishing one-point
function. Consequently the other block behaves as 27212,

Thus the procedure described in the previous section is useful in obtaining
the indices at z = 0 of (4.1). Their knowledge has a two-fold purpose.
First it determines the order of the pole of the Wronskian at z = 0 and
hence the number N defined above, (see (4.5)). Second, it determines the
multiplicative constants in (4.5) by the requirement that the indicial equation
at z = 0 has as solutions the by now known indices. ;From now on, we
will assume for concreteness that the order of the FDE is 2n. The indices
consequently fix 2n — 1 parameters in the equation and we are left with
n? —n + 1+ N parameters. In order to restrict more our equation we will
have to study its degeneration when the two-punctured torus degenerates to
the four-punctured sphere.

The limit to consider is when ¢ = ¢ — 0 which corresponds to pinching

the torus along the a-cycle. We will need the g-expansion of the Weierstrass

2miT

fTMany more examples can be found in [16].
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function,

9 1 1 & ng”

sin®mz 3 —1l—q

pz)=m ~(cos(2nmz) — 1) (4.8)

The proper coordinate on the four-punctured sphere is x = €2™*. Consider a

specific block of the two-point function corresponding to the two operators
fusing into the i-th representation which then couples to the j-th represen-
tation going around the loop as shown in fig. 1. We will denote it, in
short-hand, as f;;(z). When the surface degenerates we obtain,

Fis(2) ~ g 38 [22(lo(1)é(@)])i + Olg)] (4.9)

which follows from the precise definition of the block in the Hamiltonian
formalism, [7]. The matrix element in (4.9) is the standard matrix element
on the sphere with in and out states normalized a la BPZ. The subscript
1 indicates the i-th channel in the four-point correlation function. Thus,
upon degeneration, the total of two-point blocks, f;;, splits into collections
of four-point blocks, the number of collections being m, the number of repre-
sentations in the theory. In particular the foo(z) block degenerates into the
two-point function of ¢ on the sphere,

foo(2) ~ g% [a2(1 = 2) 22 + O(g)] (4.10)

Using, .
=¥ O = (2mi)" (mi) +O(q) (4.11a)
o(z) = T B0 o ) =~ Y o) (4110)

3 (r—1)?2 (x—1)3
we obtain the equation on the sphere which is satisfied by the appropriate
four-point functions.

As we mentioned before for every representation j in the theory we obtain
a number N; =>7; Ny N;;; of four-point blocks corresponding to the four-
point function, (i|¢¢|i)¥. Obviously, Ny = 1, corresponding to the two point
function and 2n = 1 + Z}n;ll N;. Now if we impose that the equation on

TWhen the ground state of the representation [i] is degenerate then what we obtain is
a some over all components.
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the sphere, obtained as the ¢ = 0 limit of (4.1) has as solution the two-point
function this implies 2n + N extra conditions on the so far undetermined
coefficients. Thus we are left with an 2n — 1 order equation and n? — 3n + 1
undetermined as yet coefficients. It is obvious that up to a fourth order
equation the data so far would have been enough*. In Appendix A we work
out explicitly two examples of degenerations of (4.1) for the k = 1 SU(3)
WZW model and the £ = 1 G5 WZW model in order to give a flavour of
techniques that come into play.

In the sequel we will show that factorization of the 2n — 1 order equation
into m — 1 equations each one describing the blocks of each one of the four-
point functions is enough to determine the rest of the coefficients. In order to
do this we will have to remind the reader of a few simple counting techniques
in FDE’s.

Consider a FDE of order n on the sphere with three regular points which
can be placed at 0,1, 00. There are n indices at each singular point, in total
3n but they satisfy the Fuchs’ relation so that only 3n — 1 are indepen-
dent. A simple counting of coefficients in such an equation reveals that their
number is £ = n(n+3)/2. On the other hand an arbitrary monodromy rep-
resentation p which is a homeomorphism from the fundamental group of the
three-punctured sphere into GL(n, C) depends on M = n? + 1 parameters.
The reason is the following. There are two independent generators of the
fundamental group which could be taken to be the loops around x = 0,1. To
each one of them we associate a matrix. Thus we have so far 2n? complex
coefficients. But these matrices are defined up to overall conjugation? which
can be used to get rid of n? — 1 coefficients. The difference M — E > 0 is
taken care of by apparent singularities. Consider an equation of order n. The
question we would like to answer is, how many conditions we must impose
among its coefficients so that it factorizes into two equations of orders nq, no
with n = n; + ny? A precise definition of “factorization” is equivalent to
the statement that the monodromy representation is completely reducible.
The monodromy representation of the initial equation depends on n? + 1 pa-

*In [16] equations up to fourth order have been considered. Thus it was enough to im-
pose the constrains mentioned so far. At order five one will have undetermined coefficients
left. This did not appear in the single example of a fifth order equation discussed in [16]
since one of the indices was zero in that case.

"More details can be found in [24].

IThis corresponds to the freedom of changing basis.
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rameters. The representations of the two equations into which it factorizes
depend on n? +n3+ 2 parameters. Thus in order that the equation factorizes
we must impose 2n1n, — 1 conditions. The statement easily generalizes when
the equation factorizes to more than two pieces.

We will now come back to our counting of parameters in (4.1). After
we fixed the indices at z = 0, and imposed that the two point function
be a solution we are left with a (2n — 1)-th order equation on the sphere
describing the blocks of the m — 1 four-point functions and depending on
n? — 3n + 1 parameters. The indices of this equation at x = 0 are already
fixed and equal to the indices of the original equation at z = 0. However
it still remains to fix the indices around x = 1,00. For each of the four-
point functions, (i|¢¢|i), there are 2N; — 1 indices to be fixed, (N; is the
number of blocks of the four-point function). However (4.1) is invariant
under z — —z. ;jFrom (4.11a) this implies that the equation on the sphere
obtained by degeneration is invariant under x — 1/x so that the indices
around x = (0 are the same as those around x = co. Thus the independent
indices that have to be fixed are N; — 1 for each of the four-point functions.
In total we obtain 37 !(N; — 1) = 2n — m conditions and thus we are left
with n? — 5n + m + 1 parameters. The last and crucial condition is that
the equation on the sphere should factorize to the appropriate four-point
functions as 2n — 1 = Y"7' N;. According to our previous discussion this
implies another 2 Z;’Zl N;N; —m + 2 conditions. Thus the final number of
undetermined parameters left is R = n®—5n—2 372" N;N;+2m—1. We will
now prove that R < 0 and thus the system is generically over-determined.}
There is a constraint on the magnitudes of V;, they must be no-larger than
the number of representations, m, present in the theory. The maximal value
of R is obtained by minimizing 23>, ; N;N; — 2m under the constraints,
N, =2n—-1,1 < N; < m. In appendix B we prove that the required
minimum is equal to 3n(n — 3) giving,

R<—(2n* —4n+1) <0 (4.12)

The same arguments and result apply when the order of (4.1) is odd. We
have thus showed that the data from the characters are enough to determine
the differential equation for the two-point function of an operator on the
torus.

IThis may be another potential source of consistency conditions.

23



An issue which we have not discussed so far is the 7 dependent normaliza-
tion of the blocks. This can be immediately determined from the knowledge
of the appropriate one-point functions and characters. For example,

foi(2) ~ 27237M(D,, )1+ O(2))] (4.13)

where @, is a descendant over the identity at level n;.

Of course there can be non-zero two-point functions on the torus where
the two operators are not conjugate. In this case the counting is slightly
different but as the reader can verify the same results apply. In Appendix C
we work explicitly an example to illustrate the case.

The analysis above demonstrates our ability to compute the basic data
that define the RCFT, (structure constants, fusion and braiding matrices
etc.), from the basic data coming from the characters. In the next section
we are going to discuss other correlation functions.

5. DIFFERENTIAL EQUATIONS FOR OTHER CORRELA-
TION FUNCTIONS

JFrom our experience with CFT, we know that once we know four-point
functions on the sphere and one-point functions on the torus we can, in
principle, compute any other correlation function, [11]. In practice things
may present difficulties. Correlation functions that depend on more than one
variable are certainly more difficult to calculate. The case considered in the
previous section concerning the two-point functions on the torus presented
some simplified features which made our life rather easy.

There are two possible forms of linear differential equations that one may
attempt to construct for correlation functions depending on more than one
variable. One form could be a linear partial differential equation. However
this form is rather difficult to derive, especially since the complete solution
to the R-H problem in that case is unknown.* A more promising approach
seems to be deriving an ordinary differential equation in one of the variables
and treating the dependence through the rest of the variables using the theory
of isomonodromic deformations.

*In cases when one knows the explicit form of the null vectors of the chiral algebra then
one can construct such a partial differential equation, [27,28]. However such knowledge is
not always at hand.

24



Consider a correlation function depending on the variables z, t;, ¢ =
1,2,--- n. The correlation function viewed as a function of x will satisfy
a FDE with singularities and coefficients depending on the t;. Despite the
fact that the parameters t; are free to move around in a continuous manner
the monodromy of the correlation function is independent of them. This
poses rather severe constraints on the dependence of the parameters of the
equation on t;. To be more concrete consider the second order equation,

02 f + p1(x,0)0uf + pa(z, 1) f =0 (5.1)

which depends on a complex parameter ¢ in such a way that the monodromy
is independent of ¢. An intuitive way of stating this condition is that if we
change t infinitesimally the variation of the solutions continue to have the
same monodromy. Consequently the variation must be a linear combina-
tion of the initial solution and its derivatives with coefficients being rational
functions in x and analytic in ¢. Since in the case at hand the only indepen-
dent derivative is the first we can write the condition of an isomonodromic
deformation as, [29],

Of = Az, t)0.f + B(x,t) f (5.2)

where A, B are rational in z and analytic in ¢. The existence of A, B implies
that the system,

Ouf =y, Oy =—m1y—pof (5.3)

and (5.2) is completely integrable, a statement that translates after straight-
forward algebra to,

O2B + D10, B — 2p20, A — (Oyp2) A = —0ips (5.4a)

20,B + 0?A — 10, A — (0.p1)A = —Oipy (5.4b)

If we eliminate B from (5.4) we obtain a linear non-homogeneous equation
for A,

1
5agA — 2p0, A — (Opp)A = —0Oyp (5.5)
with,
1 1,
p(x,t) = 5590291 + PP (5.6)
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which can be solved to obtain a rational solution. Then B can be found
from (5.4). Notice that B can be determined up to an additive function of
t corresponding to the freedom to normalize the function f by an arbitrary
function of ¢. When the order of the equation is greater than two one has
to include in the right-hand side of (5.2) a linear combination of the linearly
independent derivatives. If the parameters are more than one then (5.2) is
replaced by a matrix equation. However all the properties and procedures
discussed above go through unaltered, [30].

An example will give a feeling of the situation. Consider the following
five-point function in the Ising model, (o (z)o(y)o(1)a(0)(00))!. ;From the
fusion rules we learn that there are two blocks in this correlation function.
Viewed as a function of x it has singularities at 0, 1, oo, y. The most general
FDE with the singularities as above is,

C1$4 + ng?’ + CgfL’g + 041' + C5
[z(z = 1)(z —y)]?

B 1o,f+
z—y

F=0

(5.7)
The coefficients C; depend on y. The dependence of (5.6) on y must be
analytic. Thus the C; are polynomials in y. The indices at 0,1,y can be
easily found to be —1/8,3/8 whereas the indices at oo are 1/8,9/8 This fixes
all the functions except Cs,

a a
2f + | =+ —+
r xz-—1

3
a4 =a;=a3=7 (5.8a)
Gl = o o) =~ @ Tyt )~ DC)  (B8)
Cily) = oy(y + ) +Caly)  Csl) = o (580

Analyticity of the equation as y — oo implies that Cs(y) can be at most
linear in y, Co(y) = K1y + Ko. Thus we are left with two undetermined
constants. These are fixed by solving the isomonodromic equation, (5.5).
We obtain,

3 x(z —1) T

TR A(xay):—y(y_l) 7 B(x,y)z—ifrg(y)

"We are using notation and conventions of BPZ.
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so that the complete equation reads,

5 301 1 3x4 —4(y + 1) + 6ya® — 32

) ) —0
i i L wa—Da—yP

(5.10)

-1

In the case above, the reader might wonder why do we go through all this
isomonodromic machinery since we could have fixed the remaining coefficients
by looking at the limits y — 0,1, 0c0? The answer is that this might have been
possible here but not in cases where the number of blocks exceeds two. The
reason is that from each term in the relevant equation, four of the coefficient
functions are fixed by the indices. However the rest of the coefficients are
polynomials in y of degree generically greater than two, while the limiting
procedure y — 0, 1, oo gives only information about the values of the relevant
polynomials at these three points which in general is not enough to determine
them.

Isomonodromic relations of the form (5.2) are crucial in determining
contour-integral representations for the solutions of equations like (5.10).
The correct y-dependent normalization can again be computed from the fac-
torization of the five-point function over a four-point function.

The techniques employed above for 5-point functions have general validity,
[30] and we assume that the reader can certainly see how to deal with higher
point functions both on the sphere and at higher genus.

6. CONCLUDING REMARKS

In this work we tried to systematize the procedure for obtaining an “ex-
act solution” of any RCFT. The “exact solution” is meant as our ability to
write for any specific correlation function a linear Fuchsian differential equa-
tion whose solution proceeds along standard lines. The existence of such
an equation is guaranteed by what we mean by RCFT as argued in section
2. In particular we tried to determine differential equations for correlation
functions from what seems by now to be a minimal amount of data, that is
the knowledge of the characters on the torus. In fact all we really needed
was the central charge, the dimensions of the primary fields and the fusion
rules which can be determined from the modular transformation matrices of
the characters, [6].

The correlation function of central interest is the two-point function on
torus (as well as its four-point function off-springs on the sphere). In order
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to obtain enough information about it we were led to develop a very useful
scheme for analysing one-point functions on the torus. The approach is a
direct application of the formalism developed for the characters, [16,18], along
with some new features coming in like the necessity of apparent singularities
and the issue of the nature of continuously varying apparent singularities.
In particular we demonstrated how to learn about the vanishing or not of
specific one-point functions that are important in order to determine the
local data necessary for two-point functions on the torus.

The knowledge of the indices of the two-point function is not enough to
determine the appropriate FDE. We had to look more closely to the behaviour
of the equation under the degeneration of the torus to the four-punctured
sphere. One obtains this way a collection of four-point functions. The con-
ditions that the resultant equation on the sphere have monodromy that is
appropriately reducible provides us with enough constraints to fix the form
of the equation completely. In that case one can evaluate in a straightfor-
ward manner the structure constants of the theory. On the side, we gave
a procedure to solve the equations for the two-point functions by mapping
them on the branched sphere where one can use standard contour-integral
methods.

We investigated the problem of determining higher-point functions and
gave an algorithm in order to derive the appropriate differential equations.
It turns out that the theory of isomonodromic deformations is a useful tool
in order to deal with correlation functions that depend on more than one
variables.

There are some more refinements of the present work that might be in-
teresting to consider. ;From the work of Verlinde we know that the mod-
ular transformation matrices representing the transformation properties of
the characters on the torus are algebraic over the integers. However even
if a differential equation for characters has rational indices and coefficients,
generically the monodromy matrices turn out to be transcendental. There
exist some partial results on the subject pointing to the fact that algebraic
monodromy representations arise when the differential equation does not de-
pend on accessory parameters. To state it more simply, the central charge
and the dimensions of the primary fields should determine the equation com-
pletely. In particular the modular transformation matrices (and thus the
fusion rules) will be derivable from the knowledge of the critical dimensions
and the central charge. This would certainly make the classification problem
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potentially tractable. When the monodromy group is algebraic then there
always exists a contour -integral representation of the correlation functions
where the integral kernels are rational functions.

Another direction, as far as the classification of RCFT’s is concerned, is
to analyze polynomial equations satisfied by characters. The coefficients of
such equations belong to the ring of modular functions that are holomorphic
inside moduli space. The characters of G/H models certainly satisfy such
polynomial equations since they transform trivially under a subgroup of finite
index of the modular group. It is plausible that this property is shared by all
RCFT’st. In that case one can use Galois theory to transfer the classification
problem of such polynomial equations to a group theoretic problem concern-
ing the classification of automorphism groups of field extensions defined by
the polynomial equation. Thus the problem can be reduced this way to the
theory of finite groups. Some remarks pointing in this direction were also
made recently by Atiyah in a slightly different context.

A very interesting question is going beyond RCFT’s. The first step would
be to consider quasi-rational CFT’s, [8]. In such theories the same tools as
above could be used in the analysis of correlation functions on the sphere.
However, novel techniques seem to be required in dealing with higher genus
objects. There is at least in principle a potential way of trying to construct
non-rational CF'T’s with a given maximal chiral algebra. It is an extension
of a nice idea by Zamolodchikov. In [31] he constructed a recursion formula
for four-point blocks of the Virasoro algebra by using analyticity properties
and the knowledge of the zeros of the Ka¢ determinant. This can easily
be extended to arbitrary chiral algebras by splitting the problem into two
parts. First find the zeros of the appropriate Ka¢ determinant and deriving
a recursion formula. Second imposing monodromy invariance. The latter
part is certainly non-trivial to implement at the moment.

Finally the issue of the relation between RCFT’s and integrable mod-
els obtained as deformations of the former seems to a be quite interesting.
We think that some of the issues discussed in this work, (especially isomon-
odromic deformations), seem to be promising in order to understand the
aforementioned connection.
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Appendix A

In this appendix we are going to work out explicitly two specific examples
in which the degeneration of equation (4.1) will be studied, in order to make
the relevant issues hopefully transparent.

We will first consider the £ = 1 SU(3) WZW model and in particular
the two-point function of the 3 and 3 primary fields of dimension 1/3. Since
[3] @ [3] = [0], only the identity appears as an intermediate state and couples
to all the representations going around the loop. Thus there are three blocks.
The leading behaviour as z — 0 is obtained when the identity operator
appears in [3] ® [3] and is ~ z73. Since a current has a vanishing one-point
function the next contribution comes from the stress tensor at level two,
which gives, ~ 27572, As we also saw in the previous section the model
has a non-vanishing one-point function over the identity at level three giving
~ z~5*3. Thus the Wronskian must be holomorphic on the torus and hence
a constant. Consequently we obtain from our previous analysis,

01(2) =0, @2(2) = aip(z) — 9(2)] , 43(2) = a2¢/(2) (A.1)

and by fixing the indices at zero, a; = —4/3, as = —28/27. Thus the equation
is,

02 ~ 310(2) — p(a)]0-f — gl (2)f =0 (42)

We should remember that z, depends on 7. Using the degeneration formulae,
(4.11), (4.13) can be cast in the form,

1 4xo(x—$o)(x—1/$o)1f/ 28 x+1 f=0 (A3)

3

" — e T - - == -
U xf i x? * 3 (v, —1)%222(x — 1)? 27 22(z — 1)3
where >™%(") = 1, + O(q). Defining f(z) = 2'/3g(x), by (4.9) g(x) can be
identified as the four-point matrix elements. g(x) satisfies,

" é " 7 / 4IO(I—I‘O>(ZE—1/JZO)<, g) x3+25$2+31$—1g_0

327 73 (xo — 1)222(x — 1)? 3z 2723 (x — 1)3
(A4)

Imposing that the two point function g(z) = (z —1)72/3 be a solution implies
that 22 + 10z, + 1 = 0 or p(z,) = 0, in agreement with [16].
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Now in order to factorize (A.4) explicitly we set g(x) = (x — 1)"%3h(x).
Then (A.4) becomes,

hm+2<$—2)h//+2x2_2x+10h/_0 (A.5)

z(x —1) 9 22(z—-1)2 .

which as expected has one solution h(z) =constant. It is easy now to find a
second order equation whose solutions satisfy (A.5). The general procedure is
to write a general second order equation, differentiate once using the equation
again to get rid of the term with no derivative and then matching coefficients.
This gives in our case,

2 21
[ Vel A,
z(r —1) * 9 z? 0 (4.6)

which is solved by,
hi(z) ~ 273 (x+2) , ho(z) ~ 275 (22 + 1) (A.7)

Since the k = 1 SU(3) WZW model is effectively a free theory we are
going to discuss a second example of a theory which is not free*. The
model is the £ = 1 Gy WZW model. This is a two character theory whose
characters have been analyzed in [16,18,22]. As before we are not going
to assume any other knowledge except the central charge, ¢ = 14/5, the
dimension of the single non-trivial primary field, A = 2/5 and the fusion
rules, [2/5]®[2/5] = [0]®[2/5], all of which can be derived from the equation
from the characters. We will consider the two-point function of the A =2/5
primary field. According to the fusion rules there are three blocks for this
correlator that are shown in fig. 2. In order to determine the Wronskian of
the third order equation we need to know the first descendant of the identity
representation as well as the first member of the non-trivial representation
that have a non-vanishing one point function on the torus. In Section 3 we
showed that the first non-zero one-point function over the identity occurs
at level two. Thus the indices at z = 0 for the first two blocks in fig. are
—4/5 and 2 — 4/5. Consider now a descendant of the 2/5 field at level V.
Its one-point function has a single block. Another application of (3.5) shows
that the number of zeros of the one-point function inside moduli space is

**That is, it cannot be represented in terms of free fermions or bosons and their orbifolds.
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[ = (N —3)/2. Since [ > 0 the first non-zero one point function occurs at
level N = 3 and is given by n*®. Thus the index at z = 0 of the third block is
3—2/5. The Wronskian has a pole at zero of order —% +2— % +3— % -3=0
so it must be constant. As before the equation is,

OF — o) — p(z))0f — 20 (2)f =0 (A8)

25 125"
Upon degeneration (A.8) obtains a form analogous to (A.3). The two point
function 22/°(x —1)~%® must be a solution and this fixes p(z,) = 0. Defining
f(z) = 2%5(x — 1)"*°g(x) we obtain for g,
w3 3x—=T7 , 3a*-2rw+21,

52-17 T e 4 7 (4.9)

(A.9) implies that g(z) satisfies a second order equation which is easy to

determine,
, laxz+11 , 81

S " 5ew—17 T252
(A.10) is solvable in terms of hypergeometric functions. Thus the three
solutions of the original equation are,

g=20 (A.10)

(S]]
S

go(z) ~x5(z—1)"5 , g1(z) ~ (z — 1)_%F(—6/5, —4/5,7/5,z) (A.lla)

go(x) ~ 275 (x — 1) 5F(—6/5,—8/5,3/5, z) (A.11b)
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Appendix B

In this appendix we will discuss the minimization of the quantity F, =
22;’51 N;N; — 2m subject to the constraints, Z;"_l N, =2n—1and 1 <
N; < m where N;, m,n are positive integers and n fixed.

First we will show that for m fixed, F,, is minimized when m — 2 of the NV;
are one and the remaining one 2n —m + 1 so that the total sum is satisfying
the constraint. In order to do that we substitute Ny = 2n — 1 — X751 N,

m—1 —1
F,=22n-1)Y N;— > (N;— N;)* —2m (B.1)
i= 2=i<j

As it is obvious from (B.1) the minimum occurs when all except one of
the differences N; — N, are zero, substantiating our previous claim. What
remains to be done is to scan for the minimum in m. This is quite easy, since
for the optimal choice of N;, F,, = 4n(m — 3) + m — m? whose minimum
(taking into account that 1 < N; < m) is obtained when m = n + 1 giving
Fmin = 3n(n — 3).
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Appendix C

In this Appendix we are going to discuss in detail an example of a two-
point function on the torus of two operators that are not conjugate to each
other. We will consider the tricritical Ising model which is the second model
of the minimal model series with ¢ < 1. This model has ¢ = 7/10 and the

3 7 1 33

spectrum consists of primary fields with dimensions, &, 15, 75, 5, 5 along with

the identity. The following fusion rules are of interest,

7 7 3 3 3 1 3 3

[E] ® [T6] =[] & [5] ) [%] ® [%] =[] & [TO] D [5] & [5] (C.la)
3 3 1 1 3

S10]=10], [ ® ] =0e] (1)

Fell=0el], ekl =lel] (€10

The two-point function of a 1/10 and a 3/5 operator has according to
(C.1) three blocks which are shown in fig. 3. In order to study the pole
structure of the Wronskian we will first need to study one-point functions of
the [15] and [3] families on the torus. For the [{5] family we will need to know
the member at the smallest level that has a non-zero one-point function. In
this case the one-point function has one block corresponding to the [8%] family
going around the loop as it can be verified from (C.1) so it satisfies a first
order equation. Using (3.5) we find that | = level/2, thus the primary has a
non-zero one point function which is proportional to 7)%.

For the [3] family we need to know the first two non-vanishing one-point
functions. There are two blocks here corresponding to the families [%] and
[1—76] going around the loop. Consider a descendant at level N. Another
application of (3.5) gives [ = N. Thus the primary itself has a non-zero
one-point function which satisfies a second order equation and its Wronskian
has no zeros inside moduli space. The indices are —3—70, %. This fixes the
equation to be,
22x—-1 , 119 Q,(x)

A R | (C.2)

U P s s A Y

its solution being written in terms of the standard hypergeometric functions,
fi(z) ~ [z(z — 1)]_%F(—7/10, 1/10,1/5, z) (C.3a)
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fola) ~ [z(z — 1] F(9/10,17/10,9/5, z) (C.3b)

The next non-zero one-point point function exists at level N = 2, its Wron-
skian having a single zero at the third order point. It satisfies the following
equation,

s 2| 2x—1 Qi(x) ;119 Qu(x)

3o e-00,@| ¢ 0@ —vpd =0 (@D

The solutions of (c.4) can be written in terms of the solutions of (C.3),

2 0

3 — C.6

12 fiala) ()
Armed with the information above we can find the order of the pole of

the Wronskian at z = 0. The [%} block behaves as z~3 while the other two

blocks as z%, 2572, Thus the Wronskian has no pole at z = 0 and it must be
a constant. The third order equation with the correct indices at z = 0 and
its Wronskian being constant is,

48 84

0f = Sol9() — 9(z0))0-f — 1o/ (2)f =0 (1)

Here we have so far one more undetermined parameter. It is again necessary
to study the degeneration limit of (C.7). Going through the same steps as
in Appendix A we arrive at an equation on the sphere which reads,

1 48z,(x —x,)(x —1/x,) 84 z+1

3
m 2 en = 1, 9%
U :Uf * x? * 25 (x, — 1)222(x — 1)2 fr 125 22(x — 1)3

gr2(x) ~ [z(z — 1)]

F=0(C8)

where z, is defined the same way as in Appendix A. The three solutions to
(C.8) are identified with the single-block four-point function, 23/ (L | @3 5(x) d1/10(1) | x)
and the two-block four point function, *°(2|¢s/5(x)¢1/10(1)]3), the two
channels as * — 1 corresponding to the % and % families. The solu-
tion corresponding to the single-block four-point function is easy to find,
fo(x) = 272/°(x — 1)*>. The fact that f; is a solution of (C.8) determines
the constant x, in such a way that ©(z,) = 0. Factoring out the single block

solution we arrive at a second order differential equation for the two blocks
of (&]¢s5(2)d1/10(1)]55),

113:6—9

25:1:2—103:—1—1
Sx(z—1)

"+ f+ 25Wf =0 (C.9)
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its two solutions being expressed in terms of hypergeometric functions as
follows, ) ,
fayso(x) ~a75(x —1)"5F(1/5,-1/5,7/5,x) (C.10a)

fepo(x) ~ 273 (x — 1)"3F(=3/5,-1/5,3/5, z) (C.100)

where the subscripts indicate the intermediate families in the channel x —
0. Our previous analysis of one-point functions is also useful in order to
determine the z-independent (but 7-dependent) normalizations of the three
blocks. Let’s label the three blocks in fig. 2 by gy 23 respectively and we
normalize them so that the residue of the leading singularity as z — 0 is one.
Then the correctly normalized blocks are,

Gi(z,7) = 77(7)1/5gl(z, ), Gol(z,7) = (1) fi(2)g2(2, T) (C.1la)

Gs(z,7) = (1)’ fa(2)gs(2,T) (C.110)

where fi2(x) are given in (C.3) and x is related to 7 via (3.1).

As the example above indicates nothing really different happens in the
case where the two operators in the two-point function are not conjugate to
each other.
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Appendix D

In this appendix we will discuss certain techniques of solving FDE’s on
the torus for two-point functions. We will profit from the existence of inte-
gral representations for the two-point blocks. Such integral kernels can be
written in terms of ¥-functions on the torus.* However we will find more
advantageous to use the fact that the torus can be represented as a branched
sphere. Since the mapping function is the Weierstrass gp-function this will
be very convenient since the coefficient functions of (4.1) can be expressed
naturally as rational functions of p(z) and linear in @'(z).

The map w = p(z) maps the torus onto the w-sphere punctured at four
points, w = ey, eq, 3,00 with two branch-cuts connecting the four punctures.
Here we use the standard notation,

T 4 L 4 T 4
61:§[ﬁ3+194]>€2:§[192—194]a63:_3[192+193] (D.1)

where ¥J; are the usual elliptic ¥-functions.? Using,

9'(2) = ~2[(0(z) — e)(0(z) — e2)(p(z) —ex))F (D-2a)
0 10
5= —2[(w — e1)(w — eg)(w — 63)]2% (D.2b)
0 0 2 92
5.2 = 4w —er)(w — eg)(w — eg)w + (6w — 5)610 etc. (D.2¢)

one can transform an elliptic equation into a FDE on the sphere with regular
singularities at eq, eq, e3,00. Then, by a Moebius transformation, the singular
points can be brought to 0,1, 0o, z, where z is defined by (3.1). Let £ be the
coordinate on the punctured sphere with the punctures at 0,1, 00, 2. Then
the modular transformations act as follows, S : £ — 1 —-¢&, ¢z — 1 — z,
T:¢£—¢&/(E—1), x — x/(x —1). One the torus the only singular point of
the equations was at z = 0. All the other singularities had to be apparent.
This singular point on the sphere corresponds to & = x. The singularities
at £ = 0,1,00 are generated from the branch cuts and the indices of the

*Representations of this form appeared in ref. [32-35] in connection with two-point
functions of minimal models on the torus.
"We use the notation and conventions of [36].
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equation there are fixed. For an n-th order equation the indices at 0,1, 0o
are 0, %, 1, %, -+, 5. The coefficients of the equation on the sphere as well as
the location of some of the singularities generically depends on the modulus
of the torus, however the monodromy data do not depend on it.

It is best to consider some concrete examples where the issues above can
be easily understood. We will first consider the differential equation for the
two blocks of the two-point function of the spin—% representation of the k = 1

SU(2) WZW model. This was derived in [16],

0f Sz =0 (D3)

Using (D.2) we can transform it into an equation in w the coordinate on the
branched sphere,

171 1 1 3
Ol +5 + + O f ad

w—e W—ey W—e3 w_ﬁ(w—el)(w—eg)(w—eg)

F=0

(D.4)
We can now bring the singular points to 0, 1, 0o, x by the Moebius transfor-
mation,
(w—e1)(es — e2)

= (D.5)

(w —ez)(ez —e1)

Equation (D.4) thus becomes,

11 1 1 1 (22 — 1)é + 2(z — 2)
Rf+ = ++1af—
CUleT -1 -] Y 16 (€€
This is now a standard FDE and by substituting f = (¢ — 2)~!/4g we obtain
a hypergeometric equation for ¢,

f=0 (D.6)

§1-8)g"+[5 - €|+ 350 =0 (D7)

which can be readily solved,

(&) ~ (€= )7 NHWEWl—@ (D.8a)

iSince the difference of the two indices at & = z is one this substitution is by itself
enough to remove this singular point from the equation.
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f2(€) ~ (6 =) [\/\/7—1- Je-Ve—1- e \f] (D.8b)

As a next example we are going to discuss a differential equation that has
a non-constant Wronskian. This is the one corresponding to the two point
function of the 56-dimensional representation of the k =1 E; WZW model.
There are two blocks in this correlation function. The differential equation
was derived in [16] and is the following,

3 2
DT~ §/(2)0- ~ Holz) + 202)f =0 (D9
Transforming it on the sphere it becomes,
1 1 3 4o — 2

a£f+ e 1 s @ -DEtra@-2)
1[2x — 1)+ x(x—2)]2+8(2? —x+ 1)(€ — x)?
16 &€ - 1)((2r — DE+ (e —2))(E —a)?

The singularity at & = %f) is apparent with indices, (0,2) and is due to

the zeros of the Weierstrass function in (D.9). By doing the transformation,
f(&) = (& —2)734g(¢) (D.10) is transformed to,

T 3 et
ot 2 L +§— 1 f—i—p(:p)] g + 16 £(€ — 1)(§+p(x))g 0 (D.11)

where p(x) = xz(z ?, p(x) = % This can be solved by the same method

that was used in the case of the presence of apparent singularities in section
3. It is in fact an easy task to show that if ¢ is a solution to (D.11) and h is
the solution to the hypergeometric equation,

f=0  (D.10)

113 1 1 356 —24
Ph— = |= Och _ D.12
¢ L 5—11 RTHI Y (D12)
then,
6—5xr 1
The isomonodromic relation here is,

or  (2z—1)¢+ x(x —2)0¢  (x—1)((2z —1)E+z(z —2))
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Thus the two solutions of (D.11) are,

xr— 2

gdéax)=:£PT3/471/473/27£)—-izgjjijl’ﬂ—1/47—3/4,1/275) (D-15a)

ga(€,2) = €2 F(3/4,5/4,5/2,€) + 1F(—1/4,1/4,3/2,€) (D.15b)

X 1
R ;)
Az — 1)5

As another example consider the two-point function of the G5 theory,
discussed in Appendix A. The equation on the sphere is,

31, 1 1 o2 32552 (362 + 7)& + x(Tx + 11)
AT s e C2i fe-nE—a2 T
(39—l L (D.16)

125€(6 = 1)(§ — x)?

which again can be solved by standard contour integrals.
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