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1. Introduction

The main subject of our paper is the chiral operator algebra W∞, which is a quantum

deformation of the infinite dimensional Lie algebra,

[W s
m,W s′

n ] = ((s′ − 1)m− (s− 1)n)W s+s′−2
m+n (1.1)

with linear terms in the W-generators as well as central terms. All indices assume integer

values with the restriction that s, s′ ≥ 2. We examine the occurrence of this symmetry in

2-d Conformal Field Theory, (CFT) and construct unitary representations of W∞ using

free bosons. The present work is a review of the main ideas and results we have obtained

recently in references [1, 2, 3].

The classical algebra (1.1) is interesting from the point of view of CFT, because it

contains the (centerless) Virasoro algebra

[W 2
m,W 2

n ] = (m− n)W 2
m+n (1.2)

as a subalgebra. In this respect, (1.1) may be viewed as an extended conformal algebra

with an infinite collection of additional symmetries generated by {W s
n ; n ∈ Z} with s ≥

3. The conformal properties of these additional generators follow from the commutation

relations

[W 2
m,W s

n] = ((s− 1)m− n)W s
m+n , (1.3)

which imply that W s
n can be regarded as the Fourier modes of primary fields with con-

formal weight s. Therefore, the algebra (1.1) describes (at the classical level) higher spin

transformations in two dimensions with s = 2, 3, 4, · · ·.
On the other hand, the algebra (1.1) has a natural geometric interpretation as area

preserving diffeomorphisms of 2-manifolds. It can be represented by the Poisson bracket

of functions W s
n = xn+s−1ys−1 on a two dimensional plane with (canonical) coordinates

x and y,

{x, y} = 1 , (1.4)

or equivalently by the smooth functions einxys−1 on the cylinder R × S1. This sym-

metry assigns a definite meaning to higher spin transformations of CFT. However it

should be emphasized that the area preserving diffeomorphism algebra does not refer to

the 2-d world of CFT, since otherwise it would be incompatible with chiral conformal

transformations. For this reason it is more appropriate to introduce an additional space-

time dimension in order to interpret the extended conformal algebra (1.1) geometrically.

Then, the Virasoro subalgebra (1.2) is generated by point canonical transformations in

the (x, y)-space.

The complete structure of W∞, which is defined as a large N limit of Zamolodchikov’s

WN operator algebra, [4], is a deformation of the area preserving diffeomorphism sym-

metry (1.1). In particular, for any given s and s′, the commutation relations of the area

1



preserving diffeomorphism algebra and W∞ differ from each other by local functionals

of the generating fields with spin less that s + s′ − 2. Since both infinite dimensional

algebras satisfy the Jacobi identity (associativity), the deformation terms cannot be arbi-

trary; they are 2-cocycles of the Lie algebra (1.1) with non-trivial coefficients in general.

The existence of consistent gauge interactions among higher spin fields with all integer

values of spin, s ≥ 2, suggests that the deformation terms should be central or linear,

but not quadratic (or higher polynomial) in the W-fields. A deformation of this type

was introduced from purely algebraic considerations by Pope, Romans and Shen (PRS),

[5] and its uniqueness was investigated in [6]. Subsequent work on the large N limit

of WN -minimal models proved that the PRS commutation relations provide the correct

description of the W∞ algebra. It is our purpose to review these results in detail and

present an account of the structure and field-theoretic representations of WN algebras in

the large N limit.

In section 2 we use the Hamiltonian formalism of Gelfand and Dickey to describe

the universal features of W-algebras at large N and their relation with the area preserv-

ing diffeomorphism symmetry (1.1). In section 3 we introduce the PRS deformation of

the commutation relations (1.1) and discuss its physical meaning in the theory of Z∞
parafermions. In section 4 we use a collection of p complex free bosons in 2-d to con-

struct explicit field-theoretic realizations of the W∞ algebra with central charge c = 2p.

In section 5 we show that the representation theory of U(1)2p current algebras yields

highest weight (hw) unitary irreducible representations of W∞ with c = 2p. In section 6

we obtain a U(p) matrix generalization of W∞ and investigate its structure in the limit

p → ∞. It is found that the resulting symmetry describes symplectic diffeomorphisms

in four dimensions. Finally, section 7 contains our conclusions and further comments.

2. The universal features of W-algebras

In CFT, WN -algebras are generated by the stress tensor T (z) = W 2(z) and a col-

lection of additional conserved (chiral) fields {W s(z) ; s = 3, 4, · · · , N} with spin s, [4].

They form closed operator algebras with non-linear determining relations in general. In-

troducing Fourier modes, W s(z) =
∑

n∈Z W s
nz−n−s, their commutation relations assume

the form

[W 2
m,W 2

n ] = (m− n)W 2
m+n +

c

12
(m3 −m)δm+n,0 , (2.1)

[W 2
m,W s

n] = ((s− 1)m− n)W s
m+n , (2.2)

[W s
m,W s′

n ] =
∑

{si},{ki}
Css′

s1s2···sp
(m,n; k1, k2 · · · , kp; c)W

s1
k1
· · ·W sp

kp
, (2.3)

where k1 + k2 + · · · + kp = m + n, W 0
k = δk,0 (inclusion of the identity operator that

accounts for central terms) and s1 + s2 + · · · + sp ≤ s + s′ − 2. For higher spin fields

the structure constants Css′
{si} are not universal in the sense that many of them depend
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implicitly on N and this makes their computation highly non-trivial. However, taking a

suitable limit in which N →∞, the structure of W-algebras simplifies considerably and

the commutation relations of the resulting infinite dimensional symmetry algebra (when

appropriately defined) are determined only by universal constants. The task is to extract

the universal features of higher spin transformations in 2-d.

Our starting point is the Gelfand-Dickey algebra of formal pseudo-differential op-

erators which provides a (classical) hamiltonian framework for WN symmetries, [7, 8].

Using this formalism we will describe the connection of W∞ with the area preserving

diffeomorphism algebra (1.1). Let

LN = ∂N
z + u2(z)∂N−2

z + · · ·+ u
N
(z) (2.4)

be an N -th order differential (Lax) operator with N -1 coordinate (potential) functions

{ui(z) ; i = 2, 3, · · · , N}. We also consider (formal) pseudo-differential operators A(z) =

A−(z) + A+(z) with

A−(z) =
∑

k∈Z−
∂k

z αk(z) ; A+(z) =
∑

k∈Z+
0

αk(z)∂k
z (2.5)

and introduce the notation resA= α−1(z). Then, to any local functional f [ui], we assign

the formal operator sum

Xf =
N−1∑

k=1

∂−k
z

δf

δu
N+1−k

+ ∂
−N

z x
N
(f) . (2.6)

The variable x
N
(f) is chosen so that the condition res[L

N
, Xf ]= 0 is satisfied. With this

in mind, the Gelfand-Dickey bracket between any two functionals f [u] and g[u] is defined

to be

{f, g}
N

=
∫

res[VXf
(L

N
)Xg] , (2.7)

where

VXf
= L

N
(XfLN

)+ − (L
N
Xf )+L

N
. (2.8)

In all formulae we use Leibnitz’s rule for the multiplication of operators (both differential

and formal).

Under the Gelfand-Dickey bracket (2.7), the coordinate functionals u2,· · · , uN
form a

closed algebra with quadratic determining relations. The Virasoro subalgebra is gener-

ated by u2(z)

{u2(z), u2(z
′)}

N
= (u2(z) + u2(z

′))δ′(z − z′) +
c

12
δ′′′(z − z′) (2.9)

and has central charge c = N3 − N . However, the rest of the coordinate fields us(z)

with s = 3, 4, · · · , N , are not primary. Primary conformal fields W s(z) with spin s are
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obtained using suitable polynomial combinations of all the ui and their derivatives. They

are of the general form

W s(z) =
∑

{i},{k}
A

i1···ip
N ;k1···kp

u
(k1)
i1 (z) · · · u(kp)

ip (z) (2.10)

with k1 + · · · + kp + i1 + · · · + ip = s ≤ N . The fields W s(z), including W 2(z) = u2(z),

generate at the classical level the extended conformal algebra WN . Its quantum analog

is obtained by introducing appropriate normal orderings which regularize the composite

(polynomial) terms and deform the structure constants of the algebra accordingly, while

maintaining associativity.

In this classical framework, the commutation relations of WN involve structure con-

stants which diverge rapidly in the limit N → ∞. We may avoid this behavior by

modifying the definitions of the bracket (2.7) and the u-variables in a suitable (and

consistent) way. For this reason we introduce the rescaling∗

[f, g]
N
≡ N3{f, g}

N
, (2.11)

Us(z) ≡ N− 3s
2 us(z) (2.12)

and then take the large N limit of the Gelfand-Dickey algebra. With this prescription

in mind, we find that the commutation relations [Us(z), Us′(z
′)]∞ are well-defined and

involve no infinities for all s, s′ ≥ 2. Explicit expressions are available in ref. [2] and

involve linear and quadratic terms in the U -variables. However, it is possible to introduce

a tower of higher spin fields

W 2(z) = U2(z) , W 3(z) = U3(z) , (2.13a)

W 4(z) = U4(z)− 1

2
U2

2 (z) , (2.13b)

W 5 = U5(z)− U2(z)U3(z) , (2.13c)

W 6(z) = U6(z)− U2(z)U4(z)− 1

2
U2

3 (z) +
1

3
U3

2 (z) , (2.13d)

etc., so that the commutation relations [W s(z),W s′(z′)]∞ become linear and W s(z) with

s ≥ 3 become primary.

More explicitly we define fields W s(z) using the generating function

W (t) = log(1 + U(t)) , (2.14)

where

W (t) =
∞∑

s=2

W s(z)ts , U(t) =
∞∑

s=2

Us(z)ts (2.15)

∗This rescaling is chosen so that in the classical version of the Feigin-Fuks realization of WN -algebras
(known as the Miura transformation) the commutation relations of the free-U(1) fields remain unchanged.
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and log(1 + x) = x− x2

2
+ x3

3
− · · ·. Then, the Gelfand-Dickey commutation relations of

the W -fields are given by

[W s(z),W s′(z′)]∞ =
(
(s− 1)W s+s′−2(z) + (s′ − 1)W s+s′−2(z′)

)
δ′(z − z′) , (2.16)

up to central terms in the Virasoro subalgebra only, [2]. Introducing Fourier modes W s
n

(n ∈ Z), we obtain precisely the commutation relations of the area preserving diffeomor-

phism algebra (1.1). The results above can be derived by straightforward but lengthy

computations.

The most systematic way to construct the quantum version of WN algebras is given by

the (Feigin-Fuks) free-field representation of the W -generators. The idea is to factorize

the Lax operator (2.4) as
∏N

i=1(∂z + qi(z)), treat the q-variables as U(1) currents and

then compute the commutation relations of the u-fields by introducing suitable normal

orderings, [4]. To be more precise, let ~φ = (φ1, φ2, · · · , φN−1
) be an (N − 1)-vector of free

massless scalar fields with two-point functions

〈φi(z)φj(w)〉 = −2δij log(z − w) (2.17)

and consider the normal-ordered differential (Lax) operator

LN =:
N∏

m=1

(iα0∂z + ~hm · ∂z
~φ(z)) : . (2.18)

The numerical coefficient α0 is the background charge of the theory and the N vectors
~hm are chosen so that

N∑

m=1

~hm = 0 , 2~hm · ~hn = δmn − 1

N
. (2.19)

Using the Leibnitz rule, if we rewrite the product (2.18) in the form L
N

=
∑N

s=0 us(z)(iα0∂z)
N−s,

we will obtain a free field realization for the u-fields. Then, the two-point functions (2.17)

determine unambiguously the (quantum) commutation relations of the chiral operator

algebra WN .

The expressions we obtain this way are similar to the classical Gelfand-Dickey rela-

tions. However, the quantization of the fields us(z) leads to a deformation of the struc-

ture constants, which also depend in this case on the background charge α0. Introducing

Fourier modes us(m), Fateev and Lykyanov obtained the following explicit results, [4],

[u2(m), us(n)] = (m(s−1)−n)us(m+n)−
s∑

k=1

(iα0)
k (N − s + k)!

(N − s)!
As

m,kus−k(m+n) , (2.20)

[u3(0), us(m)] = 2m(δs,N − 1)us+1(m) + iα0(2s + m− 3)mus(m)−
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− 2

N

s∑

k=1

(iα0)
k−1 (N − s + k)!

(N − s)!

[∑

n∈Z

Cn−m
k : us−k(n)u2(m− n) : +Bs

m,kus−k(m)

]
. (2.21)

Here, the central charge of the Virasoro subalgebra is

c = (N − 1)[1−N(N + 1)α2
0] (2.22)

and the coefficients A, B, C are given by

As
m,k = Cm+1

k+1

(
k − 1

2Nα2
0

− s + 1− (N − 1)(k − 1)

2

)
, Cm

k =

(
m

k

)
(2.23)

Bs
m,k = (−1)kmCk+1−i

k+1 +
(
(−1)kCk−1+i

k+2 − C i+1
k+2

) (
k − 1

2Nα2
0

− s + 1− (N − 1)(k − 1)

2

)
,

(2.24)

where i = [m+1
2

]. The rest of the commutation relations of the (quantum) WN algebra are

much more complicated to derive explicitly and there are no closed formulae for arbitrary

higher spin in our immediate disposal.

If we keep the background charge α0 fixed (and independent of N), the quantum

corrections to the structure constants of the WN algebra are negligible compared to the

(classical) Gelfand-Dickey coefficients in the limit N → ∞. This can be easily seen by

inspection of the commutation relations (2.20), (2.21) and the value of the central charge

(2.22). Bilal proved in general that when α2
0 ∼ 1 , all quantum commutation relations of

the WN algebra reduce to their classical counterparts as N →∞, [9]. However, without

any rescaling, the structure constants of the algebra are divergent in this limit. On

the other hand, Morozov considered the “pure quantum” limit of WN algebras in which

N → ∞, but α0 = 0, [10]. In his case, the central charge of the Virasoro subalgebra

diverges linearly for large values of N .

¿From these considerations it is quite clear that the quantum commutation relations

of W∞ are not uniquely defined and the structure of the universal W-algebra which arises

in the large N limit depends on how α0 scales with N . However, if the background charge

α0 is chosen to be ∼ 1/N , all structure constants in eqs. (2.20), (2.21) will be finite at

large N and no rescaling is necessary. In this limit, and in analogy with the classical

Gelfand-Dickey calculation, we may introduce new variables W s(z) in order to eliminate

the quadratic terms from the commutation relations of W∞. In fact the field redefinitions

we used earlier are also applicable in the present case, provided that normal orderings

are taken into account. We define new fields W s(z) using (without any rescaling) the

generating function

W (t) =: log(1 + u(t)) : , (2.25)

which in terms of Fourier modes gives

W 2
m = u2(m) , W 3

m = u3(m) , (2.26a)
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W 4
m = u4(m)− 1

2

∑

n∈Z

: u2(n)u2(m− n) : , (2.26b)

etc., in exact analogy with eqs. (2.13). Then, their commutation relations will be given

by eq. (2.16) (or equivalently eq. (1.1)), up to subleading terms which involve only

derivatives of the fields W s(z) as well as derivatives of δ-functions. The important point

here is that under the redefinitions (2.25), all purely polynomial terms will be absent from

the quantum commutation relations of W∞, irrespectively of the choice of α0. This is so,

because the structure constants of the purely polynomial u-terms in the commutation

relations of WN algebras are independent of the background charge and do not deform

upon quantization.† Since the rescaling (2.11) and (2.12) does not change the structure

constants of purely polynomial terms, the results of our previous analysis are valid for

them, in all cases.

We emphasize that different limiting procedures for the quantum commutation rela-

tions of WN at large N (depending on the choice of α0) do not affect the leading structure

(1.1), but only the subleading terms associated with derivatives of the fields W s(z) and

central terms. These subleading terms give rise to a deformation of the area preserving

diffeomorphism algebra (1.1). However, it is quite difficult to compute them directly in

closed form, using the Feigin-Fuks representation. Moreover, even after the redefinitions

(2.25), there is no guarantee that the deformation terms will assume a simple linear

form; they might involve contributions from derivative terms like (∂W 2(z))2, etc. It is

possible to show by sample calculations that in the limit N → ∞ (with α0 ∼ 1/N),

such non-linear subleading terms can be eliminated as well in a consistent way. For this

we have to introduce further field redefinitions by adding certain derivative terms in the

expressions (2.26) for our basic fields W s(z). Since there are no closed formulae for the

quantum commutation relations of WN with arbitrary N (apart from (2.20) and (2.21)),

it is practically impossible to carry out this procedure systematically for all higher spin

fields.

In the next section we adopt an ansätz for the complete structure of W∞, introduced

by Pope, Romans and Shen from purely algebraic considerations by requiring linearity

and compatibility with the Jacobi identity, [5]. Since there is no a priori way to single

out one algebraic deformation of (1.1) from the others, we appeal to the representation

theory of the symmetry algebra in question for a definite physical realization of the

commutation relations of W∞. In particular, we know that the commutation relations of

W∞ should be realized by the CFT of Z∞ parafermions (which is well-defined). In this

framework, we prove that the large N limit of the quantum WN algebras, such that the

central terms remain finite, is given precisely by the (linear) PRS algebra. This is one of

our main motivations for being interested in the field theoretic realizations of W∞ which

†One may verify this by using the (Feigin-Fuks) free field representation, us(z) ∼ (∂φ)s+derivative
terms, after performing simple contractions only.
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we discuss in detail in the next sections.

3. The PRS deformation and Z∞ parafermions

The PRS algebra is a linear deformation of the area preserving diffeomorphism sym-

metry, which also admits central terms in the commutation relations of higher spin fields.

It has the form

[W s
m,W s′

n ] = ((s′ − 1)m− (s− 1)n)W s+s′−2
m+n + q2(s−2)cs(m)δs,s′δm+n,0+

+q2gss′
2 (m,n)W s+s′−4

m+n + q4gss′
4 (m,n)W s+s′−6

m+n + · · · , (3.1)

where the coefficients of the central terms are

cs(m) =
c

2
m(m2 − 1)(m2 − 4) · · · (m2 − (s− 1)2)

22(s−3)s!(s− 2)!

(2s− 1)!!(2s− 3)!!
(3.2)

and the sequence of · · · terms in (3.1) terminates with W 2
m+n for s + s′ even and with

W 3
m+n for s+ s′ odd. The coefficients gss′(m,n) are polynomial expressions in m,n given

by the formulae

gss′
l (m,n) =

ϕss′
l

2(l + 1)!
N ss′

l (m,n) , (3.3)

where

ϕss′
l =

∑

k∈Z+
0

(−1
2
)k(

3
2
)k(− l+1

2
)k(− l

2
)k

k!(−s + 3
2
)k(−s′ + 3

2
)k(s + s′ − l − 3

2
)k

, (3.4)

N ss′
l (m,n) =

l+1∑

k=0

(−1)k

(
l + 1

k

)
(2s− l − 2)k[2s

′ − k − 2]l+1−k·

·[s− 1 + m]l+1−k[s
′ − 1 + n]k (3.5)

and

(a)k ≡ a(a + 1)(a + 2) · · · (a + k − 1) , (3.6a)

[a]k ≡ a(a− 1)(a− 2) · · · (a− k + 1) , (3.6b)

(a)0 = [a]0 = 1.

The parameter c is the central charge of the Virasoro algebra and its value depends

on the underlying CFT. The second deformation parameter q is arbitrary. For q = 0,

all subleading terms in the commutation relations of the PRS algebra vanish with the

exception of central terms in the Virasoro subalgebra. It can be verified directly that

this is the only possible central extension of the area preserving diffeomorphism algebra

(1.1) which is consistent with the Jacobi identities. Central terms for higher spin fields

are allowed provided that q 6= 0. In this case we may rescale the generators W s
n by qs−2

and normalize the value of the q-parameter to one. ¿From now on we choose to work

with q = 1 without loss of generality. For completeness we point out that for c = 0 but
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q 6= 0, the algebra (3.1) is essentially the same (up to variable redefinitions) with the

algebra of (symbols of) differential operators on the line, also known as Moyal algebra.

It has been established in the context of elementary quantum mechanics that the Moyal

algebra is the unique (linear) deformation of the area preserving diffeomorphism algebra,

(see for instance [11] and references therein). The importance of the Moyal (sine bracket)

algebra in large N limit considerations, was first recognized by Fairlie and Zachos. Their

results, which are applicable to SU(N), will be discussed in section 6 in connection with

the algebra W∞
∞ . However, the possibility to have non-zero central terms for all higher

spin generators in the commutation relations (3.1), is due to Pope, Romans and Shen.

The PRS algebra was originally introduced in the literature as a candidate for W∞,

from purely algebraic considerations alone. However, a closer look at the minimal models

of WN algebras shows that in the large N limit, the commutation relations of WN become

linear and the complete structure of W∞ is given exactly by (3.1). This provides the

physical justification for identifying the PRS algebra with W∞. As a byproduct we

obtain unitary hw irreducible representations of W∞, which might also be of some value

in mathematics. These results were first presented in ref. [3] and will be the subject of

the remaining of this paper.

Recall that for WN algebras there is a series of unitary CFT models which are minimal

in the sense that the corresponding number of WN representations is finite, [4]. These

theories are parametrized by a positive integer p and possess a (global) ZN⊗ZN symmetry.

The central charges of WN -minimal models are given by the sequence‡

cN
p = (N − 1)

[
1− N(N + 1)

(N + p)(N + p + 1)

]
(3.7)

and can be identified with the coset models

SU(N)1 ⊗ SU(N)p

SU(N)p+1

. (3.8)

The simplest example is provided by the theory of ZN parafermions which corresponds

to p = 1 and has central charge c = 2(N −1)/(N +2), [12]. We will discuss some aspects

of this model in detail in order to establish the linearization of the WN commutation

relations in the large N limit.

For convenience, we adopt an alternative description of the coset models (3.8), which

avoids unnecessary complications dealing with the large N limit of SU(N). Instead we

will study the Grassmannian coset models

GN(p) =
SU(p + 1)

N

SU(p)
N
⊗ U(1)

. (3.9)

‡Notice that this is consistent with the choice of the background charge α0 ∼ 1/N we adopted in
section 2 (cf. eq. (2.22)).
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The models in (3.8) and (3.9) have the same central charge, the same chiral algebra,

WN and the same hw irreducible representations and therefore provide two equivalent

descriptions of the minimal models of WN algebras for all N ≥ 2. For p = 1 we have

the usual parafermionic coset, G
N
(1) =SU(2)

N
/U(1). The ZN parafermions are defined

through their relation with the level-N SU(2) current algebra, [13]

Ja(z)J b(w) =
N

2

δab

(z − w)2
+ iεabc J c(w)

(z − w)
. (3.10)

In particular, we set

J3 = i
√

N/2 ∂ρ , J± =
√

Nexp


±

√
2

N
iρ


 ψ±1 , 〈ρ(z)ρ(w)〉 = − log(z − w) (3.11)

and the operator product expansion (OPE) of the parafermions assumes the form

ψk(z)ψk′(w) = ck,k′(z − w)−
2kk′

N [ψk+k′(w) +O(z − w)] , (3.12)

ψk(z)ψ−k(w) = (z − w)−
2k(N−k)

N

[
1 +

k(N − k)(N + 2)

N(N − 1)
(z − w)2Tψ(w) + · · ·

]
, (3.13)

where

ψ†k = ψ−k , ψN+k = ψk , ψ0 = 1 , (3.14a)

ck,k′ =

[
(k + k′)!(N − k)!(N − k′)!

k!k′!N !(N − k − k′)!

] 1
2

(3.14b)

and Tψ is the parafermionic stress tensor.

The spin of the parafermions ψk is given by ∆k = k(N−k)
N

for 0 ≤ k ≤ N − 1 and it is

generically fractional. For this reason the parafermionic algebra is non-local in general.

However, for N = 2, the spin is 1/2 and the parafermion ψ1 is nothing else but an

ordinary Mayorana-Weyl fermion. The only other case where the parafermionic algebra

becomes local is in the limit N → ∞. Then, the scaling dimensions of ψ±k take all

positive integer values, ∆k = k(1 − k
N

) → k and the discrete ZN ⊗ ZN symmetry is

promoted to affine U(1) ⊗ U(1). Therefore, it is natural to expect that WN simplifies

considerably at large N and admits a realization in terms of free bosons. It is a trivial

observation that as N → ∞, the SU(2) current algebra “flattens” becoming an abelian

U(1)3 current algebra. This follows by a simple rescaling of the SU(2) currents in (3.10)

as Ja(z) → N− 1
2 Ja(z). This way, the large level limit of the current algebra is well defined

and involves no infinities. Considering the coset SU(2)∞/U(1) means removing the scalar

field ρ from the spectrum and identifying the other generators ψ±1 = limN→∞ N− 1
2 J±(z)

(cf. eq. (3.11)) with the remaining U(1) currents, i∂zφ and i∂zφ̄ respectively. Then,

the parafermions with k ≥ 2 are expressed as composite operators in the U(1) currents,

ψk ∼ (∂φ)k and ψ†k ∼ (∂φ̄)k.
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It is quite clear now that the algebra (3.12), (3.13) for Z∞ parafermions is identical

with the enveloping algebra of the U(1)⊗U(1) current algebra. Moreover, the generators

of the WN chiral algebra admit a simple realization in the large N limit in terms of the

U(1) currents ∂φ and ∂φ̄. It is well known that for all N , the stress tensor and the other

higher spin fields of WN appear in the non-singular terms of the OPE ψ1(z)ψ†1(w), (cf.

eq. (3.13)). In the limit N → ∞, the latter OPE is equivalent to ∂zφ(z)∂wφ̄(w) and

therefore only terms bilinear in the scalar fields will be generated. Thus, the subleading

(non-singular) terms that appear in this case will be of the form ∂kφ∂lφ̄. The operator

∂φ∂φ̄ is proportional to the stress tensor of the theory, which has central charge c∞1 =

2. The remaining generators W s(z) can be identified with linear combinations of the

operators ∂kφ∂lφ̄ with k + l = s. Clearly, their operator algebra, which generates W∞,

is closed and involves linear terms only.

The analysis above proves the linearization of the WN commutation relations in the

large N limit, without any explicit calculations. In order to compute the structure

constants of the W∞ algebra, we have to perform the OPE for the fields W s(z) using

their bilinear expressions in terms of the U(1) currents, ∂φ and ∂φ̄. Notice that for

any given spin s ≥ 2 there are s − 1 different operators of the form ∂kφ∂lφ̄ with the

appropriate scaling dimension. Since all of them but one can be expressed as derivatives

of lower spin fields , it is sufficient to choose one representative for every value of s.

Different choices are linearly related to each other and do not change the structure of

the W∞ algebra. However, there is a unique choice of basis in which the generators

W s(z) are quasiprimary. In the next section we construct this basis and prove that the

commutation relations of W∞ are given by the PRS algebra (3.1).

4. Bosonic realizations of W∞

Let us consider a free complex scalar field in 2-d with two-point function

〈φ(z)φ(w)〉 = 〈φ̄(z)φ̄(w)〉 = 0 , 〈φ(z)φ̄(w)〉 = − log(z − w) . (4.1)

We also introduce the following bilinear expressions

W s(z) = B(s)
s−1∑

k=1

(−1)kAs
k∂

k
z φ∂s−k

z φ̄ (4.2)

for all s ≥ 2, where the numerical coefficients B(s) and As
k are arbitrary for the moment.

Normal orderings are implicitly assumed throughout this section. The requirement that

the fields (4.2) are quasiprimary fixes uniquely the relative coefficients As
k, up to an

overall normalization constant which we denote by B(s). Since we assume that the W∞
symmetry is unbroken, ie. 〈W s(z)〉 = 0 for all s, the condition that the fields (4.2) are

quasiprimary takes the form

〈W s(z)W s′(w)〉 ∼ δs,s′

(z − w)s+s′ . (4.3)
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Explicit calculation shows that in our case, eq. (4.3) becomes

〈W s(z)W s′(w)〉 = B(s)B(s′)
I(s, s′)

(z − w)s+s′ , (4.4)

where

I(s, s′) = (−1)s
s−1∑

k=1

s′−1∑

l=1

(−1)k+l(s + l − k − 1)!(s′ + k − l − 1)!As
kA

s′
l . (4.5)

The condition I(s, s′) = 0 for s 6= s′ puts severe constraints on As
k. We find that there is

a unique solution to these conditions (up to normalization) given by

As
k =

1

s− 1

(
s− 1

k

)(
s− 1

s− k

)
. (4.6)

To prove this result it is sufficient to show that I(s, s′) = 0 for s′ = 2, 3, · · · , s − 1 and

for all s > 2. We also point out that the coefficients As
k appear in the definition of the

(1,1) Jacobi polynomials, P
(1,1)
s−2 (x) and the value of I(s, s′) in (4.5) follows directly from

the orthogonality relations of these polynomials.

The solution (4.6) enjoys the property As
k = As

s−k, which implies that the operators

W s(z) in (4.2) are even (odd) under the interchange φ ↔ φ̄ for s even (odd). In view of

this symmetry the OPE of W s with W s′ will involve W s′′ with s′′ = s + s′− 2, s + s′− 4,

s+s′−6, · · · only, which is the main feature of the PRS algebra. Up to an overall constant

B(s) that will be determined later, the quasiprimary fields assume the form

W 2(z) = −∂zφ∂zφ̄ , (4.7a)

W 3(z) = −(∂zφ∂2
z φ̄− ∂2

zφ∂zφ̄) , (4.7b)

W 4(z) = −(∂zφ∂3
z φ̄− 3∂2

zφ∂2
z φ̄ + ∂3

zφ∂zφ̄) , (4.7c)

W 5(z) = −(∂zφ∂4
z φ̄− 6∂2

zφ∂3
z φ̄ + 6∂3

zφ∂2
z φ̄− ∂4

zφ∂zφ̄) , (4.7d)

etc. In this tower of higher spin fields only W 3(z) is primary.

The commutation relations of W∞ can be determined in this basis by computing the

OPE W s(z)W s′(w), for all s, s′ ≥ 2. We find that

W s(z)W s′(w) = B(s)B(s′)


(2s− 2)!

s(s− 1)

δs,s′

(z − w)s+s′ +
s+s′−2∑

l=1

Rss′
l (∂wφ, ∂wφ̄)

(z − w)l


 , (4.8)

where

Rss′
l (∂φ, ∂φ̄) =

s−1∑

k=1

s′−1∑

k′=1

(−1)k′As
kA

s′
k′

(k + k′ − 1)!

(k + k′ − l)!
[(−1)s∂s+k′−lφ∂s′−k′φ̄+

+(−1)s′∂s′−k′φ∂s+k′−lφ̄]. (4.9)
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Then, we may express the operators (4.9) as linear combinations of the W-fields and their

derivatives and use the standard formula

[W s
m,W s′

n ] =
∮

C0

dw

2πi
wn+s′−1

∮

Cw

dz

2πi
zm+s−1W s(z)W s′(w) (4.10)

to obtain the commutation relations of W∞ in terms of Fourier modes. The explicit

calculations are rather involved for arbitrary s and s′. Making heavy use of symbolic

manipulation we have verified that the algebra (4.10) is identical to (3.1), provided that

the normalization constant B(s) is chosen to be

B(s) =
2s−3s!

(2s− 3)!!
. (4.11)

This completes the argument that the W∞ algebra is described by the PRS commutation

relations.

In our case the value of the central charge is c = 2 because we have considered the

simplest unitary model of the W∞ algebra. However, it is straightforward to generalize

the bosonic realization (4.2) to W∞ with c = 2p, where p is a positive integer. For this

we introduce p independent complex free scalar fields φi, i = 1, 2, · · · , p with two-point

functions normalized as follows

〈φi(z)φj(w)〉 = 〈φ̄i(z)φ̄j(w)〉 = 0 , 〈φi(z)φ̄j(w)〉 = −δij log(z − w) . (4.12)

Thanks to the linear structure of the commutation relations (3.1) the tower of higher

spin fields

W s(z) = B(s)
p∑

i=1

s−1∑

k=1

(−1)kAs
k∂

k
z φi∂s−k

z φ̄i (4.13)

with As
k and B(s) given as before, provides a bosonic realization of (3.1) with c = 2p.

This realization of W∞ arises naturally in the CFT models described by the Grass-

mannian cosets G∞(p). Notice that for all p, the SU(p)
N

current algebra abelianizes in

the limit N →∞ and becomes a U(1)p2−1 current algebra. Therefore, the Grassmannian

coset models G∞(p) are parametrized by U(1)2p affine currents, which can be identified

with the fields ∂φi, ∂φ̄i (i = 1, 2, · · · , p) in (4.12) , in exact analogy with the p = 1 case.

W∞ is a subalgebra of the parafermionic algebra of these models or alternatively it is a

subalgebra of the enveloping algebra of the U(1)2p current algebra.

We conclude this section by considering a real counterpart of the (complex) W∞
algebra, which we denote by RW∞. This algebra is obtained from the real coset models

O(N)1⊗O(N)p/O(N)p+1 and has c = p at large N . For p = 1, we have c = 1 for all values

of N and the corresponding algebra is an enlargement of the chiral algebra of rational

Z2 orbifold models with c = 1. It is known, [14], that these orbifold models have a chiral

algebra generated by Virasoro primaries belonging in the U(1) current module, with spins
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s = n2, n = 1, 2, · · · and a pair of vertex operators with spin N , exp(±i
√

2Nφ), where,

if the radius of compactification is written as R2 = 2p/p′ with (p, p′) = 1, then N = pp′.

As N →∞, the latter operators decouple and only the current module remains. In the

orbifold model, all operators containing an odd number of U(1) currents are projected

out. If we enlarge the set by including also quasiprimary operators we will obtain RW∞,

which is generated in terms of a single real scalar field by the operators

W 2s(z) = B(2s)
2s−1∑

k=1

(−1)kA2s
k ∂k

z φ∂2s−k
z φ . (4.14)

Hence, RW∞ is the quotient of W∞ by the ideal of fields with odd spins. This algebra

was denoted by W∞
2

in the work of PRS. There is an alternative real version of W∞ which

also contains an abelian current, [15]. This algebra, denoted by W1+∞, can be realized

in the U(1) current module generated by a single real scalar field or equivalently by a

complex fermion, [16].

5. Unitary representations of W∞

Highest weight representations of W-algebras can be constructed in analogy with the

Virasoro algebra. We start with the standard SL(2, C) invariant vacuum which is also

invariant under the action of the W-algebra, ie.

W s
n|0〉 = 0 , n ≥ 1− s . (5.1)

A hw state |Q〉 is one that is annihilated by the raising operators,

W s
n>0|Q〉 = 0 , W s

0 |Q〉 = Qs|Q〉 . (5.2)

Then, the W-representation is built on the hw state by the action of the lowering

operators, W s
n<0. Hw states are created from the vacuum by local operators VQ(z),

VQ(0)|0〉 = |Q〉. The hw conditions (5.2) translate into the following OPE for the pri-

mary operators VQ(z)

W s(z)VQ(w) = Qs
VQ(w)

(z − w)s
+O[(z − w)1−s] , (5.3)

where ∆ ≡ Q2 is the (left) scaling dimension. These definitions are applicable to any

W-algebra and hence to W∞ as well.

Unitarity constraints the values of the central charge of WN minimal models to be in

the discrete series (3.7), [4]. In this case, using the hermiticity condition

(W s
n)† = W s

−n (5.4)

14



we find that there are no negative norm states in the theory. Further analysis has shown

that the spectrum of dimensions of WN -primary fields, is given by the formula

∆({ki}; {k′i}) =
12

[∑N−1
i=1 ((N + p)ki − (N + p + 1)k′i) ~ωi

]2 −N(N2 − 1)

24(N + p)(N + p + 1)
, (5.5)

where {ki} and {k′i} are sets of positive integers subject to the constraints

N−1∑

i=1

ki ≤ N + p ,
N−1∑

i=1

k′i ≤ N + p− 1 (5.6)

and ~ωi are the fundamental weights of SU(N), which satisfy the conditions

~ωi · ~ωj =
i(N − j)

N
, i ≤ j . (5.7)

It is clear that when N →∞, the sequence (3.7) has no upper bound and the unitary

hw representations of W∞ should occur with central charge c = 2p only, with p ∈ Z+.

However, the number of conformal blocks becomes infinite in this limit and the concept

of minimality is not very practical for solving these models. Moreover, as can be readily

seen from eq. (5.5), the spectrum of dimensions collapses into three disjoint sets for large

N . The first class denoted by C0 encompasses the operators whose dimension approaches

zero. The second, CF , contains the operators that reach finite scaling dimension, while

the third, C∞, contains the operators that have unbounded dimension as N →∞. Here,

we mainly deal with CF and will comment briefly on C0. The class C∞ deserves a separate

study and we suspect that there may be non-trivial structure hidden in it.

It is obvious from sections 3 and 4 that the W∞ algebra we constructed with c =

2p is a subalgebra of the enveloping algebra of the U(1)2p current algebra. The W-

generators are bilinear in the current modes (cf. eq. (4.13)) and certainly satisfy the

hermiticity condition (5.4). Thus, hw irreducible representations of the U(1)2p current

algebra decompose into representations of the W∞ algebra (3.1) with c = 2p. This way

we obtain a very simple class of hw unitary irreducible representations of W∞. However,

it is not clear whether the list of all hw unitary representations is exhausted by our

construction.

Let us consider first the simplest case with c = 2, which corresponds to Z∞ parafermions.

For simplicity, as we explained earlier, it is more convenient to use the large (level) N

limit of the SU(2) WZW model and then translate the results to the parafermionic coset

(3.8) with p = 1. Let [j] be a hw representation of the SU(2) current algebra with spin

j which contains at the top level 2j + 1 states labeled by m, −j ≤ m ≤ j, all with

dimension ∆j = j(j + 1)/(N + 2). These states give rise to hw states of the WN algebra.

In particular, the m = j state gives rise to the parafermionic spin field σj, [12]. In the

SU(2) WZW model, we have also three sectors of operators as N → ∞. C̃0 contains
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primary fields with finite (fixed) j and dimension ∆j ∼ 1/N , C̃F contains operators with

spin j ∼ √
N and finite dimension and C̃∞ contains operators with spin j ∼ N and

unbounded dimension. The operators in C̃0 form a closed OPE, which is nothing else

but the Clebsch-Gordan algebra of ordinary SU(2) representations. In particular, the

OPE coefficients calculated in [17] reduce to the SU(2) Clebsch-Gordan coefficients.

For the operators in C̃F the situation is more interesting. Let us parametrize them

using their dimension ∆ = limj,N→∞
j(j+1)
N+2

, which is finite provided that j/
√

N is kept

fixed. It is obvious that any (non-negative) real value for ∆ can be obtained this way.

Now, if we analyse the OPE coefficients in this regime we will find that their three-point

couplings (OPE coefficients) will be exponentially suppressed as e−b
√

N and thus vanish

as N →∞, unless √
∆1 =

√
∆2 +

√
∆3 (5.8)

or cyclic permutations. This is precisely the composition law for vertex operators. Since

the SU(2) currents in the large N limit become abelian, the primary fields in this sector

must be of the form exp[iα3ρ+ iαφ+ iᾱφ̄], in the notation of section 3. The W∞ primary

fields can be obtained by factoring out the ρ-field dependence and therefore assume the

form

Vα,ᾱ(z) =: exp(iαφ(z) + iᾱφ̄(z)) : . (5.9)

Explicit calculation shows that the primary operators (5.9) have W∞ charges given by

Qα,ᾱ
s = (1 + (−1)s)

2s−3(s− 1)!(s− 2)!

(2s− 3)!!
∆ , ∆ = |a|2 . (5.10)

We note that these operators have zero charges under the W-generators with odd s. This

does not mean however that the odd part of the algebra acts trivially on the representation

module. The rest of the representation is obtained (in a standard way) by acting with

the lowering operators, W s
n<0. However, it is not clear up to this point, into how many

irreducible W∞ representations a single affine U(1) representation decomposes. To answer

the question we study the character formulae for these representations.

Recall that the character of a spin j affine SU(2) representation is given by, [18]

χj(τ, z) ≡ Trj

[
e2πi(τ(L0− c

24
)+zJ3

0 )
]

= i
ϑ2j+1,N+2(z|τ)− ϑ−2j−1,N+2(z|τ)

ϑ1(z|τ)
, (5.11)

where

ϑm,N(z|τ) =
∑

n∈Z+ m
2N

e2πiN(n2τ−nz) (5.12)

and ϑ1(z|τ) is the standard Jacobi ϑ-function. The reduced characters are obtained from

eq. (5.11) by setting z = 0 and provide the building blocks for the SU(2) WZW partition

function in the absence of background fields. The corresponding characters for the hw
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representations of the WN algebra can be written in terms of the string functions c2j
m ,

[19] which are defined implicitly through, [18]

χj(τ, z) =
N∑

m=1−N

c2j
m(τ)ϑm,N(z|τ) . (5.13)

The WN characters are given by χj
m(τ) = η(τ)c2j

m(τ), where η is the Dedekind η-function.

Now by taking the N →∞ limit for the class of C̃F representations, we find

χj(τ) = 2
√

∆N
e2πiτ∆

η3

[
1 +O(

1

N
)
]

, (5.14)

which implies that in our case the W∞ character is

χa(q) ≡ Tr[qL0− c
24 ] =

q|a|
2− 1

12

∏∞
n=1(1− qn)2

. (5.15)

Thus, the W∞ character at c = 2 coincides with the U(1)2 character, which proves that

a U(1)2 representation decomposes precisely into one W∞ irreducible representation.

Hw representations of W∞ with c = 2p are obtained from hw representations of the

U(1)2p current algebra, in a similar way. The primary operators of the U(1)2p current

algebra are generated by the vertex operators

V~α,~̄α(z) =: exp[i~α~φ(z) + i~̄α~̄φ(z)] : , (5.16)

using the p-component free scalar fields, ~φ and ~̄φ. They also generate hw unitary rep-

resentations of W∞ with c = 2p. However, for p > 1, the representation is completely

reducible. A character analysis like the one for p = 1 can reveal into how many ir-

reducible representations a single U(1)2p representation decomposes. Such analysis, al-

though straightforward in principle, is quite involved and we reserve an answer for the

future. It is highly plausible that every unitary hw irreducible representation of W∞ can

be constructed from U(1)2p representations. However, we do not have a proof of this

statement presently.

6. The algebra W p
∞ and its large p limit

In ref. [3] we introduced a U(p)-matrix generalization of W∞, denoted by W p
∞, tak-

ing advantage of the additional symmetries that the Grassmannian coset models G∞(p)

possess. In this section we review the construction of W p
∞ and its connection with the

algebra of symplectic diffeomorphisms in four dimensions, as p →∞.

Let {T α ; α = 0, 1, · · · , p2 − 1} be a basis in the Lie algebra of U(p)' SU(p) ⊗
U(1),§ so that in the fundamental representation T 0 coincides with the p× p unit matrix

§Greek indices range from 0 to p2 − 1 whereas Latin ones from 1 to p2 − 1.
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and {T a ; a = 1, 2, · · · , p2 − 1} are traceless hermitian matrices which satisfy the SU(p)

commutation relations

[T a, T b] = fabcT c . (6.1)

The summation convention over repeated SU(p) indices is implicitly assumed. Moreover,

we may always normalize the generators {T a} so that Tr
(
T aT b

)
= pδab, ie.

T aT b = δab1p +
1

2
fabcT c + dabcT c , (6.2)

where

dabc =
1

2p
Tr

(
(T aT b + T bT a)T c

)
(6.3)

is the third order completely symmetric Casimir tensor (which is identically zero for

SU(2)). Then, eq. (6.2) describes the decomposition of the matrix T aT b into its trace,

antisymmetric and traceless-symmetric parts.

Notice that the generating fields (4.13) of W∞ with c = 2p are of the form

W s
α(z) = B(s)

p∑

i,j=1

s−1∑

k=1

(−1)kAs
k(T

α)ij∂
k
z φi∂s−k

z φ̄j (6.4)

with α = 0. This motivates the introduction of the U(p) fields W s
α(z) for all α =

0, 1, · · · , p2 − 1. In this setting, the operators (4.13) correspond to the U(1) trace part

of U(p). The generalized higher spin fields (6.4) form a closed linear operator algebra

which is a multicomponent extension of W∞. Its structure is completely determined by

the OPE

W s
α(z)W s′

β (w) = B(s)B(s′)


(2s− 2)!

s(s− 1)

δs,s′Tr(TαT β)

(z − w)s+s′ +
s+s′−2∑

l=1

Rss′
αβ;l(∂wφ, ∂wφ̄)

(z − w)l


 , (6.5)

where

Rss′
αβ;l(∂φ, ∂φ̄) =

p∑

i,j=1

s−1∑

k=1

s′−1∑

k′=1

(−1)k′As
kA

s′
k′

(k + k′ − 1)!

(k + k′ − l)!
·

·
[
(−1)s(TαT β)ij∂

s+k′−lφi∂s′−k′φ̄j + (−1)s′(T βTα)ij∂
s′−k′φi∂s+k′−lφ̄j

]
(6.6)

for all s, s′ ≥ 2, using the two-point functions (4.12). This generalizes the results (4.8)

and (4.9) to a collection of p complex scalar fields.

Since T 0 is represented by the identity matrix, the OPE (6.5) yields

[W s
0,m,W s′

α,n] = ((s′ − 1)m− (s− 1)n) W s+s′−2
α,m+n + cs(m)δα,0δs,s′δm+n,0+

+gss′
2 (m,n)W s+s′−4

α,m+n + gss′
4 (m,n)W s+s′−6

α,m+n + · · · (6.7)

for 0 ≤ α ≤ p2 − 1, in exact analogy with the calculation outlined in section 4. cs(m) is

given by eq. (3.2) with c = 2p and for α = 0 the commutation relations (6.7) reproduce
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the PRS algebra, as required. The remaining commutation relations of W p
∞ for both

α, β 6= 0 are less trivial to derive from eqs. (6.5) and (6.6) and require a more careful

analysis. We point out that the contributions of the trace and symmetric parts of T aT b

to the commutation relations of the fields W s
a (z) for all a are analogous to eq. (6.7),

provided that the indices a, b are displayed accordingly. However, the contribution of

the antisymmetric piece ∼ fabc flips the sign of the terms (−1)s′∂s′−k′φi∂s+k′−lφ̄j in eq.

(6.6) and therefore the decomposition of the operators Rss′ into linear combinations of

the generating W-fields and their derivatives is different. Explicit calculation shows that

in this case, the contribution of the antisymmetric part to the OPE (6.5) involves once

again the W-fields and their derivatives linearly, but with spin s + s′ − 1, s + s′ − 3,· · ·
instead of s+s′−2, s+s′−4,· · ·. Also, the coefficients (structure constants) of these fields

written in terms of Fourier modes, are given by the combinatorial expressions gss′
l (cf.

eq. (3.3)) with l extrapolated to odd integer values. Thus, the commutation relations

are

[W s
a,m,W s′

b,n] = ((s′ − 1)m− (s− 1)n)
(
δabW s+s′−2

0,m+n + dabcW s+s′−2
c,m+n

)
+

+cs(m)δabδs,s′δm+n,0 +
∑

r>0

gss′
2r (m,n)

(
δabW s+s′−2−2r

0,m+n + dabcW s+s′−2−2r
c,m+n

)
−

−1

2
fabc

[
1

2
W s+s′−1

c,m+n +
∑

r>0

gss′
2r−1(m,n)W s+s′−1−2r

c,m+n

]
(6.8)

with c = 2p.¶ In this expression the summations over r terminate either with W 2 or W 3

depending on whether s + s′ is even or odd.

The infinite dimensional algebra W p
∞ described by (6.7) and (6.8) provides a U(p)-

matrix generalization of W∞. In our construction associativity is manifest, but it can

also be verified directly using the Jacobi identities for W p
∞. The main new feature of this

algebra is the presence of fields with spin s + s′ − 1 − 2r in the commutation relations

(6.8). As a result, the spin-2 W p
∞-fields W 2

α do not form a closed subalgebra unless α = 0.

In particular, we have

[W 2
0,m,W 2

α,n] = (m− n)W 2
α,m+n +

p

6
m(m2 − 1)δα,0δm+n,0 , (6.9)

[W 2
a,m,W 2

b,n] = −1

4
fabcW 3

c,m+n + (m− n)(δabW 2
0,m+n + dabcW 2

c,m+n)+

+
p

6
m(m2 − 1)δabδm+n,0 , (6.10)

where W 2
0 (z) is identified with the stress tensor of the G∞(p) models. The commutation

relations (6.9) and (6.10) suggest that unlike the case of spin-1 fields, a Yang-Mills type

generalization of spin-2 fields cannot be implemented consistently without the introduc-

tion of higher spin fields. This novelty is not shared by spin-1 fields because for them we

¶A proof of (6.8) can be obtained by a U(p)-coloring of the “lone-star” product of ref. [15].
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simply have s + s′ − 1 = 1. It would be interesting to investigate further the geometri-

cal meaning of colored spin-2 fields, not only in the present framework, but also in the

context of gravitational theories in spacetime dimensions d ≥ 2.

Next we study the structure of W p
∞, when p → ∞. For this purpose we need to

know how the algebra U(p) behaves in the large p limit. Recall that in the fundamental

representation there exists a basis T
~k in which the commutation relations of U(p) take

the form, [20]

[T
~k, T

~l] = −2i sin

[
π

p
(~k ×~l)

]
T

~k+~l (6.11)

and

[T
~k, T

~l]+ = 2 cos

[
π

p
(~k ×~l)

]
T

~k+~l . (6.12)

Here, ~k = (k1, k2) and ~l = (l1, l2) are two-dimensional vectors with non-negative integer

entries and T
~0 = 1p. This basis is defined by introducing

g =




1 0 0 · · · 0

0 ω 0 · · · 0

0 0 ω2 · · · 0
...

...
...

. . .
...

0 0 0 · · · ωp−1




, h =
√

ω




0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−1 0 0 · · · 0




(6.13)

with ω = exp(2πi/p). Clearly, we have that

hg = ωgh , gp = hp = 1p . (6.14)

The set of p× p matrices

T
~k ≡ ωk1k2/2gk1hk2 (6.15)

with 0 ≤ k1, k2 ≤ p− 1 are independent and provide a complete basis for the Lie algebra

of U(p).‖ Then, it can be easily verified that

T
~kT

~l = ω
~l×~k/2T

~k+~l , (6.16)

which is equivalent to the relations (6.11) and (6.12). Also, we may extend the range of
~k to negative integers by noting that

(T
~k)† = T−~k . (6.17)

In this basis, the commutation relations (6.7) and (6.8) of W p
∞ become

[W s,~k
m ,W s′,~l

n ] = ((s′ − 1)m− (s− 1)n) cos

[
π

p
(~k ×~l)

]
W s+s′−2,~k+~l

m+n +

‖Strictly speaking, the previous representation is valid for p even. When p is odd the definitions
are slightly different and amount to replacing π with 2π in (6.11) and (6.12). However, since we are
eventually interested in the large p limit, this difference will not alter our conclusions provided that the
rescaling we perform later incorporates the difference accordingly.
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+cs(m)δ~k+~l,0δs,s′δm+n,0 + cos

[
π

p
(~k ×~l)

] ∑

r>0

gss′
2r (m,n)W s+s′−2−2r,~k+~l

m+n +

+i sin

[
π

p
(~k ×~l)

] [
1

2
W s+s′−1,~k+~l

m+n +
∑

r>0

gss′
2r−1(m,n)W s+s′−1−2r,~k+~l

m+n

]
. (6.18)

Since c = 2p, the central terms in (6.18) diverge linearly as p →∞. It is worth mentioning

at this point that the large p limit of U(p) (and hence W∞
∞ ) might depend on the choice

of basis. Different bases are related to each other linearly and for finite p, they provide

equivalent descriptions of U(p). However, as p → ∞, the change of basis might involve

infinite sums (which could possibly not converge) and the resulting commutation relations

of U(∞) would be equivalent only formally.

Let us consider a classical version of (6.18) which means dropping the central terms.

If we renormalize the generators as follows

W̃ s,~k
m =

(
iπ

2p

)s−2

W s,~k
m , (6.19)

in the limit p →∞, eq. (6.18) will become

[W̃ s,~k
m , W̃ s′,~l

n ] = ((s′ − 1)m− (s− 1)n)W̃ s+s′−2,~k+~l
m+n + (~k ×~l)W̃ s+s′−1,~k+~l

m+n . (6.20)

It is rather easy to show that the algebra (6.20) describes symplectic diffeomorphisms in

four dimensions. To demonstrate this explicitly we have to choose a specific basis. Let us

consider a 4-d phase space with (local) coordinates x1, x2 and respective momenta p1, p2.

The classical Poisson bracket is defined as usual

{F1(~x, ~p), F2(~x, ~p)} =
2∑

i=1

[
∂F1

∂xi

∂F2

∂pi

− ∂F1

∂pi

∂F2

∂xi

]
(6.21)

and yields the commutation relations (6.20) using a basis of functions

F s,~k
m = xm+s−1

1 ps−1
1 eik2x2eik1p2 . (6.22)

Notice that if we had kept the central terms in eq. (6.18), then in the large p limit, under

the rescaling (6.19), we would have obtained (6.20) again with a single central term

surviving only in the commutation relations of the spin-2 fields. However, this central

term is still linearly divergent and further work is required to regularize it and elucidate

its meaning in quantum field theory.

Finally, the infinite dimensional subalgebra of (6.18) generated by the zero modes

m = n = 0, can be identified with the loop algebra of area preserving diffeomorphisms

in the limit p →∞. For this we consider (6.20) and let F r,~k = W̃ r+1,~k
0 . Then, we obtain

the commutation relations

[F r,~k, F r′,~l] = (~k ×~l)F r+r′,~k+~l , (6.23)
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which describe the loop algebra of area preserving diffeomorphisms of a 2-torus, S1×S1.

7. Conclusions

In this review paper we have presented an account of the structure and representations

of the W∞ algebra and its U(p)-matrix generalization, W p
∞. W∞ is the large N limit of

the WN algebras of CFT. In particular, we were able to show that W∞ coincides with the

linear infinite dimensional algebra proposed by PRS, using a CFT realization in terms

of free scalar fields. We have also obtained all its hw unitary irreducible representations

which are limits of the corresponding representations of WN algebras in CFT and exist

for c = 2p, with p ∈ Z+. We conjecture that the representations found here exhaust

all such hw unitary irreducible representations with finite central charge. For p > 1, we

have shown that there exists a non-abelian U(p)-matrix generalization of W∞, denoted

by W p
∞, which is realized in the Grassmannian coset models G∞(p) and contains W∞

as a subalgebra. Hw representations for this algebra can also be constructed from hw

representations of U(1)2p current algebra, along the same lines we described throughout

this paper. By taking a suitable p → ∞ limit of W p
∞, we obtained the algebra of

symplectic diffeomorphisms in four dimensions, which also contains as a subalgebra the

loop algebra of area preserving diffeomorphisms of the torus.

There are many areas where the study of W∞ and its generalizations may shed some

light and/or provide a concrete organization framework. We conclude our presentation

by listing some topics of current activity. W∞ is intimately connected with the continual

Toda equations (see for instance [1]), which describe 4-d self-dual Einstein equations on

manifolds with a Killing symmetry. In this context, it is interesting to study the relations

with the symmetry algebra of Penrose’s twistor construction, [21, 22] and its quantum

version through N = 2 string theory, [23].

W∞ can be used to construct certain theories of 2-d quantum W-gravity. So far, there

are two alternative definitions of WN -gravity. In the topological field theory approach,

one uses the moduli space of flat SL(N) connections on Riemann surfaces, [24]. In the

other (more conventional) approach, one writes directly an action by gauging the WN

algebra. It has been shown that the action of W∞-gravity provides a master theory,

which yields by truncation all WN -gravity theories with N ≥ 2, [25].

The W∞ algebra might be relevant in the matrix approach to 2-d gravity as well, [26].

In the (N-1)-matrix models one finds that the correlation functions satisfy differential

equations of the sl(N)-KdV hierarchy, [27], while the loop equations amount to certain

WN hw conditions on the τ -function associated with the second derivative of the partition

function, [28]. It is highly plausible that W∞ will play a pivotal role in the large N limit

of multi-matrix models, which describe D = 1 string theory.
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Last but not least, W∞ and its generalizations seem to be related to infinite dimen-

sional symmetries of off-critical integrable models and certain operator algebras in higher

dimensions. It would be quite interesting to study all these problems in detail. A syn-

thesis of the ideas we discussed in this paper might lead to a non-perturbative solution of

D = 1 string theory in terms of 4-d (topological) gravity, as advocated by Witten, [24].

23



References

[1] I. Bakas, Phys. Lett. B228 (1989) 57; “Area Preserving Diffeomorphisms and Higher

Spin Fields in Two Dimensions”, to appear in the proceedings of the Trieste Con-

ference on “Supermembranes and Physics in 2+1 Dimensions”, ed. by M. Duff, C.

Pope and E. Sezgin, World Scientific (1990).

[2] I. Bakas, “The Structure of the W∞ Algebra”, to appear in Comm. Math. Phys.

[3] I. Bakas and E. Kiritsis, “Bosonic Realization of a Universal W-Algebra and Z∞
Parafermions”, to appear in Nucl. Phys. B; “Grassmannian Coset Models and Uni-

tary Representations of W∞”, to appear in Mod. Phys. Lett. A.

[4] A. B. Zamolodchikov, Theor. Math. Phys. 65 (1985) 1205; A. B. Zamolodchikov and

V. A. Fateev, Nucl. Phys. B280 [FS18] (1987) 644; V. A. Fateev and S. L. Lykyanov,

Int. J. Mod. Phys. A3 (1988) 507.

[5] C. Pope, L. Romans and X. Shen, Phys. Lett. B236 (1990) 173; Nucl. Phys. B339

(1990) 191.

[6] D. B. Fairlie and J. Nuyts, “Deformations and Renormalizations of W∞”, Harvard

preprint, HUTMP-90/255 (1990).

[7] I. M. Gelfand and L. A. Dickey, Russ. Math. Surv. 30 (1975) 77; I. M. Gelfand and

I. Dorfman, Funct. Anal. Appl. 15 (1981) 173; L. A. Dickey, Comm. Math. Phys.

87 (1982) 127; Yu. I. Manin, J. Sov. Math. 11 (1979) 1; V. G. Drinfeld and V. V.

Sokolov, J. Sov. Math. 30 (1985) 1975; T. G. Khovanova, Funct. Anal. Appl. 20

(1986) 332; S. L. Lykyanov, Funct. Anal. Appl. 22 (1988) 255.

[8] A. Belavin, in the Proceedings of the Second Yukawa Memorial Symposium “Quan-

tum String Theory”, ed. by N. Kawamoto and T. Kugo, Proceedings in Physics vol.

31, Springer (1989); K. Yamagishi, Phys. Lett. B205 (1988) 466; A. Bilal and J.-

L. Gervais, Phys. Lett. B206 (1988) 412; Nucl. Phys. B314 (1989) 646; ibid. B318

(1989) 579; P. Mathieu, Phys. Lett. B208 (1988) 101; I. Bakas, Phys. Lett. B213

(1988) 313; ibid. B219 (1989) 283; Comm. Math. Phys. 123 (1989) 627; M. Bershad-

sky and H. Ooguri, Comm. Math. Phys. 126 (1989) 49; D. J. Smit, Comm. Math.

Phys. 128 (1990) 1.

[9] A. Bilal, Phys. Lett. B227 (1989) 406.

[10] A. Morozov, “On the Concept of Universal W-Algebra”, ITEP preprint, ITEP/148-

89, (1989).

24



[11] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, Ann. of Phys.

111 (1978) 61; ibid. 111 (1978) 111; W. Averson, Comm. Math. Phys. 89 (1983) 77.

[12] A. B. Zamolodchikov and V. A. Fateev, Sov. Phys. JETP 62 (1985) 215.
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