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1. Introduction

Interest in two dimensional conformaly invariant quantum field theories has been high

in recent years, mainly because of the general interest in string theories. The subject has

important applications in the theory of 2-d critical systems and classical string theory.

A universality class of critical behavior in 2-d is described by a single Conformal Field

Theory, (CFT). The set of all CFT’s is also the set of all classical string ground states.

CFT provided so far the widest set of exactly solvable quantum field theories.

A major problem in the subject is the classification, (and exact solution), of all CFT’s.

That would classify for example all classical ground states of string theory. There exist

partial results like the classification of unitary CFT’s with c < 1. Unfortunately the

problem in its full generality seems very difficult. However there exist subsets of CFT’s

which are wide enough and where there is serious hope that the classification problem

can be solved. The widest and most important such subset is that of Rational CFT’s,

(RCFT). There are various definitions of RCFT. In the language of [1], they are the

theories that give rise to vector bundles on moduli space that have a finite rank. What

the above means is that, for example, the number of holomorphic blocks needed to

construct a correlation function is finite. In [2] it was proven that in a RCFT, c and the

critical dimensions are rational numbers.

Most of the efforts so far in attacking the classification problem have been in using

algebraic tools to study the consistency conditions on the data of RCFT, [3,4,5,6,7].

Notable exceptions are [2,8,9].

In this paper we will take a different approach to the problem by using algebro-analytic

tools. In particular the theory of Fuchsian Differential Equations, (FDE’s), seems to be

very well suited to this kind of problem. It is also true that there exists a solid collection

of mathematical results that makes life easier for a physicist.

The specific problem problem that will be addressed in this paper is the application

of the Fuchsian theory to characters of RCFT’s on the torus. It will also turn out that

one-point functions on the torus as well as four-point functions on the sphere can be

addressed at no extra expense. More general applications of the present framework will

be discussed in a separate publication.

We will give a classification of FDE’s satisfied by characters of RCFT’s and discuss

the constraints on their solutions stemming from the general principles of CFT. A key

point to the classification above is the solution to the Riemann-Hilbert problem. As an

application to the analysis above we will classify all theories with two holomorphic blocks

(characters).∗

∗A preliminary step in this direction was taken in [9].
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The structure of this paper is as follows. In section two we present some pertinent

facts about the modular group, Γ and one of its subgroups, Γ(2). In section three we

discuss the constraints that the characters of RCFT must satisfy. In section four we

give the general form of a FDE satisfied by characters subject to the constraints of

modular covariance and certain other physical requirements. In section five we present

the solution to the Riemann-Hilbert problem which we use to constraint further the

FDE’s to a countable set. In section six we make use of the previous results to give a

complete classification of all RCFT’s with two characters. In section seven we discuss

how the results presented can be also applied with no modifications to the classification

and determination of one-point functions on the torus and four-point functions on the

sphere and with minor modifications to two-point functions on the torus. Section eight

contains our conclusions and some directions for further work. In appendix A we give the

explicit form of the n-th order FDE in the Γ(2) invariant coordinate x and in appendix

B we present formulae for characters of RCFT’s when they reduce to algebraic functions.

2. The Modular Group and Modular Forms

The partition function of a CFT on the torus is naturally a function of the modulus of

the torus, τ . The modulus is a complex number with a non-negative imaginary part. It

determines the conformal class of the torus. The partition function must also be invariant

under the global diffeomorphisms of the torus which form the group, PSL(2, Z) ≡ Γ,

τ → aτ + b

cτ + d
, a, b, c, d ∈ Z, ad− bc = 1 (2.1)

Γ is generated by two elements, S : τ → − 1
τ

and T : τ → τ +1, which satisfy the relations

S2 = (ST )3 = 1. Thus Γ is the free product of Z2 and Z3, the former generated by S,

the latter by ST . The standard fundamental region, H/Γ of the modular group is,

H/Γ = {τ ∈ H : −1

2
≤ Reτ ≤ 1

2
, |τ | ≥ 1} (2.2)

where H is the upper-half plane. It is convenient to compactify H/Γ by adding the

point τ = i∞. This corresponds to a torus pinched along a homology cycle. H/Γ† is a

Riemann surface of genus zero. There are three distinguished points of H/Γ that require

special attention. The point τ = i is a fixed point of Γ of order two. Thus H/Γ has an

orbifold singularity there and if we go around that point once we pick an angle π instead

of 2π. The point τ = ρ = e
2πi
3 is a fixed point of Γ of order three and H/Γ has an

orbifold singularity there of order three. The parabolic point τ = i∞ is an orbifold point

of infinite order. Thus the proper coordinate around that point is q = e2πiτ .

†From now on by H/Γ we mean the compactified one.
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A modular form f of dimension k is a form on H which under the action of the

modular group is covariant,

f(
aτ + b

cτ + d
) = (cτ + d)−kf(τ) , k ∈ Z (2.3)

It is an obvious fact that there exist no modular forms of odd dimension. A simple

form of the Riemann-Roch theorem that gives the number of zeros minus the number of

poles has to be modified due to the presence of the orbifold singularities. Let f(τ) be a

modular form of dimension 2k ∈ 2Z. Let n∞, ni

2
, nρ

3
be the order of zeros at the points

τ = i∞, i, ρ if n∞, ni, nρ are positive, or the number of poles at these points if these

numbers are negative. Let also N0(0) be the number of zeros and N0(∞) the number of

poles anywhere else except the aforementioned points. Then, [10],

N0(0)−N0(∞) =
k

6
− nρ

3
− ni

2
− n∞ (2.4)

The ring of modular functions, (forms of dimension zero) is one dimensional. The gener-

ating element is the famous j-function,

j(q) =
1

1728
[
1

q
+ 744 + 196844q + · · ·] (2.5)

As obvious from (2.5), j(q) has a pole of order one at infinity. It is less obvious that it

has a third order pole at τ = ρ, (nρ = 3 in (2.4)). j(q) − 1 has a single pole at infinity

and a double zero at τ = i. Finally, j′(q) ≡ q ∂
∂q

j(q) has a single pole at infinity, a single

zero at τ = i and a double zero at τ = ρ. These facts will be important in the sequel. A

modular form is called entire if it is holomorphic, (no poles), in H/Γ . Any entire form

can be represented as,

fm,n,l =
j′m

jn(j − 1)l
, m, n, l ∈ Z (2.6)

with 2l ≤ m, 3n ≤ 2m, n + l ≥ m. Its dimension is −2m.

There is a subgroup of Γ that will be important in our discussion. This is the con-

gruence subgroup at level two, Γ(2). An element of Γ(2) is of the form,

A ∈ Γ(2), A = ±
(

1 0

0 1

)
mod(2) (2.7)

Γ(2) has index six in Γ and the coset representatives of Γ/Γ(2) are generated by the

elements, 1,T ,S,TST ,ST ,(ST )2. Thus the fundamental domain, H/Γ(2) is a six fold

covering of H/Γ. Each point in H/Γ has six images in H/Γ(2) except for i∞ ,i,ρ.

H/Γ(2) has also genus zero and is diffeomorphic to the Riemann sphere. It will turn out

that it will be more convenient to work on H/Γ(2) rather than H/Γ in order to resolve

the orbifold singularities. Let’s introduce the Γ(2) invariant coordinate x,‡

x ≡
[
ϑ2(τ)

ϑ3(τ)

]4

= 16q
1
2

∞∏

n=1

[
1 + qn

1 + qn− 1
2

]8

(2.8)

‡The coordinate in H/Γ(2).
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Under (2.8) the points 0,1,∞ in H/Γ(2) are mapped to i∞ in H/Γ, the points -1,2,1
2

in

H/Γ(2) are mapped to i in HΓ and the points e±
iπ
3 in H/Γ(2) are mapped to ρ in HΓ.

The modular group acts on x as follows,

S : τ → − 1
τ

, x → 1− x

T : t → τ + 1 , x → x
x−1

(2.9)

Let’s introduce the following polynomials in x,

Qi(x) ≡ (x + 1)(x− 2)(x− 1

2
) , Qρ(x) ≡ x2 − x + 1 (2.10a)

Qa(x) ≡ (x− a)(x− 1

a
)(x− 1 + a)(x− 1

1− a
)(x +

a

1− a
)(x +

1− a

a
)

≡ x6 − 3x5 + f(a)x4 + [5− 2f(a)]x3 + f(a)x2 − 3x + 1 (2.10b)

f(a) ≡ −a6 − 3a5 + 5a3 − 3a + 1

a2(a− 1)2
, a 6= 0,±1, 2,

1

2
, e±

iπ
3 (2.10c)

They have the property that their roots are permuted under the action of the modular

group, (2.9). We can express j(q) and its derivative in terms of x as follows,

j(q) =
4

27

Q3
ρ(x)

x2(x− 1)2

j(q)− 1 =
4

27

Q2
i (x)

x2(x− 1)2
(2.11)

j′(q) = − 4

27
ϑ4

3(τ)
Qi(x)Q2

ρ(x)

x2(x− 1)2
, q

∂

∂q
x =

x

2
ϑ4

4

In (2.11) one can read immediately the poles and zeros. In fact if a modular form,

f(τ), has a pole (zero) of order n ∈ Z+
0 (Z−

0 ) at a point τ = τ0 then,

f(x) =
g(x)

Qn
a(x)

, a = x(τ0) (2.12)

where g(x) is holomorphic in the neighborhood of x = a.

3. Constraints on the Characters of RCFT

In this section we are going to discuss physical constraints on the characters of RCFT.

By definition the partition function on the torus can be written as,

Z(τ, τ̄) =
N∑

i=0

fi(τ)ḡi(τ̄) (3.1)
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We call characters the holomorphic blocks, fi, ḡi. ¿From now on we will restrict ourselves

in the study of the L-H characters , fi to avoid repetition. The fi furnish a finite

dimensional projective representation of the modular group, Γ,

fi(Aτ) = Mij(A)eiφ(A)fj(τ) , A ∈ Γ (3.2)

where Mij(A) provide an N-dimensional representation of Γ and eiφ(A) is a set of multi-

pliers. They are determined by the multipliers of S and T . Because of S2 = (ST )3 = 1

we obtain e2iφ(S) = e6iφ(T ) = 1 so that the multipliers are sixth-roots of unity. This is

equivalent to the statement that H(Γ, U(1)) = Z6.

The characters, fi, are traces over the states of irreducible representations of the

maximal chiral operator algebra of the theory,

fi(q) = TrRi

[
qL0− c

24

]
≡ q∆i− c

24 f̃i(q) (3.3)

where ∆i is the dimension of the highest weight state of the algebra. f̃i(0) is the multi-

plicity of the highest weight state. f̃i(q) has a Fourier expansion of the form,

f̃i(q) =
∞∑

n=0

anqn (3.4)

Consistency with the interpretation of fi(q) as a trace over orthonormal states in the

Hilbert space of the theory implies that the Fourier coefficients in (3.4) must be integers.

In particular since there exists a single unit operator in the theory we deduce that f̃0(0) =

1. We must impose also that ∆i be non-negative, since it is unphysical to have correlations

growing with distance.§

There is a stronger constraint on the Fourier coefficients. Since conformal invariance

is a symmetry of the theory the states must be arranged in irreducible representations of

the Conformal Group. The partition function must be expressible in the form,

Z =
∑

ij

Nijχ∆i
χ̄∆̄j

(3.5)

where χi are the characters of the Conformal Group and the sum is necessarily infinite

if c ≥ 1. (3.5) imposes extra restrictions on the Fourier coefficients of the characters.

So far we said nothing about the analytic behavior of the characters in H/Γ. We

will now show that the characters in RCFT must be holomorphic in H/Γ with possible

poles only at τ = i∞.¶ In particular they cannot have essential singularities, poles or

§There is no argument to our knowledge to prevent c from being negative, except unitarity but there
are plenty of sensible critical systems which are non-unitary. In a unitary theory the Fourier coefficients
of the characters must be non-negative. However positivity of the coefficients does not necessarily imply
unitarity. An example of this can be found in section 6.

¶I would like to thank J. Cardy for suggesting the essential argument.
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branch cuts inside H/Γ. To prove the previous claim we must study the convergence

properties of f̃i(q) ≡ ∑∞
n=0 anqn. The Verma module associated to the representation Ri

of the chiral algebra of the theory is generated by the action of the lowering operators

of the algebra, U, on the highest weight state. Let the number of local operators that

generate U be N ≥ 0. We will assume that the local operators in U have positive integral

dimensions but we think that the results are almost certainly valid when the integrality

condition is dropped. Let,
∞∏

n=1

(1− qn)−N =
∞∑

n=0

bnq
n (3.6)

Then an ≤ bn, ∀n ∈ Z+
0 . Equality holds when there are no null vectors in the Verma

modules. The asymptotic behaviour of bn for n sufficiently large is,

bn ∼ n−aexp(2π

√
N

6

√
n) , a > 0 (3.7)

Now we can prove the following: Let f(q) =
∑∞

n=0 anq
n with |q| < 1 and an behaves for

large enough n as P (n)n−aexp(b
√

n), a,b being real and P (n) is an arbitrary polynomial

in n. By applying the n-th root convergence test it is obvious that the series converges

absolutely. Since in H/Γ, |q| ≤ exp(−π
√

3) < 1 we can conclude that the characters do

not have a singularity in the interior of H/Γ. Suppose now that a character has a branch

cut somewhere. Then by differentiating enough times we can create a singularity at that

point. But differentiation changes the asymptotic behavior of the Fourier coefficients by

multiplication by a polynomial in n and by the previous argument this does not affect

the convergence properties. Thus branch cuts cannot appear. As we will see in the sequel

the above will prove to be crucially useful for our purposes.

4. Fuchsian Differential Equations on Γ and Γ(2)

It is a well known fact in Mathematics‖ that if (fi) is a set of n linearly independent

meromorphic functions in a connected open subset of C and D is a meromorphic vector

field not identically zero, then there exist unique meromorphic functions, pi, such that

the space of solutions of,

Dnf + p1D
n−1f + p2D

n−2f + · · ·+ pnf = 0 (4.1)

is precisely span(fi).

A more abstract way of putting the above is that for every projectively flat, finite

dimensional vector bundle over an algebraic curve, there is a differential equation the

solutions of which form a basis for meromorphic sections of the bundle in question∗∗

‖See for example [11].
∗∗Some regularity conditions must be assumed.
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In our case there are two convenient choices of coordinates. The first is the coordinate

around a neighborhood of i∞, q. The covariant derivative acting on forms of dimension

2k is Dk ≡ q ∂
∂q
− k

12
E2(q) where E2(q) = −12i

π
∂
∂τ

log η(τ), [12]. Then (4.1) can be written

as,

Dnf +
n∑

i=1

gi(q)D
if = 0 (4.2)

Di is defined to be D2i−2D2i−4 · · ·D0. Since we want the solutions of (4.2) to furnish a

representation of the modular group the coefficient functions gi must be modular forms

of dimension 2i, [9]. For example the explicit form of the order two equation is,
(
q

∂

∂q
− E2(q)

12

)
q

∂

∂q
f + g1(q)q

∂

∂q
f + g2(q)f = 0 (4.3)

where g1(g2) are modular forms of dimension 2(4). The modular forms gi will generically

have poles in H/Γ.

It will be convenient to use also the Γ(2) invariant coordinate x defined in (2.8) in

order to avoid complications with the ramification points of H/Γ. In this case too, it can

be shown that if (fi) generate a finite dimensional representation of the modular group

then they are solutions of a differential equation of the form,

dn

dxn
f +

n∑

i=1

pi(x)
di

dxi
f = 0 (4.4)

The coefficients pi(x) must be rational functions of x. Equation (4.4) must be of the

Fuchsian type, that is all its singularities must be regular. It will turn out that the

representation (4.4) will be more convenient in studying general properties, but in actual

computations (4.2) sometimes has a more practical value.

In order solve the constraints imposed by modular invariance on pi we make a change

of variables in (4.2) to map it to (4.4). For simplicity let’s transform (4.3),

q
∂

∂q
=

1

2
ϑ4

4(τ)x
d

dx

d2

dx2
f +

(
2

3

2x− 1

x(x− 1)
+ q1(x)

)
d

dx
f + q2(x)f = 0 (4.5)

xq1(x) = 2
g1(τ)

ϑ4
4(τ)

, x2q2(x) = 4
g2(τ)

ϑ4
4(τ)

Since g1, g2 are modular forms, their transformation properties under Γ fix the transfor-

mation properties of q1, q2 under (2.9),

q1(
1
x
) = −x2q1(x) q2(

1
x
) = x4q2(x)

q1(1− x) = −q1(x) q2(1− x) = q2(x)
(4.6)

One could understand the transformation laws in (4.6) as follows. The point τ = i∞ is

a singular point of (4.3). This point corresponds to the three singular points, 0,1,∞ of
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(4.5). The exponents at these three singular points must me equal to − c
12

, − c
12

+ 2∆

from the fact that the two solutions are characters. Thus (4.5) must be invariant when

written in local coordinates around each of 0,1,∞. This statement is equivalent to the

statement that the solutions generate a two-dimensional representation of the modular

group. This representation coincides with the monodromy representation of (4.5) around

0,1,∞. The equation (4.5) must be a Fuchsian Differential Equation, (FDE), in order

that the character not to have essential singularities. We remind the reader that for x0 to

be a regular singular point of (4.4), (x−x0)
ipi(x) must be holomorphic in a neighborhood

of x0. For example, p1(x) can have only first order poles and so on.

Consider now one of the coefficients, gk(q) in (4.2). As stated earlier, it is a modular

form of dimension 2k. Then by (2.4) the difference of the number of its zeros minus the

number of its poles is k
6
. As discussed above we also have the constraint that pk(x) ∼

gk(q)
[xϑ4

4(q)]k
must have at most k-th order poles. Since gk is a modular form, if pk(x) has a

pole at x = a then it must have poles of the same order at x = 1− a, 1
a
, 1
1−a

, a
a−1

,a−1
a

and

its transformation properties under Γ imply that,

pk(
1

x
) = (−1)kx2kpk(x) , pk(1− x) = (−1)kpk(x) (4.7)

The constraints above fix the form of pk(x) to be,

pk(x) ∼ [Q2
ρ(x)Qi(x)]k

∏k(N−1)
i=1 Qbi

(x)

[x(x− 1)
∏N

i=1 Qai
(x)]k

(4.8)

where the polynomials Qa(x) have been defined in (2.10). The points ai must be distinct.

It should be also kept in mind that, Qa→i(x) = Q2
i (x), Qa→ρ(x) = Q3

ρ(x).

(4.8) is the most general form pk(x) can have, compatible with the requirements that

(4.4) be a FDE and that its solutions generate an n-dimensional representation of the

modular group. One can also express back in the q-coordinate using,

j(q) ∼ Q3
ρ(x)

x2(x− 1)2
, j(q)− 1 ∼ Q2

i (x)

x2(x− 1)2

j′(q) ∼ ϑ4
3(q)

Qi(x)Q2
ρ(x)

x2(x− 1)2
, j(q)− a ∼ Qb(x)

x2(x− 1)2
, x(q = a) = b (4.9)

gk(q) = [xϑ4
4(q)]

kpk(x)

to obtain the most general allowed form of gk,

gk(q) ∼ (j′(q))k ∏k(N−1)
i=1 [j(q)− bi]∏N

i=1[j(q)− ai]k
, ai distinct (4.10)

The explicit form of the general n-th order equation (4.4) is given in appendix A.

We will now come to an important point, namely the condition of regularity of so-

lutions in H/Γ(2) ' Ĉ. We have proven in section 3 that the characters of RCFT’s
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cannot have poles branch cuts or other singularities in H/Γ(2) − {0, 1,∞}. This will

add a crucial restriction on the FDE. Consider x0 to be a singular point of (4.4) other

than 0,1,∞. The behaviour of a set of solutions, fi(x) around this point is of the form:

fi(x) = QNi
x0

(x)hi(x) with hi(x) holomorphic in the neighborhood of x0.
†† The absence of

a singularity or a branch point there implies that the numbers ni must be non-negative

integers. This puts a restriction on the complex coefficients that pi(x) depend upon.

To this point we did not discuss the possibility that solutions of the FDE contain

logarithms. Such a situation is unacceptable from the point of view of RCFT. Let’s

again focus on a specific singular point x0 of the FDE and let mi be the indices of that

singular point. The solutions will contain logarithmic terms around x0 if two of the

indices differ by an integer‡‡. If at least two of the indices are equal then there is no way

to get rid of the logarithmic terms. When the singular point in question is one of 0,1,∞,

then the indices are nothing else than − c
12

+ 2∆i. The case of having two of them equal

can be excluded by definition since this would imply that the characters should satisfy an

equation of order n-1. But if critical dimensions differ by integers then one should impose

that the solutions be free of logarithms. For the rest of the singular points, as we argued

above, the indices are positive integers. Thus the problem needs to be always confronted

there. In particular it is immediate that the integers should be pairwise distinct. We will

come again to this point in the next section.

5. The Riemann-Hilbert Problem, Apparent Singularities and Isomon-

odromic Deformations

Let Ĉ be the Riemann sphere and S ≡ {x1, x2, · · · , xm} be a collection of mutually

distinct points. Ĉ − S is the m-punctured sphere with punctures in S. Let π1(Ĉ − S)

be the fundamental group of Ĉ -S. π1(Ĉ−S) is a free group generated by m-1 elements,

which we can take to be the loops around x1, x2, · · · , xm−1.

The Riemann-Hilbert Problem: Let ρ : π1(Ĉ) → GL(n,C) be a homeomorphism.

Find an n-th order FDE having ρ as its monodromy representation, (we assume that ρ

is irreducible over Cn).

To motivate the solution to the previous problem, let’s do some counting. Assume

without loss of generality that xm = ∞. An n-th order FDE with singularities on S has

the following form,

f (n) +
Pm−2(x)

g(x)
f (n−1) +

P2(m−2)(x)

g(x)2
f (n−2) + · · ·+ Pn(m−2)(x)

g(x)n
f = 0 (5.1)

††The numbers Ni are known as the indices of the FDE at x0.
‡‡See any standard textbook on linear differential equations.
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where,

g(x) =
m−1∏

i=1

(x− xi) (5.2)

and Pi(x) are polynomials of degree i. A simple counting of the coefficients in (5.1)

shows that there are N1 = n + n(n+1)(m−2)
2

free (complex) parameters. Since ρ : π1(Ĉ) →
GL(n,C), ρ depends on N2 = n2(m−1)− (n2−1) parameters. It should be remembered

that the image of ρ in GL(n,C) matters up to conjugacy. The difference is N2 − N1 =
(n−1)(n(m−2)−2)

2
. We see that generically N2 − N1 > 0 so that if one expects to have a

solution to the Riemann-Hilbert (R-H) problem, more parameters must be introduced in

(5.1) somehow. This is in fact the role of apparent singularities.

An apparent singularity is defined to be a singularity of (5.1) around which the (local)

monodromy is trivial. It is obvious that the following four statements are equivalent.

(1). The point x0 is an apparent singularity of (5.1).

(2). The point x0 is a singularity of (5.1) and there exist n linearly independent

holomorphic solutions in a neighborhood of x0.

(3). The point x0 is a non-logarithmic singularity of (5.1) with positive integral

indices.

(4). There exist n linearly independent solutions around x0 whose Wronskian vanishes

at x0.

Let’s see why the presence of apparent singularities increases the number of free

parameters in (5.1). Suppose that (5.1) has an extra apparent singularity at x = ζ.

Then the number of free parameters, N1, increases by n(n+1)
2

. But the requirement that

x = ζ be an apparent singularity imposes n(n+1)
2

conditions on the coefficients of (5.1),

n of them come from the condition that the n indices around x = ζ be positive integers

and n(n−1)
2

from imposing that the n solutions around x = ζ be free from logarithms∗.

Thus we gained nothing so far. But on the other hand we can vary the position of the

apparent singularity around and this gives us an extra free parameter. Consequently

each apparent singularity of (5.1) increases N1 by one. Whether ζ moves or not, it does

not change N2 since by construction the local monodromy around ζ is trivial. After this

motivation we can state the main theorem, [13].

Theorem: Let Ĉ and S be as above and ρ : π1(Ĉ−S) → GL(n,C) a homeomorphism.

Assume that ρ is irreducible and assume further that there exists an index i such that the

monodromy matrix around xi ∈ S has at least one Jordan block of size one. Then there

exists a FDE on Ĉ with regular singularities on S ∪S ′ whose monodromy representation

is ρ where S ′ consists of at most N2 −N1 apparent singularities.

We recognize now, coming back to the discussion of the previous section, that the

∗See any standard textbook on linear differential equations.
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number of apparent singularities of (4.4) is limited by the previous theorem. First as

it was already mentioned, ρ : π1(Ĉ − {0, 1,∞}) → GL(n,C) is a representation of the

modular group, Γ. All other singularities of (4.4) are apparent singularities and their

number must be at most 1
2
(n − 1)(n − 2). For n = 2 there can’t be any apparent

singularities. For n = 3 there can be at most one apparent singularity. But from the

modular invariance of the coefficient functions we know that singularities come in groups

of two (τ = e
2πi
3 ), three (τ = i) or six (any other τ). Thus for n = 3 there can’t be any

apparent singularities. For n = 4 we can have at most three of them so that they can

be only at the ramification points, and so on. If one insists on unitarity then apparent

singularities of the FDE, (zeros of the characters) at τ being on the imaginary axis should

be avoided †

Once the answer to the R-H problem is settled, the question of isomonodromic de-

formations becomes an issue. The problem is: given two FDE’s, when they generate the

same monodromy representation. The answer to this question is known in the case where

there are continuous families of isomonodromic deformations, [14]. The solution is given

implicitly as a Hamiltonian system involving non-linear partial differential equations.

Fortunately in our case this is not an issue since the only parameters that one can vary

are the positions of the true singularities, but these are fixed in our case at x = 0, 1,∞.

The only procedure, in our case, that does not change the monodromy representation

is multiplying each character independently by a modular invariant function which is

rational in x. Such functions are rational functions of Qα(x)
[x(x−1)]2

, (which is nothing else

than j(q)+ constant). One should be careful not to introduce singularities that way. In

RCFT we are interested in projective representations of the modular group. We have

already pointed out that the multiplier system for Γ is a subgroup of Z6. This is generated

when we allow multiplication with products of powers of Qρ(x)

[x(x−1)]
2
3
, Qi(x)

x(x−1)
, [8]. In the q-

coordinate it is equivalent to multiplying the characters by j(q)
N
3 [j(q)− 1]

M
2 , with M,N

integers.

The above concludes our general analysis and we are ready to attack a concrete

problem. In the next section we are going to classify all RCFT’s with two characters.

5. Classification of RCFT’s with two Characters

In the previous section we showed that for n=2 there can be no apparent singularities.

†If Reτ = 0 then qn is strictly positive ∀n ∈ Z+
0 . thus in order that fi(q) have a zero on the imaginary

axis it is necessary that some of its Fourier coefficients to be negative. This is in contradiction with
unitarity.
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Thus the FDE appropriate to this case is,‡

f ′′ +
2

3

2x− 1

x(x− 1)
f ′ − µ

x2 − x + 1

x2(x− 1)2
f = 0 (6.1)

which can be transformed to the standard Hypergeometric Equation, (HE). Set f(x) =

[x(x− 1)]ng(x) with n satisfying n2 − n
3
− µ = 0. Then (6.1) transforms into,

x(1− x)g′′ + (
2

3
+ 2n)(1− 2x)g′ − n(3n + 1)g = 0 (6.2)

which is the standard HE with a = 3n, b = n + 1
3
, c = 2n + 2

3
. The two independent

solutions of (6.1) are,

f0(x) = 2−4n[x(1− x)]nF (3n, n + 1
3
, 2n + 2

3
, x)

f1(x) = 24n− 4
3 x−n+ 1

3 (1− x)nF (−n + 2
3
, n + 1

3
,−2n + 4

3
, x)

(6.3)

where we (arbitrarily) normalized both solutions so that fi(q) = qa[1 + O(q)]. Recalling

the definition of x in terms of q, (2.8), we can identify n = − c
12

and ∆ = c+2
12

.

A major constraint turns out to be the integrality condition on the Fourier coefficients

of f0(q). In [9] it was shown that integrality at the first level selects a finite number of

values for c.§ In table 1 we present the values of c for which the Fourier coefficients of

the identity character are integers. In order to choose the identity character unambigu-

ously one has to restrict to ∆ > 0. A priori we cannot say anything about the Fourier

coefficients of the non-trivial character f1(q) since we do not know the multiplicity of its

ground state, although in the sequel we will provide with a procedure that determines it.

There are a few comments in order concerning the contents of the table. The first ten

models have positive integral coefficients in f0. Of course this by itself does not guarantee

unitarity since the model with c = 2
5

is known not to be unitary. The other nine models

are unitary since they can be identified with known models, [9]. The models with c =

12, 13, 14, 16,18, 19, 62
5
,74

5
, 86

5
,98

5
, 194

5
have all coefficients being negative integers. It is thus

impossible to construct a character with positive integral coefficients by multiplication

by a Qa(x) polynomial. The rest of the models have their coefficients positive integral

except the first and in some the second. In this case it is easy to arrange that by

multiplication with QN
a (x) they become positive integers. Thus the complete list of

models, (unitary or not), having two characters have as central charges the ones depicted

in table 1 modulo(8,12,24).¶

We now come to the important issue of determining the dimensionality of the ground

state of the non-trivial representation, that is the normalization of f1(q). It turns out

‡See also [9] were (6.1) was also discussed.
§The authors of reference [9] considered only the solutions that give positive Fourier coefficients.
¶In fact the theories with c = 38

5 , 985 do not correspond to RCFT’s since they fail to satisfy the Verlinde
algebra, (the dimensionalities of bundles on the 3-punctured sphere fail to be non-negative integers, [9]).
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that by studying the modular transformation matrix, Sij, we can fix this normalization

unambiguously. Let’s recall the transformation formula for the hypergeometric functions,

F (a, b, c, 1− x) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
F (a, b, a + b + 1− c, x)+ (6.4)

+
Γ(c)Γ(a + b− c)

Γ(a)Γ(b)
xc−a−bF (c− a, c− b, c + 1− a− b, x)

¿From (6.3) and (6.4) we can find the expression for the modular transformation matrix

Sij defined by :τ → − 1
τ
, fi → Sijfj,

S11 = −S22 =
Γ(4−c

6
)Γ( c+2

6
)

Γ( c+8
12

)Γ(4−c
12

)
(6.5a)

S12 = 2
2c+4

3
Γ(4−c

6
)Γ(− c+2

6
)

Γ(− c
4
)Γ(4−c

12
)

(6.5b)

S21 = 2−
2c+4

3
Γ( c+8

6
)Γ( c+2

6
)

Γ( c+2
12

)Γ( c+4
4

)
(6.5c)

There are two facts apparent in (6.5),

det(S) = −1 , T r(S) = 0 (6.6)

Let the partition function be,

Z = fiMij f̄j (6.7)

Since none of the theories in table 1 has ∆=integer, invariance under T implies M12 =

M21 = 0. The identity character, f0(q) is normalized such that, f0(q) = q−
c
24 [1 + O(q)].

Consequently, M11 = 1. Since f1(q) is also normalized as f1(q) = q−
c
24

+∆[1 + O(q)] then

M22 = rN2 with N a positive integer being the dimensionality of the ground state of

the non-trivial representation. Invariance under S implies that rN2 = S12

S21
where r is the

number of times the non-trivial character appears. ¿From this and (6.5) we obtain,

rN2 = −Γ(− c+2
12

)Γ(− c+2
6

)Γ(− c+2
4

)Γ( c+2
2

)

Γ( c+2
12

)Γ( c+2
6

)Γ( c+2
4

)Γ(− c+2
2

)
(6.8)

Direct evaluation of (6.8) gives the dimensionality of the ground state of the non-

trivial representation tabulated in table 1 and thus provides the correct normalization

for f1. For the known cases this agrees with the standard answer.‖ In all cases the

characters reduce to algebraic functions of x since they are invariant under some Γ(N).

We present such expressions in Appendix B.

To conclude this section, we gave a complete classification of the RCFT’s with two

characters and gave the explicit expressions for their characters. It is interesting to

analyze theories with more than two characters.

‖In the cases c = 8, 12, 20, N0 = 0. This means that these theories contain a single character, namely
f0. This is well known to be true in the E8 case.
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7. FDE’s for other Correlation Functions

The four-point functions on the sphere have singularities only at x = 0, 1,∞, where x

is the standard anharmonic ratio of the positions of the four operators∗∗ In this case our

analysis carries out unchanged. The monodromy group is generated by the same trans-

formations as in (2.9). On here does not have the restriction of integrality of coefficients

but there are some other restrictions on the coefficients, [15].

The previous analysis carries out unchanged also to one-point functions on the torus.

Due to translation invariance on the torus one-point functions are independent of the

position of the operator and depend only on τ . They transform also as forms of dimension

∆, where ∆ is the dimension of the operator in question. Let fi(τ) be such a collection

of one-point functions. Then if we define gi(τ) ≡ fi(τ)
η2∆(τ)

, where η(τ) is the Dedekind

η-function, then the gi generate a representation of Γ,

gi(Aτ) = Aijgj(τ) , A ∈ Γ (7.1)

where Aij is a τ -independed matrix. Thus one can write FDE’s for the gi which are the

same as the ones for the characters.

The most interesting case is that of the two-point functions on the torus. This case

was also discussed in [9]. The torus can be mapped onto the four-punctured sphere

by the Weierstrass function, ℘(z). Thus, if we introduce the coordinate ξ = ℘(z) then

the 2-point functions must satisfy a standard FDE on the sphere with singular points at

ξ = 0, 1,∞, x where x is the same as in (2.8). Since now we have a variable singular point

the FDE’s for the two-point functions have more diversity than those for the characters.

The two-point functions on the torus are a vital ingredient in CFT since they contain

all the information that is required to specify the CFT, (at least in the rational case, see

[4]).

We are going to present a general analysis of FDE’s for the two-point functions in a

separate publication.

8. Conclusions and Prospects

In this paper we studied an analytic aspect of RCFT’s. We used the fact that the

characters on the torus have to satisfy a FDE to provide a classification of such equations.

We discussed the restrictions, coming from physical arguments, that their solutions must

satisfy.

∗∗Differential equations for the four-point functions have been recently discussed in [15].
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For the special case of theories with two characters we gave a complete classification

and explicit expressions for the characters. We briefly discussed also other applications

of the FDE method and the similarities to the case at hand.

It seems imperative to extend this analysis to 2-point functions on the torus, due

to their importance, since they are encompassing all data needed to define a RCFT

unambiguously. It also seems likely that the specification of a complete consisted set of

data à la Moore-Seiberg, uniquely determines the Linear Differential Equations satisfied

by the correlation functions and thus provides a more or less complete solution of the

theory. Such questions need to be addressed.

Note Added, I

It seems that characters of WZW-models have no zeros in the fundamental re-

gion. This is true for SU(2), SU(3) and the minimal models with c < 1. It

is probably true for any WZW-model. In this case one can then show that the

characters of any G/H model have no zeros in the fundamental region. Thus

this will be a test of a RCFT being a G/H model or not in the sense that if

the characters have zeros in moduli space then the theory is not a G/H model.

Note Added, II

After the completion of this work we received the last of references [9] where, among

other things, the authors classified all RCFT’s with three characters and no zeros in

moduli space. In view of our results this classification is complete.
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Appendix A

In this appendix we are going to derive the form of the most general n-th order

equation in x satisfied by a collection of n characters. Let ∇k be the covariant derivative

on forms of dimension k, [12]. Its form is,

∇k =
∂

∂τ
− iπk

6
E2(τ) =

∂

∂τ
− 2k

∂

∂τ
log η(τ) (A.1)

Then the n-th order equation can be written as,

∂n +
n∑

k=1

gk(τ)∂n−kf = 0 (A.2)

where,

∂k ≡ ∇2(k−1)∇2(k−2) · · ·∇2∇0 (A.3)

and gk(τ) are modular forms of dimension 2k.

Let’s introduce x =
[

ϑ2(τ)
ϑ3(τ)

]4
and define,

Dk ≡ x
∂

∂x
+ k

x + 1

3(x− 1)
(A.4)

Then,

∂k =
[
iπϑ4

4(τ)
]k

k∑

i=0

Ak
i (x)

(
x

∂

∂x

)i

(A.5)

The coefficient functions AN
k (x) satisfy the recursion formula,

AN
k (x) = AN−1

k−1 (x) + DN−1A
N−1
k (x) (A.6)

¿From (A.6) and the condition AN
0 = 0 we can evaluate them to obtain,

AN
k (x) =

N−1∑

i1>i2>···>iN−k=1

Di1Di2 · · ·DiN−k
1 (A.7)

where the order of the factors in the product is from left to right and all the products of

the differential operators act on the constant function 1.

Finally the functions pk(x) = gk(τ)[ϑ4(τ)]−k are Γ(2) invariant and thus rational

functions of x. For example the third order equation is,

f ′′′ +

[
4x− 2

x(x− 1)
+ p1(x)

]
f ′′ +

[
20x2 − 20x + 2

9x2(x− 1)2
+

2

3

2x− 1

x(x− 1)
p1(x) + p2(x)

]
f ′+

+p3(x)f = 0 (A.8)

where the functions pk(x) must transform as indicated in (4.7).
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Appendix B

In this appendix we present formulae for the characters for some of the theories in

Table 1 in the case that they reduce to algebraic functions of x. In order to obtain them

we had to use some duplication formulae for the hypergeometric functions, [16]. We

define:

x± = −(
√

x±√x− 1)2 (B.1)

Then,

c = 1 : f0(x) = 2−
2
3 [x(1− x)]−

1
12 [

√
1 +

√
x +

√
1−√x] (B.2a)

f1(x) = 2−
2
3 [x(1− x)]−

1
12 [

√√
x− 1 +

√
x−

√√
x− 1−√x] (B.2b)

c = 4 : f0(x) = 2
4
3 [x(1− x)]−

1
3 (B.3a)

F1(x) = 2
1
3 [x(1− x)]−

1
3 x (B.3b)

c = 7 : f0(x) = 2−
5
3 [x(1− x)]−

7
12 [x

− 7
4

+ (1 + 7x2
+) + (+ → −)] (B.4a)

c = 8 : f0(x) = 2
8
3 [x(1− x)]−

2
3 Qρ(x) (B.5)

c = 12 : f0(x) = 24[x(1− x)]−1Qi(x) (B.6)

c = 13 : f0(x) = −2−
8
3 [x(1− x)]−

13
12 [x

− 13
4

+ (1− 26x2
+ − 39x4

+) + (+ → −)] (B.7)

c = 16 : f0(x) = 2
16
3 [x(1− x)]−

4
3 (1− 2x) (B.8a)

f1(x) = 2
16
3 [x(1− x)]−

4
3 x3(1− x

2
) (B.8b)

c = 19 : f0(x) = 2−
11
3 [x(1−x)]−19/12[x

− 19
4

+ (1−19x2
+−285x4

+−209x6
+)+(+ → −)] (B.9)

c = 20 : f0(x) = 2
20
3 [x(1− x)]−

5
3 Qi(x)Qρ(x) (B.10)

c = 25 : f0(x) = 2−
11
3 [x(1− x)]−

25
12 [x

− 25
12

+ (1− 20x2
+ + 630x4

+ + 2380x6
++

+1105x8
+) + (+ → −)] (B.11)
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c = 28 : f0(x) = 2
28
3 [x(1− x)]−

7
3 (1− 7x

2
+

7x2

2
) (B.12a)

f1(x) = 7 · 2 22
3 [x(1− x)]−

7
3 x5(1− x +

2x2

7
) (B.12b)

c = 40 : f0(x) = 2
40
3 [x(1− x)]−

10
3 (1− 2x)(1− 3x + 3x2) (B.13a)

f1(x) = 3 · 2 40
3 [x(1− x)]−

10
3 x7(1− 2x +

10x2

7
− 5x3

14
) (B.13b)

For c=8,12,20 there is only one character, namely f0(x). For the other cases where

f1(x) is omitted, it can be calculated from the transformation property under τ → − 1
τ
,

see (6.6).
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Table Caption

In table 1, c is the central charge, ∆ and N0 are the dimension and multiplicity of the

ground state of the non-trivial representation, and N1 and N2 are the number of (1,0)

and (2,0) operators in the identity module. Finally µ is the value of the coefficient in

(6.1).
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