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1 Introduction

Affine Lie algebra, or current algebra on S1, was discovered independently in mathematics

[1] and physics [2]. The first representations [2] were obtained with world-sheet fermions

[2, 3] in the construction of current-algebraic spin and internal symmetry on the string

[2]. Examples of affine-Sugawara constructions [2, 4] and coset constructions [2, 4] were

also given in the first string era, as well as the vertex operator construction of fermions

and SU(n)1 from compactified spatial dimensions [5, 6]. The generalization of these

constructions [7, 8, 9] and their application to the heterotic string [10] mark the beginning

of the present era. See [11, 12, 13, 14] for further historical remarks on affine-Virasoro

constructions.

The general Virasoro construction on the currents Ja of affine g [15, 16, 17]

T (L) = Lab ∗
∗JaJb

∗
∗ (1.1)

systematizes the direct approach used by Bardakci and Halpern [2, 4] to obtain the

original affine-Sugawara and coset constructions∗. The Virasoro master equation [15, 16,

17] for the inverse inertia tensor Lab = Lba contains the affine-Sugawara nests † and many

new conformal constructions g# on the currents of affine g.

In particular, broad classes of exact solutions with unitary irrational central charge

[19] have recently been obtained on affine compact g. The growing list presently includes

the unitary irrational constructions [19, 21, 22, 23, 24]

((simply-laced gx)
q)#

M

SU(3)#
BASIC =





SU(3)#
M

SU(3)#
D(1), SU(3)#

D(2), SU(3)#
D(3)

SU(3)#
A(1), SU(3)#

A(2)

(1.2)

SO(n)#
diag =





SO(2n)#[d, 4]

SO(5)#[d, 2]; SO(2n + 1)#[d, 6]1, n ≥ 3

SO(5)#[d, 6]1; SO(2n + 1)#[d, 6]2, n ≥ 3

SO(5)#[d, 6]2

which are obtained for variable level in the BASIC ⊃ Dynkin ⊃ Maximal sequence of

subansätze, and in SO(n)diag, the diagonal ansatz on SO(n). The value

c
(
(SU(3)5)

#
D(1)

)
= 2

(
1− 1√

61

)
' 1.7439 (1.3)

∗Related ideas are discussed in [18].
†The affine-Sugawara nests [19] include the affine-Sugawara constructions [2, 4, 8], the coset construc-

tions [2, 4, 9] and the nested coset constructions [20].
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is the lowest unitary irrational central charge yet observed [23]. A number of unitary

quadratic conformal deformations with rational central charge have also been observed,

including deformations on variable level [19],

Cartan g#, (SU(2)x × SU(2)x)
#, x 6= 4 (1.4)

and the sporadic deformations [17, 24]

SU(2)#
4 , SO(2n + 1)#

2 [d, 6], n ≥ 2 (1.5)

at levels four and two, respectively. The quadratic conformal deformations may be phys-

ically equivalent to known linear deformations [19, 25].

A very large number [19]

N(g) = 2n(g), n(g) = dim g(dim g − 1)/2 (1.6)

of solutions is expected generically on arbitrary level of any g, e.g. N(g) ∼ 1
4

billion on

SU(3), so the exact constructions in (1.2) and (1.4,5) are only the first glimpse into a

generically-irrational affine-Virasoro universe of immense new structure.

Recently, a high-level or semiclassical expansion of the master equation [23] has been

developed, which is capable in principle of seeing all high-k smooth unitary constructions

on any simple g. In an application to the ansatz SO(n)diag, the expansion shows an

isomorphism between this subset of affine-Virasoro constructions and the set of graphs of

order n [24]: We mention in particular the self-K-conjugate constructions, which are the

self-complementary graphs of graph-theory [26]. These constructions occur on SO(4n)

and SO(4n+1) with irrational conformal weights and half-Sugawara central charge, and

are expected to occur on any simple g with dim g =even. Conversely, the isomorphism

provides a group-theoretic and conformal-field theoretic organization of graph theory,

which may be interesting in mathematics.

In other directions, the master equation has been identified as an Einstein system

on the group manifold [16], and a world-sheet action [27] has been obtained for the

generic high-level smooth affine-Virasoro construction. Moreover, classical construction

of primary fields [27] has been studied in the generic theory, and investigation of the

superconformal subset of affine-Virasoro constructions has been initiated [28].

In this paper we obtain an action A(L) for the Virasoro master equation, and the

action is a C-function [29] on affine-Virasoro space. The solutions of the master equation,

that is, the conformal field theories, are fixed points of an associated flow which satisfies

a C-theorem [29]. As an example, we solve the high-level flow in SO(n)diag, which is a

flow on the space of graphs of order n. The associated Morse polynomials are known

generating functions in graph theory.
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The general flow also implies a method for prediction of sporadic conformal defor-

mations, which are apparently associated with collisions of level-families of conformal

constructions at sporadic levels: In a simple application of the method to SO(4)diag, we

predict the deformations

SO(4)#
4 with c = 2

SO(4)#
2 with c = 1, SO(4)/SO(4)#

2 with c = 2. (1.7)

The prediction and discovery of another deformation, SU(3)#
3 with c = 2, will be reported

elsewhere [30].

2 The Virasoro Master Equation

The general Virasoro construction begins with the currents Ja of affine g [1, 2],

[J (m)
a , J

(n)
b ] = ifab

cJ (m+n)
c + mGabδm+n,0 , m, n ∈ Z (2.1)

where fab
c and Gab are respectively the structure constants and general Killing metric

of g. The current algebra (2.1) is completely general since g is not necessarily compact

or semi-simple. In particular, to obtain level xI = 2kI/ψ
2
I of gI in g = ⊕IgI with dual

Coxeter number h̃I = QI/ψ
2
I , take

Gab = ⊕IkIη
I
ab , fac

dfbd
c = −⊕I QIη

I
ab (2.2)

where ηI
ab and ψI are respectively the Killing metric and highest root of gI . The class of

operators quadratic in the currents,

T (L) ≡ Lab ∗
∗JaJb

∗
∗ ≡

∑

m∈Z

L(m)z−m−2 (2.3)

is defined with symmetric normal ordering, Tab ≡ ∗
∗JaJb

∗
∗ = Tba [15]. The set of coef-

ficients Lab = Lba is called the inverse inertia tensor, in analogy with the spinning top,

and the set of all coefficients {Lab} is affine-Virasoro space‡. The requirement that T (L)

is a Virasoro operator

[L(m), L(n)] = (m− n)L(m+n) +
c

12
m(m2 − 1)δm+n,0 (2.4)

restricts the values of Lab to the solutions Lab
∗ of the Virasoro master equation.

The master equation and central charge may be written as [15, 17]

βab(L∗) = 0 , c(L∗) = 2Lab
∗ Pab,cdL

cd
∗ = 2GabL

ab
∗ (2.5)

‡In a slight abuse of previous terminology, affine-Virasoro space is used here to denote the set of all
inverse inertia tensors {Lab} in the quadratic form Lab ∗

∗JaJb
∗
∗, whether the operator is Virasoro or not.
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where, following Ref.[15], we have defined the quantities§

βab(L) ≡ 1

2
LcdLefRcd,ef

ab − Lab

= −Lab + 2LacGcdL
db − LcdLeffce

afdf
b − Lcdfce

ffdf
(aLb)e

(2.6a)

Pab,cd ≡ 〈0|T (2)
ab T

(−2)
cd |0〉 = Ga(cGd)b − 1

2
fa(c

efd)b
fGef . (2.6b)

For affine compact g, the matrix Pab,cd is non-negative when each level xI of gI is some

positive integer, and Pab,cd is also invertible¶ when each integer xI > 1. The explicit form

of the tensor Rcd,ef
ab = Ref,cd

ab is given in [15], and some of its properties are collected

in Appendix A. In particular, the two forms of the central charge in (2.5) are related by

the master equation βab(L∗) = 0 and the first identity in eq.(A.20). In what follows, we

refer to the quantity βab(L) in (2.6a) as the β-function.

The master equation has been identified in [16] as an Einstein-like system on the

group manifold: The central charge of the general construction is c = dim g− 4R, where

R is the Einstein curvature scalar.

We remark on some general properties of the master equation which will be useful in

the analysis below.

1. The affine-Sugawara construction [2, 4, 8] Lg is

Lab
g = ⊕I

ηab
I

2kI + QI

, cg =
∑

I

xIdimgI

xI + h̃I

(2.7)

for arbitrary level of any g, and similarly for Lh when h ⊂ g.

2. K-conjugation covariance [2, 4, 9, 15]. When L∗ is a solution of the master equation

on g, then so is the K-conjugate partner L̃∗ of L∗

L̃ab
∗ = Lab

g − Lab
∗ , , c(L̃∗) = cg − c(L∗) (2.8)

while the corresponding stress tensors T (L∗) and T (L̃∗) form a commuting pair of Vira-

soro operators. Repeated embedding by K-conjugation generates the coset constructions

[2, 4, 9], the nested coset constructions or affine-Sugawara nests [20, 19] and the affine-

Virasoro nests [19].

3. Unitarity [9, 19]. Unitary constructions on positive integer level of affine compact

g are recognized when Lab
∗ =real in any Cartesian basis, and corresponding forms in other

bases, since (J (n)
a )† = J (−n)

a implies (L(n))† = L(−n). Unitarity guarantees that c(L∗) ≥ 0,

§Our notation is A(aBb) ≡ AaBb + AbBa and A[aBb] ≡ AaBb −AbBa.
¶At level two of the vacuum module of affine compact g, the null states at integer x > 1 are constructed

by application of non-positively moded currents on the states E
(0)
α |0〉, where α is a simple root of g [31];

these states are not in our list T
(−2)
ab |0〉 = 1

2J
(−1)
(a J

(−1)
b) |0〉, and the argument is easily extended to

semi-simple g.
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and K-conjugate partners of unitary constructions are also unitary with c(L̃∗) ≥ 0. The

double inequality

0 ≤ c(L∗) ≤ cg (2.9)

follows for all unitary Virasoro constructions on affine compact g. Correspondingly, all

unitary high-level central charges on simple compact g are integer valued from 0 to

dim g [21, 23]. It is also known [9] that all unitary Virasoro constructions satisfying

0 ≤ c(L∗) < 1 can be realized as coset constructions g/h. It follows that all unitary

affine-Virasoro constructions satisfying cg − 1 < c(L∗) ≤ cg are realizable as the K-

conjugate partners h ⊂ g of the coset constructions between 0 and 1. Moreover, all

unitary solutions with high-level central charge 0,1,dim g − 1 and dim g are known for

simple compact g [23].

4. Automorphisms [21, 23, 24]. The inverse inertia tensor transforms under the inner

and outer automorphisms of g as

(L′)ab = Lcd(ω−1)c
a
(ω−1)d

b
, ω ∈ Aut(g). (2.10)

It follows from the definition of the β-function in (2.6a) that

βab(L′) = βcd(L)(ω−1)c
a
(ω−1)d

b
, (2.11)

so (L′∗)
ab is an automorphically equivalent solution of the master equation when Lab

∗ is a

solution.

5. Self K-conjugate constructions [24]. A large number of self K-conjugate construc-

tions

L̃ab
∗ = Lcd

∗ (ω−1)c
a
(ω−1)d

b
, for some ω ∈ Aut(g) (2.12)

has been observed on SO(4n) and SO(4n+1), which correspond to the self-complementary

graphs of graph theory. These constructions exhibit irrational conformal weights and half-

Sugawara central charge c(L∗) = cg/2, and are expected to occur on any simple group

with dim g =even.

3 The C-Function and a C-Theorem

As seen in eqs. (2.5-6), the basic tensors of the master equation and central charge are

Rab,cd
ef = Rcd,ab

ef and Pab,cd = Pcd,ab, and it is clear from its definition that Pab,cd is a

natural metric‖ on affine-Virasoro space {Lab}. In fact, as noted in Appendix A, the R

tensor with all indices covariant

Rab,cd,ef ≡ Rab,cd
ghPgh,ef (3.1)

‖Reparametrization covariant structures on affine-Virasoro space are discussed in Appendix B.
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is a completely symmetric tensor. On the basis of this observation, we construct the

following Lagrangian for the master equation

A(L) ≡ 6LabLcdPab,cd − 2LabLcdLefRab,cd,ef

= 2LabPab,cd(L
cd − 2βcd(L)).

(3.2)

It is easily checked that

βab(L) = − 1

12
P ab,cd ∂A(L)

∂Lcd
(3.3)

where

P ab,efPef,cd =
1

2
δa
(cδ

b
d) ≡ δab

cd ,
∂Lab

∂Lcd
= δab

cd (3.4)

so the master equation βab(L∗) = 0 is the equation of motion of A(L) when the metric

Pab,cd is invertible.

The Lagrangian A(L) is in fact a C-function [29] on affine-Virasoro space, since

A(L∗) = c(L∗) (3.5)

follows from the master equation, the definition (3.2) and the forms of the central charge

in (2.5).

The symmetries of the C-function include the automorphisms of g

A(L′) = A(L) , L′ = ωLω−1 , ω ∈ Aut(g) (3.6)

and accidental symmetries which correspond to sporadic conformal deformations [17, 24],

as we will remark below. The operation of K-conjugation is defined for any point L in

affine-Virasoro space as L̃ ≡ Lg − L where Lg is the affine-Sugawara construction on g.

The corresponding transformation of the action and its derivatives

A(L̃) = cg − A(L) (3.7a)

∂A(L̃)

∂L̃ab
=

∂A(L)

∂Lab
⇒ βab(L̃) = βab(L) (3.7b)

∂2A(L̃)

∂L̃ab∂L̃cd
= − ∂2A(L)

∂Lab∂Lcd
(3.7c)

are easily verified with the second identity in (A.20). Eqs. (3.7) show that K-conjugation

is not a symmetry of the C-function but it is a covariance of the equations of motion,

βab(L∗) = 0, as expected. Such “quasi-symmetries” of the action are familiar in physics,

leading e.g. to WZW level quantization.

We remark for use below that the Laplacian of the C-function has the simple form

∆A(L) ≡ P ab,cd ∂2A(L)

∂Lab∂Lcd
= −12

∂βab(L)

∂Lab
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= 12(dim g + 1)(
1

2
dim g − Lg

abL
ab) (3.8)

where

Lg
ab = 2Gab − fac

dfbd
c (3.9)

is the inverse of the affine-Sugawara construction. The even simpler result

∆A(L∗) = −12
dim g(dim g + 1)

cg

[
c(L∗)− cg

2

]
(3.10)

is obtained with eq. (2.5) at any fixed point L∗ on simple g.

It is natural to define an associated flow on affine-Virasoro space

L̇ab ≡ dLab

dt
= βab(L) = − 1

12
P ab,cd ∂A(L)

∂Lcd
(3.11)

although the physical interpretation of the time variable t, and in particular the connec-

tion to exact renormalization group equations, has not yet been understood. It is clear

that all the solutions of the master equation are fixed points of the flow

L̇ab|L=L∗ = 0 , βab(L∗) = 0 (3.12)

and moreover that the flow automatically satisfies the identity

Ȧ(L) = − 1

12

∂A

∂Lab
P ab,cd ∂A

∂Lcd
= −12βab(L)Pab,cdβ

cd(L). (3.13)

The C-theorem

Ȧ(L) ≤ 0 (3.14)

follows for the flow on positive integer levels of affine compact g, since Pab,cd is a non-

negative matrix in this case.

4 The Flow Near a Fixed Point

In order to study the flow (3.11) on affine-Virasoro space, it is convenient to define its

stability matrix S

Sab
cd(L) ≡ 1

12
P ab,ef ∂2A(L)

∂Lef∂Lcd
= −∂βab(L)

∂Lcd

= δab
cd − LefRef,cd

ab

(4.1)

which controls the flow near a fixed point L = L∗ + δL according to

d

dt
δLab = −Sab

cd(L∗)δLcd (4.2)
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when δL is small. To organize the problem, we introduce the left and right eigenvectors

of the stability matrix

ψi
ab(L)Sab

cd(L) = si(L)ψi
cd(L) , Sab

cd(L)χcd
i (L) = si(L)χab

i (L) (4.3)

where i = 1, 2, · · · , dimg(dimg + 1)/2. It is easy to see from the definition (4.3) that we

may require

ψi
ab = Pab,cdχ

cd
i (4.4)

among the left and right eigenvectors. Choosing orthogonality in degenerate subspaces,

we also obtain the statements of orthonormality and completeness,

ψi
abχ

ab
j = δi

j ⇒ ψi
abP

ab,cdψj
cd = χab

i Pab,cdχ
cd
j = δij (4.5a)

∑

i

ψi
abψ

i
cd = Pab,cd ,

∑

i

χab
i χcd

i = P ab,cd. (4.5b)

Moreover, we have the spectral resolution of S

Sab
cd(L) =

∑

i

χab
i (L)si(L)ψi

cd(L) (4.6)

which implies that

Sab
ab(L) =

1

12
∆A(L) =

∑

i

si(L). (4.7)

Finally, the eigenvectors δLi of the flow satisfy

d

dt
δLi = −siδL

i (4.8a)

δLi ≡ δLabψi
ab, δLab =

∑

i

δLiχab
i (4.8b)

and, in particular, the corresponding operators χab
i (L∗)Tab of the fixed point L∗ are

relevant when si(L∗) < 0

irrelevant when si(L∗) > 0

marginal when si(L∗) = 0

where the categories correspond to unstable, stable and metastable directions as usual.

We list some simple properties of the eigenvalues and eigenvectors of S:

1. L̃g = 0 and Lg. The values of the stability matrix at L∗ = Lg and L̃g = 0

Sab
cd(Lg) = −δab

cd , Sab
cd(0) = +δab

cd (4.9)

are computed directly from (4.1) and the second affine-Sugawara identity in (A.20). It

follows that all eigenvalues of S are degenerate in these cases, with values

si(Lg) = −1, si(0) = +1. (4.10)
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This implies in particular that all operators δLabTab are relevant operators near the affine-

Sugawara construction, while all operators are irrelevant at L̃g = 0.

2. K-conjugate theories. The K-conjugation identity (3.7c) may be written

Sab
cd(L̃) = −Sab

cd(L). (4.11)

It follows that

{si(L̃)} = {−si(L)} (4.12)

and we may choose

χab
s (L̃) = χab

−s(L). (4.13)

Physically, this means that a relevant operator χab
i (L∗)Tab of the fixed point L∗ is an

irrelevant operator at the K-conjugate fixed point L̃∗ and vice-versa, and that every

marginal operator of L∗ is also a marginal operator of L̃∗.

3. Universal ±1 eigenvalues. For all fixed points L∗ the relations ∗∗

Sab
cd(L∗)Lcd

∗ = −Lab
∗ , Sab

cd(L∗)L̃cd
∗ = +L̃ab

∗ (4.14)

are easily obtained from the definition of S in (4.1), the master equation (2.5-6) and the

K-conjugation identity (4.11). It follows that

χab
1 (L∗) = Lab

∗ , χab
2 (L∗) = L̃ab

∗

are right eigenvectors of S(L∗) with s1 = −1 and s2 = +1, unless L∗ = 0 or L̃∗ = 0.

4. Zero eigenvalues of S. According to the definitions (4.1) and (4.3), any eigenvector

χab
0 (L∗) with s(L∗) = 0 solves the linearized master equation [19]

χab
0 (L∗) = Lcd

∗ χef
0 (L∗)Rcd,ef

ab (4.15)

so the marginal operators χab
0 (L∗)Tab of L∗ correspond to continuous solutions Lab

∗ +

δLχab
(0)(L∗) of the master equation near L∗. Among these, we must distinguish the

quadratic deformations [17, 19, 24, 25] from those directions associated to the physi-

cally irrelevant orbit Aut(L∗) of Aut(g) on L∗.

5. Aut(L∗). The infinitesimal automorphisms of g

ωa
b = δb

a + ξcfca
b +O(ξ2) (4.16)

induce the infinitesimal transformations δL = L′ − L

δLab(ξ) = Lc(afcd
b)ξd (4.17)

∗∗In fact, the master equation βab(L∗) = 0 can be resolved in the eigenvalue basis Lab
∗ =

∑
i Li

∗χ
ab
i (L∗)

as Li
∗(si(L∗)+1) = 0, which shows the usual number 2N(g), N(g) =dimg(dimg+1)/2 of generic solutions,

as expected, according to si(L∗) = −1 or Li
∗ = 0 for each i.
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according to eq.(2.10). The corresponding finite transformation of the β-function is given

in (2.11). The infinitesimal form of this relation is that the stability matrix satisfies

Sab
cd(L)δLcd(ξ) = 0 (4.18)

since βab(L + δL) ' βab(L)− Sab
cd(L)δLcd. It follows that

χab(L, ξ) ≡ δLab(ξ) = Lc(afcd
b)ξd, s(ξ) = 0 (4.19)

is a set of zero-eigenvalue eigenvectors of S, unless δL(ξ) = 0 for some ξ. Vanishing of

δL(ξ) for some ξ reflects a symmetry of L under some Lie group h ⊂ g, so we find

(dim g − dim h) marginal operators χab(L∗, ξ)Tab

with ξ ∈ g/h when Lab
∗ is Lie h-symmetric. These marginal directions are not physically

relevant because they follow the orbit Aut(L∗) of Aut(g) on L∗, and the directions can

in principle be removed by “gauge fixing”. Any higher accidental symmetry of the C-

function (3.2) will similarly produce further marginal directions of the form (4.19), which

must then correspond to quadratic deformations.

6. Self K-conjugate constructions. According to the characterization of self K-

conjugate constructions in (2.12) and the K-conjugation identity (4.11), the non-zero

eigenvalues of a self K-conjugate construction L∗ will occur in ±s pairs, so that

∑

i

si(L∗) = 0 (4.20a)

χab
s (L∗) = χcd

−s(L∗)ωc
aωd

b , ω ∈ Aut(g) . (4.20b)

As a check, we note that the self K-conjugate constructions, which have c(L∗) = cg/2,

are visible as 0 = 0 in the general expression

∑

i

si(L∗) = −dim(dimg + 1)

cg

[c(L∗)− cg

2
] (4.21)

which is obtained from eq. (3.10) and (4.7) for the trace of S at a fixed point on simple

g.

7. Connection with the T-states at level 2. The dimension of the eigenspace of S is

dimg(dimg + 1)/2, and dimg−dimh of these eigenvectors have been understood above

as the directions of Aut(L∗). Assuming unitarity, it is shown in Appendix C that the

remaining eigenvalues and eigenvectors of S are associated to the T-states χabT
(−2)
ab |0〉 at

level 2,

L(0)χab
I T

(−2)
ab |0〉 = ∆Iχ

ab
I T

(−2)
ab |0〉 (4.22)

where I = 1, 2, · · · ,dimh+dimg(dimg − 1)/2, and

sI = 1−∆I (4.23)
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relates the eigenvalues of S to the conformal weights of the T-states. For example, note

that the T-states L(−2)|0〉, L̃(−2)|0〉 with χab = Lab or L̃ab and ∆ = 2 or 0 correspond to

the universal eigenvalues −1 or +1 discussed above. It is also shown in Appendix C that

all the T-states are L-Virasoro primary except the state L(−2)|0〉.
8. Quadratic deformations and (1,0) states. Let Lab({λ})Tab be a quadratic de-

formation with continuous parameters {λ}. It follows from the discussion above that

the quadratic conformal deformation operators { ∂
∂λi

Lab({λ})Tab} are the T-operators

{χab
0 Tab} with s = 0 and hence ∆ = 1. Since all the T-states χab

0 T
(−2)
ab |0〉 with ∆ = 1 are

L-Virasoro primaries, it also follows that

Theorem: All quadratic deformation operators create (1,0) states out of the vacuum.

This was observed for the quadratic deformations Cartan g#, SU(2)#
4 and (SU(2)x×

SU(2)x)
#, x 6= 4 in [19].

9. c-changing deformations. Since all quadratic deformation operators on the vacuum

are (1,0) states, it follows in particular that [19]

L(2)δLχab
0 T

(−2)
ab |0〉 =

1

4
δc|0〉 = 0 (4.24)

for these states, where δc is the change in the central charge due to an infinitesimal

quadratic deformation Lab
∗ + δLχab

0 (L∗). Then we have the following

Theorem: The master equation contains no explicitly unitary c-changing deforma-

tions.

This conclusion may be circumvented, for example, by working in the non-unitary

Hilbert space of non-compact affine g, and projecting to unitary subspaces [32].

5 Closed sub-flows

The infinitesimal flow from L to L + δL during time δt satisfies

δLab = βab(L)δt. (5.1)

As we will see in the following examples, iteration of the infinitesimal flow (5.1) shows that

a closed sub-flow can be defined for each consistent ansatz [19] of the master equation.

a) Unitary sub-flows. The simplest consistent ansatz of the master equation is Lab =

real in any Cartesian basis, which guarantees unitarity on x ∈ N of affine compact g [19].

The ansatz is consistent because βab(L) is a real function of Lab in Cartesian coordinates.

By exactly the same mechanism, the flow equation (3.11) or (5.1) maintains Lab(t) = real

for t > t0 when Lab(t0) = real is the initial condition in a Cartesian frame. Put another

way, the flow ansatz

L̇ab = βab(L) , Lab real in any Cartesian basis
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is a closed sub-flow. This closed flow, and corresponding forms in other bases, contains

all the explicitly unitary fixed points of affine-Virasoro space.

b) Flow in SO(n)diag. If Lab = δabλa is diagonal on simple compact g with ηab = δab,

then the β-function

βab(L) = −λa(1− 2kλa)δ
ab +

∑

cd

λc(λa + λb − λd)fcd
afcd

b (5.2)

is not diagonal in general: Such a diagonal ansatz is not generally consistent for the

master equation or the flow.

In the standard Cartesian basis of SO(n), there is a consistent diagonal ansatz for

the master equation called SO(n)diag [24]. The ansatz is consistent because in this basis

fab
c 6= 0 for at most one c, given a and b, so that βab(L) in (5.2) is also diagonal. In this

case, the flow (3.11) or (5.1) remains diagonal when the initial condition is diagonal, and

the flow ansatz

SO(n)diag : λ̇a = −[λa(1− 2kλa)−
∑

cd

λc(2λa − λd)(fcd
a)2] (5.3)

is a closed sub-flow. As reviewed below, the fixed points of this flow are isomorphic to

all the graphs of graph theory [24].

c) H-invariant sub-flows. In this way, all known consistent ansätze can be promoted to

closed sub-flows, including the basic ansatz [19, 23], the maximal symmetric sub-ansatz

[19, 21] and the H-invariant ansätze Lab
∗ = Lcd

∗ (ω−1
H )c

a
(ω−1

H )c
b

of [33], for all ωH ∈ H

where H is any subgroup of G (not necessarily a Lie subgroup). The corresponding

closed H-invariant sub-flow

L̇ab = βab(L) , Lab = Lcd(ω−1
H )c

a
(ω−1

H )c
b

, ∀ ωH ∈ H ⊂ G (5.4)

follows as in [33], because β(L) transforms as L transforms under Aut(g) (see eqs. (2.10)

and (2.11)).

6 Flow on the space of graphs

As an example, we study the closed sub-flow (5.3) in SO(n)diag, whose fixed points

(solutions of the master equation) are isomorphic to the set of all graphs of order n [24].

In the standard Cartesian basis of SO(n), the ansatz SO(n)diag is [24]

Lab = Lij,kl =
lij
2k

δikδ
jl (6.1)

where 1 ≤ i < j ≤ n. In this notation††, the flow equation (5.3) becomes

SO(n)diag : l̇ij = −lij(1− lij) +
τ

x

∑

m6=i,j

(limlmj − lij(lim + ljm)) , i < j (6.2)

††The variable Lij = lij/x is employed in [24].

12



where the symmetry convention lij = lji and lii = 0 has been adopted to simplify the

summation in (6.2). The constant τ is 1 for flow on SO(n ≥ 4) and 2 for SO(3), and

x = 2k/ψ2 is the invariant level of SO(n).

The fixed points l∗ij of SO(n)diag have been studied to all orders in 1/x (semi-classical

expansion) and a number of exact solutions have been obtained [24]. More generally, we

collect some features of SO(n)diag which will be relevant in the analysis below [24]:

a) The set of fixed points in SO(n)diag is isomorphic to the set of all labelled graphs

of order n, because the fixed points are characterized by their classical limit

l∗ij(Gn) −→
x→∞ l

(0)
ij

∗
(Gn) = θij(Gn) , i, j = 1, · · · , n (6.3)

where θij(Gn) is the adjacency matrix of each labelled graph Gn of order n. The central

charge at high level is

c(l
(0)
ij

∗
(Gn)) = dim E(Gn) (6.4)

where dim E(Gn) is the number of edges of the graph Gn. In this way, all levels of a

given high-k smooth conformal construction are named by a single graph.

b) The labellings of a labeled graph Gn are physically equivalent members of Aut(l∗(Gn))

(the residual SO(n) automorphisms of SO(n)diag), so that each unlabeled graph is a phys-

ically distinct level-family of chiral conformal field theories.

c) The graph of the affine-Sugawara construction on SO(n) is the complete graph (all

edges) of order n. K-conjugation operates on the graphs as θij(G̃n) = 1− θij(Gn), where

G̃n, the graph of the K-conjugate theory, is called the complement of Gn in graph the-

ory. The self K-conjugate constructions in (4.20) correspond to the self-complementary

graphs, which satisfy G̃n = Gn as unlabeled graphs. These occur only on SO(4n) and

SO(4n + 1) with half-Sugawara central charge.

d) The 1/x expansion and the exact solutions provide strong evidence that each fixed

point l∗ij(Gn) is unitary (real) down to some finite critical level x0(Gn), which is generically

quite low.

The C-function and flow equation (6.2) in SO(n)diag can also be analysed to all orders

in 1/x, but we restrict ourselves here to the leading order

A(l(0)) =
∑

i<j

[
3(l

(0)
ij )2 − 2(l

(0)
ij )3

]
(6.5)

l̇
(0)
ij = −l

(0)
ij (1− l

(0)
ij ) (6.6)

whose flow

l
(0)
ij (t) =

l
(0)
ij (t0)

l
(0)
ij (t0) + (1− l

(0)
ij (t0))et−t0

, t ≥ t0 (6.7)
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is immediately obtained for initial condition l
(0)
ij (t0). The schematic flow of each l

(0)
ij , with

a minimum at 0 and a maximum at 1, is shown in Fig. 1. The flow pattern can also be

deduced from the reduced stability matrix

S(0)
ij,kl(l

(0)∗(Gn)) = δikδjl(1− 2θij(Gn)) (6.8)

which follows from the infinitesimal flow δl̇
(0)
ij = −Sij,kl(l

(0)∗(Gn))δl
(0)
kl . The eigenvalues

of S are s = −1 for θij = 1 and s = +1 for θij = 0.

At high level, we conclude that each edge ij (θij(Gn) = 1) of any graph Gn corresponds

to a relevant operator Taa = Tij,ij of the fixed point l(0)∗(Gn) and each missing edge IJ

(θIJ(Gn) = 0) of Gn is an irrelevant operator TIJ,IJ . It follows that

Nr(Gn) ≡ number of relevant operators of l(0)∗(Gn) = dim E(Gn)

Ni(Gn) ≡ number of irrelevant operators of l(0)∗(Gn) =
n(n− 1)

2
− dim E(Gn)

N0(Gn) ≡ number of marginal operators of l(0)∗(Gn) = 0.

The K-conjugation theorems in Section 4 are clearly illustrated by the graphs. As in

eqs.(4.11-13), the K-conjugate graphs Gn and G̃n have relevant and irrelevant operators

interchanged, since their edge sets are complementary. The graphs of self K-conjugate

constructions (the self-complementary graphs) have dim E = 1
2
dim g = n(n − 1)/4, and

so Nr = Ni. In accord with eq.(4.20a), the trace of S vanishes for these constructions

since |s| = 1. Moreover, each relevant operator of a self-K-conjugate graph is mapped to

an irrelevant operator by the graph relabelling ω, which is the SO(n) automorphism in

eq.(4.20).

The physical flow of graphs (excluding flow to large l
(0)
ij ) is a decay of each edge of

any Gn towards a graph G′
n with one edge less. As simple examples, the flow of graphs

in SO(3)diag and SO(4)diag is given in Figures 2 and 3, though, for simplicity, we have

shown only the physically distinct, unlabeled graphs in the latter case (see also Section

8).

In each case, the flow of graphs is shown as beginning near the affine-Sugawara con-

structions, but the flow can be followed from any graph. The C-theorem (3.14) is clearly

visible in the flow since c(l(0)∗(G)) =dim E(G) decays in parallel with the edges. We also

remark that the graph SO(4)#[d, 4] in Fig. 4 is a self K-conjugate construction.
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7 Morse polynomials and Graph Theory

We define the Morse polynomial M and the Witten index ν for the flow on level x of

affine g as∗

M(t; gx) ≡
∑

FP (gx)

tNr (7.1a)

ν(gx) ≡ M(−1; gx) =
∑

FP (gx)

(−1)Nr (7.1b)

where the sums are over all the fixed points of the flow, that is, all the solutions of the

master equation on level x of affine g, and Nr is the number of relevant operators at each

fixed point. The quantities (7.1) can also be defined on any closed sub-flow.

As an example, we consider the flow of graphs in SO(n)diag, and, following the usual

strategy, we compute the quantities (7.1) in the semi-classical limit, which is high level.

The results

M(t; SO(n)diag) = (1 + t)n(n−1)/2 (7.2a)

ν(SO(n)diag) = 0 (7.2b)

follow immediately since Nr =dimE for the graphs. The form of the Morse polynomial in

(7.2a) is known in graph theory as the generating function for labelled graphs. The value

ν = 0 of the corresponding Witten index in (7.2b) is characteristic of the unbounded

(cubic) C-function (6.5) since exp(±A(L)/12) cannot be a supersymmetric ground state

in this case and supersymmetry must break [36].

The unbounded C-function (3.2) leads us to conjecture that ν(gx) = 0 in general. It

is also likely that M and ν are invariant under smooth deformations of the level x, so

the semiclassical results (7.2) may be exact at finite level.

We also remark on the Morse polynomials and Witten index for unlabeled graphs.

These polynomials are relevant for a space which is modded by the residual SO(n)

automorphisms of SO(n)diag, which keeps only one physically distinct representative of

each conformal field theory. In this case, the Morse polynomials are the generating

functions of unlabeled (U) graphs, e.g. [26]

MU(t; SO(1)diag) = 1 (7.3a)

MU(t; SO(2)diag) = 1 + t (7.3b)

MU(t; SO(3)diag) = 1 + t + t2 + t3 (7.3c)

MU(t; SO(4)diag) = 1 + t + 2t2 + 3t3 + 2t4 + t5 + t6 (7.3d)

MU(t; SO(5)diag) = 1 + t + 2t2 + 4t3 + 6t4 + 6t5 + 4t7 + 2t8 + t9 + t10 (7.3e)

∗Morse theory has been used to study the renormalization group flow in [34, 35].
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where the symmetry about the center of each polynomial is K-conjugation covariance. It

also follows from known results in graph theory that

νU(SO(n)diag) = MU(−1; SO(n)diag) = ḡn (7.4)

where ḡn is the number of self K-conjugate constructions (self-complementary graphs) in

SO(n)diag.

8 Prediction of sporadic deformations

The physical interpretation of a flow from the neighborhood of a fixed point L∗1 to another

fixed point L∗2 is that a flow-path exists between the two conformal constructions, through

the hills and valleys of the C-function. When two such constructions are flow-connected

in this way, the C-theorem guarantees that c(L∗2) ≤ c(L∗1).

At high level, the flow connections are relatively simple. For example, all unitary

high-level central charges on simple compact g are integer-valued from 0 to dim g [23],

so that the selection rule −∆c(L∗) ∈ N will be observed, as seen in the flow of graphs in

Figs. 2 and 3.

As the level is lowered, however, the central charges of two or more high-level flow-

connected constructions may cross, indicating that at least one local maximum and

minimum have coalesced into points of inflection, which correspond to new marginal

operators† that are conformal deformations: A one-dimensional version of such a cross-

ing is shown in Fig. 4, where the first picture is the effective C-function (6.5) of a single

l
(0)
ij in high-level SO(n)diag.

We are led to expect sporadic quadratic deformations for those levels at which two

or more constructions, flow-connected at high level, have coincident central charge. The

flow-connections and central charge crossings may be studied in closed sub-flows for

simplicity. To be more precise, we consider only the first crossing‡ as the level is lowered,

since the situation is more complicated for second or higher crossings. Central charge

crossings of constructions which are not high-level flow-connected should not produce

deformations, since they live in path-disconnected neighborhoods of affine-Virasoro space.

Moreover, the resulting conformal deformation should explicitly contain all the theories,

including automorphic copies, which have coalesced at that point.

As a simple example, consider Fig. 2, which shows the flow of labelled graphs in

high-level SO(3)diag. Since any theory can flow to a representative of a lower theory in

†The new marginal operators are distinguished from those of Aut(L∗), which are present at all levels
(or not present, with appropriate gauge fixing or ansätze).

‡The first crossing of two flow-connected constructions may also mark the radius of convergence
x0(L∗) [24] of the high-level expansion of these constructions.
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this case, any central charge crossing should be a quadratic deformation. Fig. 4 shows

the central charges of these constructions at all levels, including the crossing

c(SO(2)4) = c(SO(3)4/SO(2)x) = 1

at level four. In fact, this is the known quadratic deformation SU(2)#
4 [17].

According to the graph flow in Fig. 2, all six graphs (3 automorphically equivalent

copies of SO(2) and 3 copies of SO(3)/SO(2)) are coalescing at level 4, so all six theories

must be points of SU(2)#
4 . To check this, we used an alternate form§ of SU(2)#

4

T (L#(φ)) =
1

4α2

3∑

i<j

lij(φ) ∗
∗J

2
ij
∗
∗ , c = 1 (8.1a)

l12(φ) =
1

3
(1−

√
3 cos φ + sin φ) (8.1b)

l13(φ) =
1

3
(1− 2 sin φ) (8.1c)

l23(φ) =
1

3
(1 +

√
3 cos φ + sin φ) (8.1d)

with α2 = ψ2 and 0 ≤ φ < 2π, which shows that this manifold of fixed points is a

circle ¶. The circle is shown in Fig. 5, with the location of all six rational constructions

predicted by the method. In connection with our remarks in Sections 3 and 4, we have

also checked that the symmetry group O(2) of the circle is an accidental symmetry of

the SO(3) C-function at level 4.

Moving on, we apply the method to SO(4)diag. The central charges of all the level

families in SO(4)diag are shown in Fig. 6, including the self K-conjugate construction

SO(4)#[d, 4]. As the level x is lowered from asymptotic values, the first central charge

crossings

SO(4)/(SO(2)× SO(2)) ∼ SO(3) , SO(4)/SO(3) ∼ SO(2)× SO(2) (8.2)

are observed at level x = 3+
√

13. It is clear from the graph flow of Fig. 4 that these pairs

of constructions are not flow-connected at high level, so no conformal deformations are

predicted at these points. To test this negative prediction, we checked that the stability

matrices in SO(4)diag of these constructions have no zero eigenvalues at this level, as

expected.

§The connection with the form of SU(2)#4 in [19] is: l12 = 4α4λ, l13 = 4α2(Lα,−α − Lα,α), l23 =
4α2(Lα,−α + Lα,α), −1/12 ≤ λα4 ≤ 1/4.

¶The action of K-conjugation on the circle of Fig. 5 is reflection through the origin. The action of
the residual automorphisms (S3) of SO(3)diag is reflection about each of the three axes shown in the
Figure. It follows that the points marked by crosses in Fig. 5 are automorphically equivalent copies of
a single self K-conjugate construction in SU(2)#4 . Modding by S3, each π/3 arc from a g/h to an h′ is
a fundamental region.
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On the other hand, the triple crossing at level 4

x = 4 : SO(4)/(SO(2)× SO(2)) ∼ SO(4)#[d, 4] ∼ SO(2)× SO(2) (8.3)

involves constructions which, according to oval (a) of Fig. 4, are flow-connected at high

level. We predict, therefore, a new quadratic deformation, which we call

SO(4)#
4 with c = 2. (8.4)

As a check on the prediction, we computed the stability matrices in SO(4)diag of the

constructions in (8.3). They all show zero eigenvalues at level four as expected. To learn

more about SO(4)#
4 , we consider in Fig. 6a the flow of labelled graphs within oval (a) of

Fig. 4. The predicted deformation should contain all 18 constructions as special points,

including the 12 copies of the self K-conjugate construction. Moreover, we can predict

that SO(4)#
4 will be closed under K-conjugation, as was SU(2)#

4 , since the set of graphs

in Fig. 6a is closed under K-conjugation.

There are two more first crossings at level 2,

x = 2 , c = 2 : SO(4)/SO(2) ∼ SO(4)/SO(3)/SO(2) ∼ SO(3) (8.5a)

x = 2 , c = 1 : SO(2) ∼ SO(3)/SO(2) ∼ SO(4)/SO(3) (8.5b)

which, according to ovals (b) and (c) of Fig. 4, are flow-connected at high level. Since

the constructions in (8.5a) are related to those in (8.5b) by K-conjugation, we predict

the K-conjugate pair of quadratic deformations

SO(4)#
2 with c = 1 , SO(4)/SO(4)#

2 with c = 2. (8.6)

Further structure in SO(4)#
2 is seen in Fig. 6b, which shows the labelled graph flow

in oval (b) of Fig. 4. All 22 constructions should be found as points in SO(4)#
2 . It is

possible that the known deformation SU(2)#
4 is irregularly embedded in SO(4)#

2 , but

the predicted deformation SO(4)#
2 , which contains SO(4)/SO(3), is clearly larger than

SU(2)#
4 . The predicted deformation may also be related to the known deformation

(SU(2)x × SU(2)x)
# at x = 2 [19], but the two cannot be identical since the known

deformation is closed under K-conjugation.

There are many central charge crossings in affine-Virasoro space. As an example, the

list

c(SU(3)3/(U(1)× U(1))) = c(U(1)× U(1)) = 2 (8.7a)

c(SO(2n + 1)2/[SO(2)]n) = c([SO(2)]n) = n (8.7b)

c(SO(2n)2/[SO(2)]n) = c([SO(2)]n−1) = n− 1 (8.7c)

c([SO(2)]n) = c(SO(2n)2/[SO(2)]n−1) = n (8.7d)

18



records the crossings of simple gx/Cartan g with U(1)p, 0 < p ≤rank g, x ∈ N . This

suggests the candidate deformations

SU(3)#
3 , c = 2 ; SO(2n + 1)#

2 , c = n (8.8a)

SO(2n)#
2 , c = n− 1 ; SO(2n)/SO(2n)#

2 , c = n (8.8b)

but it is generally difficult to verify high-level flow connection and first crossing, even in

closed sub-flows, unless all the fixed points of the subspace are known. The list (8.8) is

at least partially correct, however, since the known [23] deformation SO(2n+ 1)#
2 [d, 6] is

presumably included in SO(2n + 1)#
2 . Moreover, we will report elsewhere [30] a sub-flow

in which SU(3)/[U(1)]2 and [U(1)]2 are flow-connected with a first crossing at level three,

and we will obtain the exact form of the predicted deformation SU(3)#
3 .

We finally remark that all known sporadic quadratic deformations, including the

predictions of this section, are found on integer level of affine g such that the affine-

Sugawara construction has integer central charge.

9 Conclusions

We have constructed an exact C-function on affine-Virasoro space, and the associated

flow on the space of theories satisfies a C-theorem. The fixed points of the flow are

the conformal field theories of the Virasoro master equation. The flow defines relevant,

irrelevant and marginal operators at the fixed points, and emphasizes the relations (and

collisions) among the conformal field theories of affine-Virasoro space. As an example,

the system was solved for high level SO(n)diag, which is a flow on the space of graphs.

Although the resemblance is striking, it is not yet clear whether the Lab flow on

affine-Virasoro space is an exact renormalization group equation. The Lab flow does

not correspond to covariant perturbation of the WZW theory by the marginal operators

gabJaJ̄b, since all Lab flow directions are relevant near the affine-Sugawara constructions,

and the eigenvalues of the stability matrix are reparametrization invariants. Since Lab
∗ JaJb

is a set of chiral stress tensors, it is plausible that the Lab flow is the renormalization

group flow computed in a light-cone Hamiltonian perturbation theory.

In this connection, the quantum analogue of our system is constructed as follows.

The natural Langevin equation ‖

L̇ab
η = βab(Lη) + P ab,cdηcd , 〈ηab(t)ηcd(t

′)〉 = Pab,cdδ(t− t′) (9.1)

‖Langevin quantization of the renormalization group equation was suggested in [37] and studied in
[35]. The normalization of the noise in (9.1) follows the convention of [38].
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does not equilibrate to its formal Boltzmann factor exp(−A(L)/6) because the C-function

A(L) is bottomless. The Greensite-Halpern-Marinari-Parisi stabilization [39] substitutes

the Fokker-Plank Hamiltonian and/or its equivalent fifth-time action

H5 ≡ 1

2
P cd,abQ†

cdQab , Qab ≡ 1

i

∂

∂Lab
+ iPab,cdβ

cd (9.2a)

S5 ≡ 1

2

∫
dt[L̇abPab,cdL̇

cd + βabPab,cdβ
cd +

∂

∂Lab
βab]. (9.2b)

This stabilized system chooses the normalizable positive energy-ground state of H5 and,

with the usual fermionic scaffolding, corresponds to broken supersymmetry. Moreover,

for fixed initial and final conditions, the averages of the fifth-time action (9.2b) may be

computed from its non-equilibrating Nicolai map (9.1) [38, 40]: With L(t1) = Lη(t1) = L1

and L(t2) = L2, the relation [38]

〈exp
∫ t2

t1
dtJabL

ab〉S5 = 〈δ(L2 − Lη(t2)) exp
∫ t2

t1
dtJabL

ab
η 〉η/〈δ(L2 − Lη(t2))〉η (9.3)

is completely general for equilibrating or non-equilibrating maps.
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Appendix A. OPE’s and associativity identities

In this appendix, we collect operator products among some composite operators in

the affine vacuum module. The basic OPE’s were given in [15], but the treatment of spin

3 operators was incomplete, so we list the complete results and also collect some useful

associativity identities among OPE coefficients.

The OPE of two currents is

Ja(z)Jb(w) =
Gab

(z − w)2
+ ifab

c[
1

z − w
+

1

2
∂w +

1

6
(z − w)∂2

w]Jc(w)+

+[1 +
1

2
(z − w)∂w]Tab(w) + (z − w)Xab(w) +O[(z − w)2] (A.1)

which defines the spin-2 composite operators Tab(z) = Tba(z) and the spin-3 operators

Xab(z) = −Xba(z), both operators being quasiprimary. The 2-point functions of Tab and

Xab

〈Tab(z)Tcd(w)〉 =
Pab,cd

(z − w)4
, 〈Xab(z)Xcd(w)〉 =

Hab,cd

(z − w)6
(A.2)

are computed from (A.1), where

Hab,cd = Gd[aGb]c − 1

6
fab

efcd
fGef , Hab,cd = Hcd,ab (A.3)

and Pab,cd is given in eq. (2.6b).

Next, we compute the OPE of Tab with Jc,

Tab(z)Jc(w) = Mab,c
d

[
1

(z − w)2
+

1

(z − w)
∂w +

1

2
∂2

w

]
Jd(w)+

Nab,c
de

[
1

(z − w)
+

3

4
∂w

]
Tde(w) + Wabc(w) + Kab,c

deXde(w) +O(z − w) (A.4)

where

Mab,c
d = δ(a

dGb)c +
1

2
fe(a

dfb)c
e (A.5)

Nab,c
de =

i

2
δ(a

(dfb)c
e) (A.6)

and (A.4) serves as a definition of the spin-3 composite operators Wabc(z).

Finally,

Tab(z)Tcd(w) =
Pab,cd

(z − w)4
+ Qab,cd

e

[
1

(z − w)3
+

1

2(z − w)2
∂w +

1

6(z − w)
∂2

w

]
Je(w)+

+Rab,cd
ef

[
1

(z − w)2
+

1

2(z − w)
∂w

]
Tef (w)+

+Sab,cd
efg Wefg(w)

(z − w)
+ Uab,cd

ef Xef (w)

(z − w)
+O(1) (A.7)
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where Q, S and U are antisymmetric under the interchange (ab ↔ cd) while R is symmet-

ric. This OPE differs by the Xab term from the one given in [15], where the explicit form

of Q, R and S is given. The correct value of S is 1/6 of the result given in [15]. The con-

clusions of references [15, 19] are not changed by the extra term since U is antisymmetric

and Xm≥−2
ab |0〉 = 0.

Some relevant 3-point functions are

〈Ja(z1)Jb(z2)Jc(z3)〉 =
ifab

eGec

z12z13z23

(A.8)

〈Tab(z1)Jc(z2)Jd(z3)〉 =
Pab,cd

z2
12z

2
13

(A.9)

〈Tab(z1)Tcd(z2)Je(z3)〉 =
Qab,cd

fGfe

z3
12z13z23

(A.10)

〈Tab(z1)Tcd(z2)Tef (z3)〉 =
Rab,cd

ghPgh,ef

z2
12z

2
13z

2
23

. (A.11)

A partial list of associativity identities among the OPE coefficients is as follows:

Mab,c
eGed = Pab,cd (A.12)

Ncd,e
ghPab,gh = Qab,cd

gGge ≡ Qab,cd,e (A.13)

Kab,c
ghHgh,de =

i

2
Pab,g[dfe]c

g (A.14)

Qab,cd,e = iPab,g(cfd)e
g (A.15)

Nab,f
ghQgh,cd,e + Ncd,f

ghQab,gh,e = −ifef
gQab,cd,g (A.16)

Uab,cd
ghHgh,ef =

[
Mab,f

gPcd,ge +
1

6
Nab,f

ghQcd,gh,e − (ab ↔ cd)
]

(A.17)

Rab,cd
ghPgh,ef = Rab,ef

ghPgh,cd (A.18)

Rab,cd
ghPgh,ef = Mab,f

gPcd,ge +
1

2
Nab,f

ghQcd,gh,e + (ab ↔ cd). (A.19)

We remark in particular that the covariant tensor Rab,cd,ef ≡ Rab,cd
ghPgh,ef is completely

symmetric under the interchange of any of its indices, according to (A.18).

Some other useful identities are

Rab,cd
efGef = 2Pab,cd, Lef

g Ref,ab
cd = 2δcd

ab

Lcd
g Pcd,ab = Gab , Lcd

g Qcd,ab
e = 0 (A.20)

where Lab
g is the inverse inertia tensor (2.7) of the affine-Sugawara construction.
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Appendix B: Covariant Structures on Affine-Virasoro Space

Covariant forms of the C-function (3.2), the master equation (2.6) and the flow equa-

tion (3.11) under reparametrizations L′(L) are quite ordinary. The metric Pab,cd(L) and

the third rank tensor Rab,cd
ef (L) are obtained in an arbitrary frame L′(L) by transforming

from the original frame of the text, for example

P ′
ab,cd(L

′) =
∂Lef

∂L′ab

∂Lgh

∂L′cd
Pef,gh. (B.1)

The metric has vanishing Riemann tensor in any frame since it is globally flat in the

original frame.

The action is defined to transform as a scalar

A′(L′) = A(L) (B.2)

which determines its form in any frame. The covariant flow equation is

L̇ab = − 1

12
P ab,cd(L)

∂A(L)

∂Lcd
≡ βab(L) (B.3)

since, as defined, the β-function is a contravariant vector. The covariant form of the mas-

ter equation is βab(L∗) = 0 and the central charge is invariant under reparametrizations.

The covariant flow near a fixed point L = L∗ + δL is

DtδL
ab = −Sab

cd(L∗)δLcd (B.4)

DtδL
ab ≡ ∂tδL

ab + δLcdΓcd,ef
abL̇ef (B.5)

Sab
cd(L) ≡ −Dcdβ

ab(L) =
1

12
P ab,efDcd

∂A(L)

∂Lef
(B.6)

where Dab is the covariant derivative with respect to Lab, Dt is the covariant time deriva-

tive along a line of flow and Γab,cd
ef is the Christoffel connection of Pab,cd(L). Moreover,

the stability matrix S in (B.6) is a mixed second rank tensor, so that its eigenvalues are

reparametrization invariant.

The invariant distance along a path P between two points L1 and L2 in Affine-Virasoro

space is

d(L1, L2;P) ≡
∫ s2

s1

ds
√

L̇abPab,cd(L)L̇cd (B.7)

where overdot is derivative with respect to s, which parametrizes the path L(s) from

L1 to L2. The distance is independent of reparametrizations s′(s), L′(L) and is real on

xI ∈ N of affine compact g. The “flow distance” between two points on a line of flow is

obtained from (B.7) with s = t.
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Appendix C. The stability matrix and the affine vacuum module.

In this appendix we analyze level two of the affine vacuum module, as organized by

some solution to the master equation. In particular, we relate a subset of eigenvalues of

the stability matrix S to a subset of conformal weights at this level. Let V2 be the vector

space spanned by the states J (−2)
a |0〉 and T

(−2)
ab |0〉 with mode number two. We restrict

our discussion to integer level x > 1 of affine compact g so that all the states in V2 are

linearly independent [31] and dim V2= D + D(D + 1)/2, where D =dim g.

Let Lab
∗ be a unitary solution of the master equation and L(n) = Lab

∗ T
(n)
ab the modes of

the corresponding Virasoro operator, so that (L(n))† = L(−n). Let L̃(n) be the commuting

K-conjugate Virasoro algebra L̃(n) = L(n)
g − L(n). The following commutation relations

are obtained from the OPE’s of Appendix A,

[L(m), J (n)
a ] = −nM b

aJ
(m+n)
b + Na

bcT
(m+n)
bc (C.1)

[L̃(m), J (n)
a ] = −n(δb

a −M b
a)J

(m+n)
b −Na

bcT
(m+n)
bc (C.2)

[L(m), T
(n)
ab ] =

Pab

6
(m3 −m)δm+n,0 +

Qab
c

6
(m2 + n2 −mn− 1)J (m+n)

c +

+
(m− n)

2
Rab

cdT
(m+n)
cd + Sab

cdeW
(m+n)
cde + Uab

cdX
(m+n)
cd (C.3)

[L(m), L̃(n)] = 0 (C.4)

where the quantities

Pab ≡ Lcd
∗ Pab,cd , Ma

b ≡ Lcd
∗ Mcd,a

b , Pab = Ma
cGcb (C.5)

Na
bc ≡ Lde

∗ Nde,a
bc , Qab

c ≡ Lde
∗ Qab,de

c , Rab
cd ≡ Lef

∗ Rab,ef
cd (C.6)

are linear in Lab
∗ . We also need Jm≥0

a |0〉 = Tm≥−1
ab |0〉 = Wm≥−2

abc |0〉 = Xm≥−2
ab |0〉 = 0,

where |0〉 is the affine vacuum.

Consider first the following states in V2,

|La〉 ≡ L(−1)J (−1)
a |0〉 = Ma

bJ
(−2)
b |0〉+ Na

bcT
(−2)
bc |0〉 (C.7a)

|L̃a〉 ≡ L̃(−1)J (−1)
a |0〉 = (δb

a −Ma
b)J

(−2)
b |0〉 −Na

bcT
(−2)
bc |0〉 (C.7b)

and the inverse relations

J (−2)
a |0〉 = |La〉+ |L̃a〉 (C.8a)

Na
bcT

(−2)
bc |0〉 = (δb

a −Ma
b)|Lb〉 −Ma

b|L̃b〉. (C.8b)

Let VL ⊂ V2 and VL̃ ⊂ V2 be the vector spaces spanned by |La〉 and |L̃a〉 respectively.

Proposition 1: VL is orthogonal to VL̃.
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Proof: 〈La|L̃b〉 =〈0|J (1)
a L(1)L̃(−1)J

(−1)
b |0〉 =〈0|J (1)

a L̃(−1)L(1)J
(−1)
b |0〉= 0, using (C.7),

(C.4) and (C.1).

Let N0, N1 be the number of zero, one eigenvalues of the matrix Ma
b.

Proposition 2: dim VL = D −N0 ≡ rank(M), and dim VL̃ = D −N1 ≡ rank(1−M).

Proof: Evaluate the inner products

〈La|Lb〉 = 〈0|J (1)
a L(1)L(−1)J

(−1)
b |0〉 = 2Ma

cGcb (C.9a)

〈L̃a|L̃b〉 = 〈0|J (1)
a L̃(1)L̃(−1)J

(−1)
b |0〉 = 2(δc

a −Ma
c)Gcb. (C.9b)

It follows from (C.9a) that the number of linear relations among the states |La〉 is equal to

the number N0 of zero eigenvalues of Ma
c, since Gab is invertible. Then, dim span{|La〉}=

D −N0 =rank(M). The conclusion for dim VL̃ follows in the same way from (C.9b).

Next, evaluate 〈La|L̃b〉 = 0 using the right sides of (C.7a,b) to obtain

Na
cdNb

efPcd,ef = 2Ma
dGde(Mb

c − δb
c). (C.10)

Consider {Na
bc} as a collection of D vectors (indexed by a), each with D(D + 1)/2

components (indexed by bc). The inner product on these vectors,

〈Na|Nb〉 ≡ (Na
cd)∗Pcd,efNb

ef = −Na
cdPcd,efNb

ef (C.11)

is positive because Pab,cd is positive definite and Na
cd is pure imaginary (see (A.6)). This is

the inner product in the space of right eigenvectors of the stability matrix (see eq.(4.5a)).

Proposition 3: {Na
bc} generates a vector space VN with dim VN = D −N0 −N1.

Proof: It follows from (C.10) that the matrix of inner products 〈Na|Nb〉 has N0 + N1

zero eigenvalues, which correspond to the zero, one eigenvalues of M .

Remark: In [33], it is shown that N0 + N1 =dim h where h ⊂ g is the Lie subgroup

symmetry of the construction Lab
∗ .

The stability matrix

Sab
cd =

[
1

2
(δa

cδ
b
d + δa

dδ
b
c)−Rcd

ab
]

(C.12)

is defined in (4.1).

Proposition 4: Sab
cd has at least dim VN zero eigenvalues. The right eigenspace cor-

responding to these eigenvalues is VN .

Proof: We compute L(0)Na
bcT

(−2)
bc |0〉 in two ways. The first computation uses (C.8b),

(C.1) and (C.7),

L(0)Na
bcT

(−2)
bc |0〉 = (δb

a −Ma
b)L(0)|Lb〉 −Ma

b|L̃b〉 =
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= (Ma
b − (M2)a

b
)J

(−2)
b |0〉+ Na

bcT
(−2)
bc |0〉. (C.13a)

The second computation uses (C.3),

L(0)Na
bcT

(−2)
bc |0〉 = Na

bc
[
1

2
Qbc

dJ
(−2)
d |0〉+ Rbc

deT
(−2)
de |0〉

]
. (C.13b)

Matching the right hand sides of (C.13a,b) we obtain (C.10) and

Na
bc = Na

deRde
bc. (C.14)

It follows from (C.12) and (C.14) that VN is a right eigenspace of S with zero eigenvalue.

Proposition 5: When ψa is a left eigenvector of Ma
b with an eigenvalue which is either

one or zero, then ψaNa
bc = 0.

Proof: Consider first the case when ψaM b
a = ψb. Compute the norm of the state

ψaL̃(−1)J (−1)
a |0〉,

||ψaL̃(−1)J (−1)
a |0〉|2 = ψaψb〈0|J (1)

a L̃(1)L̃(−1)J
(−1)
b |0〉 =

= 2ψaψb(δc
a −Ma

c)〈0|J (1)
a J (−1)

c |0〉 = 0 (C.15)

which implies that the state is identically zero, L̃(−1)ψaJ (−1)
a |0〉 = 0. On the other hand,

this state has the explicit form

0 = L̃(−1)ψaJ (−1)
a |0〉 = ψa

[
(δb

a −M b
a)J

(−2)
b −Na

bcT
(−2)
bc

]
|0〉 = −ψaNa

bcT
(−2)
bc |0〉 (C.16)

which implies that ψaNa
bc = 0. The same follows for the case ψaMa

b = 0 using the state

L(−1)ψaJ (−1)
a |0〉 = 0.

Corollary 1: Let ψa
1 (ψa

0) be an eigenvector of Ma
b with eigenvalue one (zero). Then

[Lm, ψa
1J

(n)
a ] = −nψa

1J
(m+n)
a , [L̃(m), ψa

1J
(n)
a ] = 0 (C.17a)

[L(m), ψa
0J

(n)
a ] = 0 , [L̃(m), ψa

0J
(n)
a ] = −nψa

0J
(m+n)
a (C.17b)

follows from Proposition 5: The L∗ theory contains a (1,0) operator (current) for each

unit eigenvalue of Ma
b(L∗), and the current commutes with the K-conjugate theory L̃∗.

The conclusions for L∗ and L̃∗ are reversed for zero eigenvalues of Ma
b(L∗).

Consider next the orthogonal decomposition V2 = VL ⊕ VL̃ ⊕ VT , which defines the

subspace VT of all vectors in V2 orthogonal to VL and VL̃. The dimension of VT is

dim VT =dim V2−dim VL−dim VL̃ =N0 + N1 −D + D(D + 1)/2. We now give a charac-

terization of the vectors in VT .

Proposition 6: Iff a vector is in VT then the vector has the form χabT
(−2)
ab |0〉 where

Ne
abχcdPab,cd = 0, ∀ e.
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Proof: The general vector in VT is |T 〉 ≡ χabT
(−2)
ab |0〉 + BaJ (−2)

a |0〉. We require that

|T 〉 is orthogonal to VL ⊕ VL̃,

〈La|T 〉 = 2PabB
b −Na

bcχdePbc,de = 0 (C.18a)

〈L̃a|T 〉 = 2(Gab − Pab)B
b + Na

bcχdePbc,de = 0 (C.18b)

The solution of (C.18) is

Ba = 0 , Na
bcχdePbc,de = 0. (C.19)

Corollary 2: When χabT
(−2)
ab |0〉 ∈ VT then χabQab

c = 0, ∀ c. This follows from Propo-

sition 6 and the identity (A.14).

Proposition 7 L(0) maps VL into itself and VL̃ into itself.

Proof: By explicit computation with (C.3), we obtain

L(0)|La〉 = (δb
a + Ma

b)|Lb〉 (C.20a)

L(0)|L̃a〉 = Ma
b|L̃b〉. (C.20b)

because T
(−1)
ab |0〉 = 0.

Corollary 3: L(0) maps VT into itself.

Proof: Compute 〈La|L(0)|T 〉 =〈L̃a|L(0)|T 〉 = 0 using Proposition 7 and the hermiticity

of L(0). It follows that L(0)|T 〉 ∈ VT .

Proposition 8: Let |χi〉 ≡ χab
i T

(−2)
ab |0〉 be the eigenvectors of L(0) in VT with respective

eigenvalue ∆i,

L(0)χab
i T

(−2)
ab |0〉 = ∆iχ

ab
i T

(−2)
ab |0〉 , i = 1, 2, · · · , dim VT . (C.21)

Then χab
i is a right eigenvector of the stability matrix S with corresponding eigenvalue

1−∆i.

Proof: We compute L(0)|χi〉 using (C.3). The spin 3 terms proportional to W and X

do not contribute because W
(−2)
abc |0〉 = X

(−2)
ab |0〉 = 0. According to corollary 2, the spin-1

terms proportional to J do not contribute either because χab
i Qab

c = 0 ∀ i, c. The result

χab
i Rab

cd = ∆iχ
cd
i ∀ i (C.22)

is then obtained by comparison with (C.21), and

Sab
cdχ

cd
i = (1−∆i)χ

ab
i (C.23)

is obtained from (C.12).

Proposition 9: The eigenspace of S generated by χab
i i = 1, 2, · · · , dimVT is orthogonal

to the eigenspace VN of S (see Prop. 3,4).
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Proof: Using Corollary 2 and the inner product (4.5a) in the right eigenspace of S,

compute

〈Na|χi〉 = −Na
bcPbc,deχ

de
i = −χde

i Qde
bGba = 0. (C.24)

Let Vχ be the eigenspace generated by χab
i ∀ i, with dim Vχ =dim VT . Since dim Vχ+dimVN =

D(D + 1)/2, it follows that VN ⊕ Vχ is the space of right eigenvectors of S. We have

established the following

Theorem: Sab
cd has D−N0−N1 zero eigenvalues, with right eigenvectors in VN . The

other N0 + N1−D + D(D + 1)/2 eigenvalues of S are given by {1−∆i} where {∆i} are

the eigenvalues of L(0) in VT .

Proposition 10: There exists an orthogonal decomposition VT = span{|L〉}⊕
span|L̃〉 ⊕ V⊥, where |L〉 ≡ L(−2)|0〉 and |L̃〉 ≡ L̃(−2)|0〉. All the states in V⊥ are pri-

mary with respect to the Virasoro generators L(n).

Proof: 〈L|L̃〉 = 〈0|L(2)L̃(−2)|0〉 = 〈0|L̃(−2)L(2)|0〉 = 0, so the decomposition is orthog-

onal. Each state |χ〉 in V⊥ satisfies 〈L|χ〉 = 〈L̃|χ〉 = 0 which implies, according to (C.3),

that χabPab = χabGab = 0. Then

L(m>2)|χ〉 = 0 , L(2)|χ〉 = χabPab|0〉 = 0 (C.25a)

L(1)|χ〉 =
3

2
χabRab

cdT
(−1)
cd |0〉 = 0 (C.25b)

also follows by (C.3) for each state in VT .
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[7] I.B. Frenkel and V.G. Kač, Inv. Math. 62 (1980) 23; G. Segal, Comm. Math. Phys.

80 (1981) 301.

[8] E. Witten, Comm. Math. Phys. 92 (1984) 455; G. Segal, unpublished; V.G. Knizhnik

and A.M. Zamolodchikov, Nucl. Phys. B247 (1984) 83.

28



[9] P. Goddard, A. Kent and D. Olive, Phys. Lett. B152 (1985) 88.

[10] D. Gross, J.A. Harvey, E. Martinec and R. Rohm, Phys. Rev. Lett. 54 (1985) 502.

[11] J.K. Freericks and M.B. Halpern, Ann. of Phys. 188 (1988) 258; Erratum, ibid. 190

(1989) 212.

[12] M.B. Halpern, Ann. of Phys. 194 (1989) 247.

[13] P. Goddard and D. Olive, Int. J. Mod. Phys. A1 (1986) 303.

[14] I.B. Frenkel, J. Lepowsky and A. Meurman, to appear.

[15] M.B. Halpern and E. Kiritsis, Mod. Phys. Lett. A4 (1989) 1373; Erratum ibid. A4

(1989) 1797.

[16] M.B. Halpern and J.P. Yamron, Nucl. Phys. B332 (1990) 411.

[17] A.Yu Morozov, A.M. Perelomov, A.A. Rosly, M.A. Shifman and A.V. Turbiner, Int.

J. Mod. Phys. A5 (1990) 803.

[18] E. Kiritsis, Mod. Phys. Lett. A4 (1989) 437; G. V. Dunne, I. G. Halliday and P.

Suranyi, Phys. Lett. B213 (1988) 139.

[19] M.B. Halpern, E. Kiritsis, N.A. Obers, M. Porrati and J.P. Yamron, Int. J. Mod.

Phys. A5 (1990) 2275.

[20] E. Witten, in Memorial Volume for V. Knizhnik, ed. L. Brink et al., World Scientific,

1990.

[21] M.B. Halpern and N.A. Obers, “Unitary Irrational Central Charge on Compact g.

I. (Simply-Laced gx)
q≥2
# ”, Berkeley preprint, UCB-PTH-89/35, (1989). To appear in

Int. J. Mod. Phys. A

[22] S. Schrans and W. Troost, Nucl. Phys. B345 (1990) 584.

[23] M.B. Halpern and N.A. Obers, Nucl. Phys. B345 (1990) 607.

[24] M.B. Halpern and N.A. Obers, “Graph Theory, SO(n) Current Algebra and the

Virasoro Master Equation”, Berkeley preprint, UCB-PTH-90/31, (1990).

[25] A. Yu Morozov, M.A. Shifman and A.V. Turbiner, Int. J. Mod. Phys. A5 (1990)

2953.

[26] F. Harary and E.M. Palmer, Graphical Enumeration. New York, London, Academic

Press 1973.

29



[27] M.B. Halpern and J.P. Yamron, “A Generic Affine-Virasoro Action”, Berkeley

preprint, UCB-PTH-90/22 (1990). To appear in Nucl. Phys. B

[28] N. Mohammedi, “General Super Virasoro Construction on Affine g”, Trieste

preprint, PRINT-90-0645 (1990)

[29] A.B. Zamolodchikov, JETP. Lett. 43 (1986) 730; A.A. Tseytlin, Phys. Lett. B194

(1987) 63; J. Cardy, Phys. Rev. Lett. 60 (1988) 2709; A. Capelli, D. Friedan and

J. Latorre, “C-Theorem and Spectral Representation”, Rutgers preprint, RU-90-43

(1990)

[30] M.B. Halpern and N.A. Obers, in preparation
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