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Abstract

An exact C-function, which is an action for the Virasoro master equation,
is obtained on affine-Virasoro space. The solutions of the master equation are
fixed points of an associated flow, which obeys a C-theorem. The closed sub-flow
SO(n)diag is a flow on the space of graphs, and the associated Morse polynomials are
known generating functions in graph theory. The general flow also implies a method
for prediction of sporadic conformal deformations. We note the resemblance of this

system to the expected form of an exact renormalization group equation.
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1 Introduction

Affine Lie algebra, or current algebra on 57, was discovered independently in mathematics
[1] and physics [2]. The first representations [2] were obtained with world-sheet fermions
2, 3] in the construction of current-algebraic spin and internal symmetry on the string
[2]. Examples of affine-Sugawara constructions [2, 4] and coset constructions [2, 4] were
also given in the first string era, as well as the vertex operator construction of fermions
and SU(n); from compactified spatial dimensions [5, 6]. The generalization of these
constructions [7, 8, 9] and their application to the heterotic string [10] mark the beginning
of the present era. See [11, 12, 13, 14] for further historical remarks on affine-Virasoro

constructions.

The general Virasoro construction on the currents J, of affine g [15, 16, 17]
T(L)=L®*J,Jy * (1.1)

systematizes the direct approach used by Bardakci and Halpern [2, 4] to obtain the
original affine-Sugawara and coset constructions*. The Virasoro master equation [15, 16,
17] for the inverse inertia tensor L% = L’ contains the affine-Sugawara nests T and many

new conformal constructions g% on the currents of affine g.

In particular, broad classes of exact solutions with unitary irrational central charge
[19] have recently been obtained on affine compact g. The growing list presently includes

the unitary irrational constructions [19, 21, 22, 23, 24]

((simply-laced gx)q)]\#;

SU(3)%,
SUB)hasic = § SUB) Dy SUB)Hw), SUB)De (1.2)
SUB3) Ay SUB)
SO(2n)#[d, 4]
SOmYE. — SO(5)#[d,2]: SO(2n + 1)#[d,6];, n >3
dieg ) SO(5)#[d, 6]1; SO(2n + 1)#[d, 6]y, n > 3
SO(5)%[d, 6]

which are obtained for variable level in the BASIC D Dynkin D Maximal sequence of

subansitze, and in SO(n) g4, the diagonal ansatz on SO(n). The value

c ((SU(3)5)§(1)) = (1 — \/16_1> ~ 1.7439 (1.3)

*Related ideas are discussed in [18].
TThe affine-Sugawara nests [19] include the affine-Sugawara constructions [2, 4, 8], the coset construc-

tions [2, 4, 9] and the nested coset constructions [20].



is the lowest unitary irrational central charge yet observed [23]. A number of unitary
quadratic conformal deformations with rational central charge have also been observed,

including deformations on variable level [19],
Cartan g%, (SU(2), x SU(2),)%, = # 4 (1.4)
and the sporadic deformations [17, 24]
SU©2)Y, SO@2n+1)¥[d,6], n > 2 (1.5)

at levels four and two, respectively. The quadratic conformal deformations may be phys-

ically equivalent to known linear deformations [19, 25].

A very large number [19]
N(g)=2"9, n(g) = dimg(dimg —1)/2 (1.6)

of solutions is expected generically on arbitrary level of any g, e.g. N(g) ~ § billion on
SU(3), so the exact constructions in (1.2) and (1.4,5) are only the first glimpse into a

generically-irrational affine-Virasoro universe of immense new structure.

Recently, a high-level or semiclassical expansion of the master equation [23] has been
developed, which is capable in principle of seeing all high-k£ smooth unitary constructions
on any simple g. In an application to the ansatz SO(n)giqy, the expansion shows an
isomorphism between this subset of affine-Virasoro constructions and the set of graphs of
order n [24]: We mention in particular the self-K-conjugate constructions, which are the
self-complementary graphs of graph-theory [26]. These constructions occur on SO(4n)
and SO(4n+ 1) with irrational conformal weights and half-Sugawara central charge, and
are expected to occur on any simple g with dim g =even. Conversely, the isomorphism
provides a group-theoretic and conformal-field theoretic organization of graph theory,

which may be interesting in mathematics.

In other directions, the master equation has been identified as an Einstein system
on the group manifold [16], and a world-sheet action [27] has been obtained for the
generic high-level smooth affine-Virasoro construction. Moreover, classical construction
of primary fields [27] has been studied in the generic theory, and investigation of the

superconformal subset of affine-Virasoro constructions has been initiated [28].

In this paper we obtain an action A(L) for the Virasoro master equation, and the
action is a C-function [29] on affine-Virasoro space. The solutions of the master equation,
that is, the conformal field theories, are fixed points of an associated flow which satisfies
a C-theorem [29]. As an example, we solve the high-level flow in SO(n)giqq, Wwhich is a
flow on the space of graphs of order n. The associated Morse polynomials are known

generating functions in graph theory.



The general flow also implies a method for prediction of sporadic conformal defor-
mations, which are apparently associated with collisions of level-families of conformal
constructions at sporadic levels: In a simple application of the method to SO(4)gia,, We
predict the deformations

SO(4)Y with ¢ =2
SO withe=1, SO(4)/SO(4)¥ with ¢ = 2. (1.7)

The prediction and discovery of another deformation, SU (3)3é with ¢ = 2, will be reported
elsewhere [30].

2 The Virasoro Master Equation

The general Virasoro construction begins with the currents J, of affine g [1, 2],
[T ) = i £ T 4 mGopbmino » man € Z (2.1)

where f,;,© and Gy, are respectively the structure constants and general Killing metric
of g. The current algebra (2.1) is completely general since g is not necessarily compact
or semi-simple. In particular, to obtain level z; = 2k; /2/1% of gy in g = @rg; with dual
Coxeter number h; = Q;/1?, take

Gapy = ®rknly  fac foa® = — ©1 Qi (2.2)

where 1!, and 1; are respectively the Killing metric and highest root of g;. The class of

operators quadratic in the currents,
T(L)y=L":JJyt= > Limym? (2.3)
mezZ

is defined with symmetric normal ordering, Ty, = *J,J, £ = T, [15]. The set of coef-
ficients L = L' is called the inverse inertia tensor, in analogy with the spinning top,
and the set of all coefficients { L} is affine-Virasoro spacet. The requirement that T'(L)

is a Virasoro operator

(L, 109] = (= m) L) 4 (= 1) (24)

restricts the values of L% to the solutions L% of the Virasoro master equation.

The master equation and central charge may be written as [15, 17]

B(L) =0 , c¢(L,)=2L"Pyeal = 2G4, L2 (2.5)

In a slight abuse of previous terminology, affine-Virasoro space is used here to denote the set of all

inverse inertia tensors { L%} in the quadratic form L% *J,.J, *, whether the operator is Virasoro or not.



where, following Ref.[15], we have defined the quantities®

1
6&1)([) — §[Cd[echd,efab [ab
(2.6a)

_ _Lab + 2Lachdeb o Lcheffceafdfb . Lcdfceffdf(aLb)e

_ 1
Pab,cd = <O’Ta(§)Tc(d 2)‘()) = Ga(ch)b - §fa(c€fd)bfGef- (26b)

For affine compact g, the matrix P, ¢ is non-negative when each level x; of g; is some
positive integer, and Py 4 is also invertibleY when each integer z; > 1. The explicit form
of the tensor Rcd,ef“b =R, faﬂb is given in [15], and some of its properties are collected
in Appendix A. In particular, the two forms of the central charge in (2.5) are related by
the master equation $%(L,) = 0 and the first identity in eq.(A.20). In what follows, we
refer to the quantity $(L) in (2.6a) as the 3-function.

The master equation has been identified in [16] as an Einstein-like system on the
group manifold: The central charge of the general construction is ¢ = dim g — 4R, where

R is the Einstein curvature scalar.

We remark on some general properties of the master equation which will be useful in

the analysis below.

1. The affine-Sugawara construction [2, 4, 8] L, is

ab .
ng xrdim gy
e e — , Cqg = _ 2.7
y oo o=y i 27

for arbitrary level of any ¢, and similarly for L; when h C g.

2. K-conjugation covariance [2, 4, 9, 15]. When L, is a solution of the master equation

on ¢, then so is the K-conjugate partner L, of L,

L =1~ L, o(L) = ¢y — (L) (28)

while the corresponding stress tensors T'(L,) and T'(L,) form a commuting pair of Vira-
soro operators. Repeated embedding by K-conjugation generates the coset constructions
2, 4, 9], the nested coset constructions or affine-Sugawara nests [20, 19] and the affine-
Virasoro nests [19].

3. Unitarity [9, 19]. Unitary constructions on positive integer level of affine compact
g are recognized when L% =real in any Cartesian basis, and corresponding forms in other
bases, since (J{™)" = J(=™ implies (L™)f = L=, Unitarity guarantees that c¢(L,) > 0,

8Our notation is AaByy = AaBp + ApB, and Ao By = Ay By — Ay B,

YAt level two of the vacuum module of affine compact g, the null states at integer > 1 are constructed
by application of non-positively moded currents on the states E&O) |0), where « is a simple root of ¢ [31];
these states are not in our list Téb_2)|0> = %J((Q_I)Jé)_l)|0>, and the argument is easily extended to

semi-simple g.



and K-conjugate partners of unitary constructions are also unitary with ¢(L,) > 0. The
double inequality
0 <c¢(Ly) <g (2.9)

follows for all unitary Virasoro constructions on affine compact g. Correspondingly, all
unitary high-level central charges on simple compact g are integer valued from 0 to
dimg [21, 23]. It is also known [9] that all unitary Virasoro constructions satisfying
0 < ¢(Ly) < 1 can be realized as coset constructions g/h. It follows that all unitary
affine-Virasoro constructions satisfying ¢, — 1 < ¢(L,) < ¢, are realizable as the K-
conjugate partners h C g of the coset constructions between 0 and 1. Moreover, all
unitary solutions with high-level central charge 0,1,dimg — 1 and dim g are known for

simple compact g [23].

4. Automorphisms [21, 23, 24]. The inverse inertia tensor transforms under the inner

and outer automorphisms of g as

b

(LY = Lw ™) (w ™, we Aut(g). (2.10)

It follows from the definition of the g-function in (2.6a) that

L) = LYW )" W (2.11)
so (L)% is an automorphically equivalent solution of the master equation when L% is a

solution.

5. Self K-conjugate constructions [24]. A large number of self K-conjugate construc-

tions
L® = Lid(wfl)ca(w’l)db , for some w € Aut(g) (2.12)

has been observed on SO(4n) and SO(4n-+1), which correspond to the self-complementary
graphs of graph theory. These constructions exhibit irrational conformal weights and half-
Sugawara central charge c¢(L.) = ¢,/2, and are expected to occur on any simple group

with dim g =even.

3 The C-Function and a C-Theorem

As seen in egs. (2.5-6), the basic tensors of the master equation and central charge are
Rab,cdef = RCd’ab‘if and P, cq = Priap, and it is clear from its definition that P, .4 is a
natural metricll on affine-Virasoro space {L%}. In fact, as noted in Appendix A, the R

tensor with all indices covariant

Rab,cd,ef = Rab,cdghpgh,ef (31)

IReparametrization covariant structures on affine-Virasoro space are discussed in Appendix B.



is a completely symmetric tensor. On the basis of this observation, we construct the

following Lagrangian for the master equation

A(L) = 6L LY Py oy — 2L LL Ry ey

(3.2)
= 2L Py ca(L — 23°(L)).
It is easily checked that
1 0A(L)
ab L) = _7Pab,cd )
where oL
1 a
ab.ef _ a b — cab _ cab
P Pef»Cd - 56(0560 = 50(1 T 9Led - 6cd (34)

so the master equation 3%°(L,) = 0 is the equation of motion of A(L) when the metric

Py ca 1s invertible.

The Lagrangian A(L) is in fact a C-function [29] on affine-Virasoro space, since
A(L.) = c(L.) (3.5)

follows from the master equation, the definition (3.2) and the forms of the central charge
in (2.5).

The symmetries of the C-function include the automorphisms of g
ALY =AL) , L' =wLw™" , we Aut(g) (3.6)

and accidental symmetries which correspond to sporadic conformal deformations [17, 24],
as we will remark below. The operation of K-conjugation is defined for any point L in
affine-Virasoro space as L = L, — L where L, is the affine-Sugawara construction on g.

The corresponding transformation of the action and its derivatives

A(L) = ¢, — A(L) (3.7a)

DA(L) _ DA(L) ab(F\ _ gab
ot~ oLm p*(L) = B (L) (3.70)
PAL)  PAL) (3.70)

9LabgLed QLAY Led
are easily verified with the second identity in (A.20). Egs. (3.7) show that K-conjugation
is not a symmetry of the C-function but it is a covariance of the equations of motion,
B%(L,) = 0, as expected. Such “quasi-symmetries” of the action are familiar in physics,

leading e.g. to WZW level quantization.

We remark for use below that the Laplacian of the C-function has the simple form

PAL) _ . 0B"(L)

— pab,cd —
AAL) = P g g L

6



1
= 12(dim g + 1)(§dim g— LI, L) (3.8)
where
L8 =2G oy — fac fod° (3.9)

is the inverse of the affine-Sugawara construction. The even simpler result

12dim g(dimg +1)
Cg

Cq

{c@*) - 2] (3.10)

AA(L,) = —

is obtained with eq. (2.5) at any fixed point L, on simple g.

It is natural to define an associated flow on affine-Virasoro space

L dLe 1, OA(L)
ab _ Qab _ _ __ pabced
LT = dt FEL) 12 P OLed

(3.11)

although the physical interpretation of the time variable ¢, and in particular the connec-
tion to exact renormalization group equations, has not yet been understood. It is clear

that all the solutions of the master equation are fixed points of the flow
L=, =0 , B*(L,)=0 (3.12)

and moreover that the flow automatically satisfies the identity

A _ i 0A ab,cd 0A o ab cd
A(L) = 15 8L“bp BLed 128%(L) Pap.caS* (L). (3.13)
The C-theorem
A(L) <0 (3.14)

follows for the flow on positive integer levels of affine compact g, since P, .4 is a non-

negative matrix in this case.

4 The Flow Near a Fixed Point

In order to study the flow (3.11) on affine-Virasoro space, it is convenient to define its

stability matrix S

ab — i ab,ef aZA(L) __aﬁab(L>
§%aall) = 121D OLefoL QL (4.1)

= 0%~ L Reg”

which controls the flow near a fixed point L = L, 4+ L according to

jtéLab = 8% 4(L,)S L™ (4.2)



when L is small. To organize the problem, we introduce the left and right eigenvectors

of the stability matrix
w(D)Swa(L) = si(L)eg(L) . Sa(L)x"(L) = si(L)x{"(L)  (4.3)

where i = 1,2, -+, dimg(dimg + 1)/2. It is easy to see from the definition (4.3) that we
may require

Wiy = Papecax” (4.4)

among the left and right eigenvectors. Choosing orthogonality in degenerate subspaces,

we also obtain the statements of orthonormality and completeness,

X3t =68 = L, PN = X Papeaxt = 67 (4.5a)
Z wibqvbzd - Pab,cd ) Z X?bXEd - Pab?Cd' (45b)
Moreover, we have the spectral resolution of S
8" ea(L) = 3 X" (L)si(L)tea(L) (4.6)
which implies that
1
S (L) = EAA(L) => " si(L). (4.7)
Finally, the eigenvectors dL¢ of the flow satisfy
d SL' SL (4.80)
dt
SL' = SLL,,  OL™ =3 sL'x® (4.80)

and, in particular, the corresponding operators x?°(L,)T,; of the fixed point L, are
relevant when s;(L,) <0
irrelevant when s;(L.) > 0
marginal when s;(L,) =0

where the categories correspond to unstable, stable and metastable directions as usual.

We list some simple properties of the eigenvalues and eigenvectors of S:

1. [:g = 0 and L,. The values of the stability matrix at L, = L, and f}g =0
S%u(Ly) = —0ag,  S%wl0) = +0¢g (4.9)

are computed directly from (4.1) and the second affine-Sugawara identity in (A.20). It

follows that all eigenvalues of S are degenerate in these cases, with values



This implies in particular that all operators § L%T}, are relevant operators near the affine-

Sugawara construction, while all operators are irrelevant at Eg = 0.
2. K-conjugate theories. The K-conjugation identity (3.7¢) may be written
S (L) = =S8%4(L). (4.11)
It follows that
{si(L)} = {=s:(L)} (4.12)
and we may choose
X (L) = x2(L). (4.13)
Physically, this means that a relevant operator x%(L,)Ty, of the fixed point L, is an

irrelevant operator at the K-conjugate fixed point L, and vice-versa, and that every

marginal operator of L, is also a marginal operator of L,.

3. Universal +1 eigenvalues. For all fixed points L, the relations **
Sea(Ly) LS = =L, S8ey(L.)LS = +L% (4.14)

are easily obtained from the definition of S in (4.1), the master equation (2.5-6) and the
K-conjugation identity (4.11). It follows that

XE(La) = L2, x5 (L) = L
are right eigenvectors of S(L,) with s; = —1 and sy = +1, unless L, = 0 or L, =0.

4. Zero eigenvalues of S. According to the definitions (4.1) and (4.3), any eigenvector
x&(L,) with s(L,) = 0 solves the linearized master equation [19]

Xe' (L) = LG (Ly) Reaer™ (4.15)

so the marginal operators & (L.)T,, of L. correspond to continuous solutions L2 +
5Lx%’)(L*) of the master equation near L,. Among these, we must distinguish the
quadratic deformations [17, 19, 24, 25] from those directions associated to the physi-
cally irrelevant orbit Aut(L,) of Aut(g) on L,.

5. Aut(L,). The infinitesimal automorphisms of g
wa' = 8 + € fea” + O(E?) (4.16)
induce the infinitesimal transformations 6L = L' — L

SLP(E) = L f,Ped (4.17)

**In fact, the master equation 3%°(L,) = 0 can be resolved in the eigenvalue basis L’ = >, L x*(L,)
as L (si(L.)+1) = 0, which shows the usual number 2V N(g) =dimg(dimg+1)/2 of generic solutions,
as expected, according to s;(L,) = —1 or L% = 0 for each i.

9



according to eq.(2.10). The corresponding finite transformation of the S-function is given

in (2.11). The infinitesimal form of this relation is that the stability matrix satisfies
S g(L)OL(€) =0 (4.18)
since % (L + 6L) ~ (L) — 8%.4(L)6L. Tt follows that

XL, €) = 6L™(€) = LU f"e, (€)= 0 (4.19)

is a set of zero-eigenvalue eigenvectors of S, unless §L(§) = 0 for some £. Vanishing of

dL(&) for some & reflects a symmetry of L under some Lie group h C g, so we find
(dim g — dim h) marginal operators x*(L,,&)Ty

with £ € g/h when L% is Lie h-symmetric. These marginal directions are not physically
relevant because they follow the orbit Aut(L,) of Aut(g) on L., and the directions can
in principle be removed by “gauge fixing”. Any higher accidental symmetry of the C-
function (3.2) will similarly produce further marginal directions of the form (4.19), which

must then correspond to quadratic deformations.

6. Self K-conjugate constructions. According to the characterization of self K-
conjugate constructions in (2.12) and the K-conjugation identity (4.11), the non-zero
eigenvalues of a self K-conjugate construction L, will occur in +s pairs, so that

> si(Ly) =0 (4.20a)

XP(L,) = X% (L) wws” , w € Aut(g). (4.200)

As a check, we note that the self K-conjugate constructions, which have c¢(L,) = ¢,/2,

are visible as 0 = 0 in the general expression
di 1
9+ D (o(r.) - & (121)

Cq 2

ZSi(L*) _ _dim(

which is obtained from eq. (3.10) and (4.7) for the trace of S at a fixed point on simple
g.

7. Connection with the T-states at level 2. The dimension of the eigenspace of S is
dimg(dimg + 1)/2, and dimg—dimh of these eigenvectors have been understood above
as the directions of Aut(L,). Assuming unitarity, it is shown in Appendix C that the
remaining eigenvalues and eigenvectors of S are associated to the T-states X‘“’Téb_ 2 |0) at

level 2,
LOT D10y = ATy, ?10) (4.22)

where [ = 1,2, --- dimh+dimg(dimg — 1)/2, and
S = 1—A[ (423)

10



relates the eigenvalues of S to the conformal weights of the T-states. For example, note
that the T-states L(=2|0), L(-2|0) with x* = L% or L® and A = 2 or 0 correspond to
the universal eigenvalues —1 or +1 discussed above. It is also shown in Appendix C that

all the T-states are L-Virasoro primary except the state L(_Q)\O).
8. Quadratic deformations and (1,0) states. Let L®({\})T,, be a quadratic de-

formation with continuous parameters {A}. It follows from the discussion above that
the quadratic conformal deformation operators {z2-L®({\})T,} are the T-operators
{x&T,} with s = 0 and hence A = 1. Since all the T-states XSbTéljz)\O) with A =1 are

L-Virasoro primaries, it also follows that
Theorem: All quadratic deformation operators create (1,0) states out of the vacuum.

This was observed for the quadratic deformations Cartan g#, SU(2)¥ and (SU(2), x
SU(2),)%, x # 4 in [19].

9. c-changing deformations. Since all quadratic deformation operators on the vacuum

are (1,0) states, it follows in particular that [19]
. 1
LASLT 210y = 40¢l0) =0 (4.24)
for these states, where dc is the change in the central charge due to an infinitesimal
quadratic deformation L% + §Lx@"(L,). Then we have the following

Theorem: The master equation contains no explicitly unitary c-changing deforma-

tions.

This conclusion may be circumvented, for example, by working in the non-unitary

Hilbert space of non-compact affine g, and projecting to unitary subspaces [32].

5 Closed sub-flows

The infinitesimal flow from L to L + §L during time 0t satisfies
SL*™ = p**(L)ot. (5.1)

As we will see in the following examples, iteration of the infinitesimal flow (5.1) shows that

a closed sub-flow can be defined for each consistent ansatz [19] of the master equation.

a) Unitary sub-flows. The simplest consistent ansatz of the master equation is L% =
real in any Cartesian basis, which guarantees unitarity on x € N of affine compact g [19].
The ansatz is consistent because 3%°(L) is a real function of L in Cartesian coordinates.
By exactly the same mechanism, the flow equation (3.11) or (5.1) maintains L%(t) = real
for ¢ >ty when L%(to) = real is the initial condition in a Cartesian frame. Put another

way, the flow ansatz

L% = 3%(L) , L real in any Cartesian basis

11



is a closed sub-flow. This closed flow, and corresponding forms in other bases, contains

all the explicitly unitary fixed points of affine-Virasoro space.
b) Flow in SO(n)giag. If L = §7°), is diagonal on simple compact g with 1, = dap,
then the (-function
BUL) = =Aa(1 = 2kX)6” + 3" Ao + Ao — Aa) fea® fed” (5.2)

cd
is not diagonal in general: Such a diagonal ansatz is not generally consistent for the

master equation or the flow.

In the standard Cartesian basis of SO(n), there is a consistent diagonal ansatz for
the master equation called SO(n)giqq [24]. The ansatz is consistent because in this basis
fa® # 0 for at most one ¢, given a and b, so that 3%°(L) in (5.2) is also diagonal. In this
case, the flow (3.11) or (5.1) remains diagonal when the initial condition is diagonal, and

the flow ansatz
SO(M)ding © Ao = —[Aa(l = 2kX) = Y Ae(2X0 — M) (fua™)?] (5.3)
cd

is a closed sub-flow. As reviewed below, the fixed points of this flow are isomorphic to

all the graphs of graph theory [24].

¢) H-invariant sub-flows. In this way, all known consistent ansétze can be promoted to
closed sub-flows, including the basic ansatz [19, 23], the maximal symmetric sub-ansatz
(19, 21] and the H-invariant ansitze L% = Lid(wl}l)ca(wﬁl)cb of [33], for all wy € H
where H is any subgroup of G (not necessarily a Lie subgroup). The corresponding
closed H-invariant sub-flow

L =po(L) | L% = Lwi") (wih)e , Ywp € HCG (5.4)

follows as in [33], because F(L) transforms as L transforms under Aut(g) (see egs. (2.10)
and (2.11)).

6 Flow on the space of graphs

As an example, we study the closed sub-flow (5.3) in SO(n)gieg, Whose fixed points

(solutions of the master equation) are isomorphic to the set of all graphs of order n [24].

In the standard Cartesian basis of SO(n), the ansatz SO(n)giqy is [24]

) L.
L* = L9 = 26,67 6.1
s, (6.1)
where 1 <4 < j < n. In this notation', the flow equation (5.3) becomes
; T . .
SO(N)diag = lij = —li;(1 —1;;) + o > (Limlmg = Lij(Lim + Ujm)) , 1< j (6.2)
m#i,j

MThe variable L;; = l;;/z is employed in [24].

12



where the symmetry convention [;; = [;; and [;; = 0 has been adopted to simplify the
summation in (6.2). The constant 7 is 1 for flow on SO(n > 4) and 2 for SO(3), and
x = 2k/1¢? is the invariant level of SO(n).

The fixed points [}; of SO(n)giag have been studied to all orders in 1/x (semi-classical
expansion) and a number of exact solutions have been obtained [24]. More generally, we

collect some features of SO(n)giqy which will be relevant in the analysis below [24]:

a) The set of fixed points in SO(n)giqeg is isomorphic to the set of all labelled graphs

of order n, because the fixed points are characterized by their classical limit

where 6,;(G,,) is the adjacency matrix of each labelled graph G, of order n. The central
charge at high level is
c(107(G,)) = dim B(G,,) (6.4)

j
where dim F(G),) is the number of edges of the graph G,. In this way, all levels of a

given high-k£ smooth conformal construction are named by a single graph.

b) The labellings of a labeled graph G, are physically equivalent members of Aut(I*(G,,))
(the residual SO(n) automorphisms of SO(n)giq,), so that each unlabeled graph is a phys-

ically distinct level-family of chiral conformal field theories.

c¢) The graph of the affine-Sugawara construction on SO(n) is the complete graph (all

edges) of order n. K-conjugation operates on the graphs as 6,;(G,) = 1 —6,;(G,), where
G, the graph of the K-conjugate theory, is called the complement of G,, in graph the-
ory. The self K-conjugate constructions in (4.20) correspond to the self-complementary
graphs, which satisfy G,, = G, as unlabeled graphs. These occur only on SO(4n) and

SO(4n + 1) with half-Sugawara central charge.

d) The 1/x expansion and the exact solutions provide strong evidence that each fixed
point [};(G,) is unitary (real) down to some finite critical level 7o(Gy,), which is generically

quite low.

The C-function and flow equation (6.2) in SO(n)4iq can also be analysed to all orders

in 1/x, but we restrict ourselves here to the leading order

A1) =3 [305)? - 20)?] (6.5)
1<J
(0) _ 4(0) (0)
lij = —lij (1-— lij ) (6.6)
whose flow
lz(;')) (o)

©) gy
lij (t) - l(o)

]

o)+ (=10 (ern =0 (6.7)

ij
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is immediately obtained for initial condition lg)) (to). The schematic flow of each lg-]), with
a minimum at 0 and a maximum at 1, is shown in Fig. 1. The flow pattern can also be

deduced from the reduced stability matrix
Sl (G)) = 6ud(1 — 205(Gn) (6.8)

which follows from the infinitesimal flow 6i§?) = —S,»j,kl(l(o)*(Gn))él,(fl)). The eigenvalues
of S are s = —1 for 0;; = 1 and s = +1 for 6;; = 0.

At high level, we conclude that each edge ij (6,;(G,) = 1) of any graph G,, corresponds
to a relevant operator T,, = T;;;; of the fixed point 19%(@G,,) and each missing edge 1.
(0r7(G,) = 0) of G, is an irrelevant operator T, ;. It follows that

N,(G,) = number of relevant operators of 1V%(G,) = dim E(G,,)

”(”2_” — dim E(G,,)

Ni(G,) = number of irrelevant operators of [(9*(G,) =

Ny(G,) = number of marginal operators of [(9*(G,) = 0.

The K-conjugation theorems in Section 4 are clearly illustrated by the graphs. As in
eqs.(4.11-13), the K-conjugate graphs G,, and G, have relevant and irrelevant operators
interchanged, since their edge sets are complementary. The graphs of self K-conjugate
constructions (the self-complementary graphs) have dim E = $dim g = n(n — 1)/4, and
so N, = N;. In accord with eq.(4.20a), the trace of S vanishes for these constructions
since |s| = 1. Moreover, each relevant operator of a self-K-conjugate graph is mapped to
an irrelevant operator by the graph relabelling w, which is the SO(n) automorphism in
eq.(4.20).

The physical flow of graphs (excluding flow to large lg?)) is a decay of each edge of
any G, towards a graph G/, with one edge less. As simple examples, the flow of graphs
in SO(3)4iag and SO(4)4iag is given in Figures 2 and 3, though, for simplicity, we have
shown only the physically distinct, unlabeled graphs in the latter case (see also Section
8).

In each case, the flow of graphs is shown as beginning near the affine-Sugawara con-
structions, but the flow can be followed from any graph. The C-theorem (3.14) is clearly
visible in the flow since c¢(I(0*(G)) =dim E(G) decays in parallel with the edges. We also
remark that the graph SO(4)#[d, 4] in Fig. 4 is a self K-conjugate construction.

14



7 Morse polynomials and Graph Theory

We define the Morse polynomial M and the Witten index v for the flow on level = of

affine g as*
M(t;g,) = > ™ (7.1a)
FP(g)
v(ge) = M(=13g,) = > (=D (7.1b)
FP(gz)

where the sums are over all the fixed points of the flow, that is, all the solutions of the
master equation on level x of affine g, and N, is the number of relevant operators at each

fixed point. The quantities (7.1) can also be defined on any closed sub-flow.

As an example, we consider the flow of graphs in SO(n)gi.,, and, following the usual
strategy, we compute the quantities (7.1) in the semi-classical limit, which is high level.
The results

M(t; SO(n) giag) = (14 t)"n=D/2 (7.2a)

V(SO(N)diag) = 0 (7.20)

follow immediately since N, =dimF for the graphs. The form of the Morse polynomial in
(7.2a) is known in graph theory as the generating function for labelled graphs. The value
v = 0 of the corresponding Witten index in (7.2b) is characteristic of the unbounded
(cubic) C-function (6.5) since exp(+A(L)/12) cannot be a supersymmetric ground state

in this case and supersymmetry must break [36].

The unbounded C-function (3.2) leads us to conjecture that v(g,) = 0 in general. It
is also likely that M and v are invariant under smooth deformations of the level z, so

the semiclassical results (7.2) may be exact at finite level.

We also remark on the Morse polynomials and Witten index for unlabeled graphs.
These polynomials are relevant for a space which is modded by the residual SO(n)
automorphisms of SO(n)giee, Which keeps only one physically distinct representative of
each conformal field theory. In this case, the Morse polynomials are the generating

functions of unlabeled (U) graphs, e.g. [26]

MU(t, SO(l)diag) =1 (73@)

.]\4[]@7 SO(Q)diag) =1 +1 (73b)

My (t;S0(3)giag) = 1+t + 1>+ ¢ (7.3¢)

My (t; SO(4) giag) = 1+t + 262 + 3% + 2t + 17 +¢° (7.3d)

My (t; SO(5)diag) = 1+t + 262 + 4% + 6t* + 6t° + 4t + 265 + 7 + ¢1° (7.3¢)

*Morse theory has been used to study the renormalization group flow in [34, 35].
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where the symmetry about the center of each polynomial is K-conjugation covariance. It

also follows from known results in graph theory that
VU(SO(n)dmg) = MU(—l; SO(n)dmg) = gn (74)

where g, is the number of self K-conjugate constructions (self-complementary graphs) in

SO(n)dmg.

8 Prediction of sporadic deformations

The physical interpretation of a flow from the neighborhood of a fixed point L] to another
fixed point L} is that a flow-path exists between the two conformal constructions, through
the hills and valleys of the C-function. When two such constructions are flow-connected
in this way, the C-theorem guarantees that ¢(L}) < ¢(L7).

At high level, the flow connections are relatively simple. For example, all unitary
high-level central charges on simple compact g are integer-valued from 0 to dim g [23],
so that the selection rule —Ac(L,) € N will be observed, as seen in the flow of graphs in
Figs. 2 and 3.

As the level is lowered, however, the central charges of two or more high-level flow-
connected constructions may cross, indicating that at least one local maximum and
minimum have coalesced into points of inflection, which correspond to new marginal
operators’ that are conformal deformations: A one-dimensional version of such a cross-

ing is shown in Fig. 4, where the first picture is the effective C-function (6.5) of a single
lg-)) in high-level SO(n)giqg-

We are led to expect sporadic quadratic deformations for those levels at which two
or more constructions, flow-connected at high level, have coincident central charge. The
flow-connections and central charge crossings may be studied in closed sub-flows for
simplicity. To be more precise, we consider only the first crossing® as the level is lowered,
since the situation is more complicated for second or higher crossings. Central charge
crossings of constructions which are not high-level flow-connected should not produce
deformations, since they live in path-disconnected neighborhoods of affine-Virasoro space.
Moreover, the resulting conformal deformation should explicitly contain all the theories,

including automorphic copies, which have coalesced at that point.

As a simple example, consider Fig. 2, which shows the flow of labelled graphs in

high-level SO(3)4iqg- Since any theory can flow to a representative of a lower theory in

"The new marginal operators are distinguished from those of Aut(L,), which are present at all levels

(or not present, with appropriate gauge fixing or ansétze).
IThe first crossing of two flow-connected constructions may also mark the radius of convergence

20(Ly) [24] of the high-level expansion of these constructions.
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this case, any central charge crossing should be a quadratic deformation. Fig. 4 shows

the central charges of these constructions at all levels, including the crossing
c(SO(2)4) = ¢(SO(3)4/SO(2),) =1

at level four. In fact, this is the known quadratic deformation SU(2)¥ [17].

According to the graph flow in Fig. 2, all six graphs (3 automorphically equivalent
copies of SO(2) and 3 copies of SO(3)/SO(2)) are coalescing at level 4, so all six theories
must be points of SU(2)¥. To check this, we used an alternate form? of SU(2)¥

T(IH(6)) = g D ll0) 2750, e =1 (8.10)
lio(¢) = ;(1 — V/3cos ¢ + sin ¢) (8.1b)
ha(6) = 5(1 — 2sin ) (8.10)

lys(¢) = ;(1 + V3 cos ¢ + sin @) (8.1d)

with a? = ¢? and 0 < ¢ < 2w, which shows that this manifold of fixed points is a
circle 9. The circle is shown in Fig. 5, with the location of all six rational constructions
predicted by the method. In connection with our remarks in Sections 3 and 4, we have

also checked that the symmetry group O(2) of the circle is an accidental symmetry of
the SO(3) C-function at level 4.

Moving on, we apply the method to SO(4)gisg- The central charges of all the level
families in SO(4)4iqy are shown in Fig. 6, including the self K-conjugate construction
SO(4)#[d,4]. As the level z is lowered from asymptotic values, the first central charge

crossings
SO(4)/(SO(2) x SO(2)) ~ SO(3) , SO(4)/SO(3) ~ SO(2) x SO(2) (8.2)

are observed at level = 3+1+/13. Tt is clear from the graph flow of Fig. 4 that these pairs
of constructions are not flow-connected at high level, so no conformal deformations are
predicted at these points. To test this negative prediction, we checked that the stability
matrices in SO(4)4qy Of these constructions have no zero eigenvalues at this level, as

expected.

§The connection with the form of SU(2)% in [19] is: l1p = 4a), lig = 4a2(L*~% — L*%), lyg =
4o (L= 4 L), —1/12 < Aot < 1/4.

YThe action of K-conjugation on the circle of Fig. 5 is reflection through the origin. The action of
the residual automorphisms (S3) of SO(3)giag is reflection about each of the three axes shown in the
Figure. It follows that the points marked by crosses in Fig. 5 are automorphically equivalent copies of
a single self K-conjugate construction in SU(2)f. Modding by Ss, each 7/3 arc from a g/h to an b’ is

a fundamental region.
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On the other hand, the triple crossing at level 4
r=4: SO(4)/(SO(2) x SO(2)) ~ SO(4)#[d, 4] ~ SO(2) x SO(2) (8.3)

involves constructions which, according to oval (a) of Fig. 4, are flow-connected at high

level. We predict, therefore, a new quadratic deformation, which we call
SO with ¢ = 2. (8.4)

As a check on the prediction, we computed the stability matrices in SO(4)gq, of the
constructions in (8.3). They all show zero eigenvalues at level four as expected. To learn
more about SO(4)¥, we consider in Fig. 6a the flow of labelled graphs within oval (a) of
Fig. 4. The predicted deformation should contain all 18 constructions as special points,
including the 12 copies of the self K-conjugate construction. Moreover, we can predict
that SO(4)7 will be closed under K-conjugation, as was SU(2)¥, since the set of graphs

in Fig. 6a is closed under K-conjugation.

There are two more first crossings at level 2,
r=2,c=2: S0O(4)/SO(2) ~ SO(4)/SO(3)/SO(2) ~ SO(3) (8.5a)

r=2,c=1:80(2) ~ SO(3)/SO(2) ~ SO(4)/SO(3) (8.5b)

which, according to ovals (b) and (c) of Fig. 4, are flow-connected at high level. Since
the constructions in (8.5a) are related to those in (8.5b) by K-conjugation, we predict

the K-conjugate pair of quadratic deformations
SO with ¢c=1, SO(4)/SO4)¥ with ¢ = 2. (8.6)

Further structure in SO(4)§é is seen in Fig. 6b, which shows the labelled graph flow
in oval (b) of Fig. 4. All 22 constructions should be found as points in SO(4)¥. It is
possible that the known deformation SU(2)¥ is irregularly embedded in SO(4)¥, but
the predicted deformation SO(4)¥, which contains SO(4)/SO(3), is clearly larger than
SU (2)?. The predicted deformation may also be related to the known deformation
(SU(2), x SU(2),)* at x = 2 [19], but the two cannot be identical since the known

deformation is closed under K-conjugation.

There are many central charge crossings in affine-Virasoro space. As an example, the
list
c(SUB)3/(U) xU)))=cU(1) xU(1)) =2 (8.7a

c(S0(2n +1)2/[SOQ))") = «([SOQ)]") = n
c(S0(2n)2/[SO2)]") = c([SO@)" ') =n — 1
c([SO(2)]") = ¢(SO(2n),/[SO2)]" ) = n (8.7d
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records the crossings of simple g, /Cartan g with U(1)?, 0 < p <rankg, x € N. This

suggests the candidate deformations
SUBY , c=2; SO2n+1¥ , c=n (8.8a)

So@2n)Y , c=n—1; S0(2n)/SO02n)Y , c=n (8.8b)

but it is generally difficult to verify high-level flow connection and first crossing, even in
closed sub-flows, unless all the fixed points of the subspace are known. The list (8.8) is
at least partially correct, however, since the known [23] deformation SO(2n + 1)¥[d, 6] is
presumably included in SO(2n + 1);‘7E . Moreover, we will report elsewhere [30] a sub-flow
in which SU(3)/[U(1)]? and [U(1)]* are flow-connected with a first crossing at level three,
and we will obtain the exact form of the predicted deformation SU(3)5 .

We finally remark that all known sporadic quadratic deformations, including the
predictions of this section, are found on integer level of affine g such that the affine-

Sugawara construction has integer central charge.

9 Conclusions

We have constructed an exact C-function on affine-Virasoro space, and the associated
flow on the space of theories satisfies a C-theorem. The fixed points of the flow are
the conformal field theories of the Virasoro master equation. The flow defines relevant,
irrelevant and marginal operators at the fixed points, and emphasizes the relations (and
collisions) among the conformal field theories of affine-Virasoro space. As an example,

the system was solved for high level SO(n)giqq, which is a flow on the space of graphs.

Although the resemblance is striking, it is not yet clear whether the L% flow on
affine-Virasoro space is an exact renormalization group equation. The L% flow does
not correspond to covariant perturbation of the WZW theory by the marginal operators
g®J,Jy, since all L% flow directions are relevant near the affine-Sugawara constructions,
and the eigenvalues of the stability matrix are reparametrization invariants. Since L%J,J,
is a set of chiral stress tensors, it is plausible that the L% flow is the renormalization

group flow computed in a light-cone Hamiltonian perturbation theory.

In this connection, the quantum analogue of our system is constructed as follows.

The natural Langevin equation |

Lt = B (L) + Pt (as(O)a(t))) = Pascad(t = ¥) (6.1)

ILangevin quantization of the renormalization group equation was suggested in [37] and studied in

[35]. The normalization of the noise in (9.1) follows the convention of [38].
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does not equilibrate to its formal Boltzmann factor exp(—A(L)/6) because the C-function
A(L) is bottomless. The Greensite-Halpern-Marinari-Parisi stabilization [39] substitutes

the Fokker-Plank Hamiltonian and/or its equivalent fifth-time action

1 1 0 , .
H; = §P6d’abQZanb ; Qap = T 9L + i Pap caf3* (9.2a)
— 1 r ab rcd ab cd 9 ab
=5 / AL Paycal™ + B P a3 + 556", (9.2b)

This stabilized system chooses the normalizable positive energy-ground state of Hs and,
with the usual fermionic scaffolding, corresponds to broken supersymmetry. Moreover,
for fixed initial and final conditions, the averages of the fifth-time action (9.2b) may be
computed from its non-equilibrating Nicolai map (9.1) [38, 40]: With L(t1) = L,(t1) = Ly
and L(ty) = Lo, the relation [38]

(exp ’ At Jap L%) 5y = (6(La — Ly(ta)) exp : At L")y /(6 (Lo — Ly(t2)))y  (9:3)

t1

is completely general for equilibrating or non-equilibrating maps.
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Appendix A. OPE’s and associativity identities

In this appendix, we collect operator products among some composite operators in
the affine vacuum module. The basic OPE’s were given in [15], but the treatment of spin
3 operators was incomplete, so we list the complete results and also collect some useful

associativity identities among OPE coefficients.

The OPE of two currents is

TV h(w) = 2 ifu [+ 500t (e~ )LL)
1+ 32— )0 Talw) + (= 0) X ) + Ol(z = w)’ (4.1)

which defines the spin-2 composite operators T,,(2) = Tp,(2) and the spin-3 operators
Xau(2) = —Xpa(2), both operators being quasiprimary. The 2-point functions of T, and
Xab

Pab cd Hab cd
To(2)T. = ————  (Xu(2)X, = A2
(Tl Tw) = 25 (Xo(2) X)) = 2k (A2)
are computed from (A.1), where
1
Haped = GajaGyle — éfabefcdfGef o Hapca = Hegap (A.3)
and Py cq is given in eq. (2.6b).
Next, we compute the OPE of T, with J.,
Too(2) o) = Mapo | —— + L5, + 282 | Jy(w)+
ab c ab,c (Z _ U))2 (Z _ w) w 9 w d
de 1 3 de
Nab,c m + Zaw Tde(w) + Wabc(w) + Kab,c Xde<w) + O(Z - w) (A4)
where .
Mab,cd = 5(adGb)c + §fe(adfb)ce (A5)
Nab,cde = %5(a(dfb)ce) (A6>
and (A.4) serves as a definition of the spin-3 composite operators Wop.(z).
Finally,
Pab cd 1 1 1 9
Ta Tc = ’ ab,c ¢ aw Je
() ealw) = = 5a  Qubvea l( AT L e 1 AR
R | ] O | Toy(w)+
ab,cd ( _w)2 2(2 ’LU) w ef
efg efg(w) ef Xef(w) 1 A
+Sab,cd (Z — w) Uab,Cd (Z —_ w) + O( ) ( 7)



where ), S and U are antisymmetric under the interchange (ab < ¢d) while R is symmet-
ric. This OPE differs by the X, term from the one given in [15], where the explicit form
of @, R and S is given. The correct value of S is 1/6 of the result given in [15]. The con-
clusions of references [15, 19] are not changed by the extra term since U is antisymmetric
and X}772[0) = 0.

Some relevant 3-point functions are

ifabeGec
Jo(21)Jp(29)J.(23)) = ——— AR
() () Ta) = 2 (A8)
Pab cd
(Tap(21)Je(22) Ja(23)) = 55 (A.9)
212713
ao,C fG [
(Top(21)Toa(22) Ju(23)) = ng,# (A.10)
219713723
Ra Ci ghP (5
(Tap(21)Tea(22)Tef(23)) = % (A.11)
12713423

A partial list of associativity identities among the OPE coefficients is as follows:

My Gea = Pap,cd (A.12)

ch,eghpab,gh = Qab,cdgGge = Qab,cd,e (A-13)
Koy /" Hyp g = ;Pab,g[dfe}cg (A.14)

Qabcde = 1Pabg(cfa)e’ (A.15)

Nav. " Qghcae + Neat" Qabghe = —ifer?Qabedy (A.16)
Ubed” Hypor = | Map, 7 Prd ge + (1), b 1" Qed.ghe — (ab « cd) (A.17)
Rabcd” Pyt = Raves” Pyhcd (A.18)

Rabed”" Pynef = Map £ Pog ge + ;Nab,fgthd,gh,e + (ab < cd). (A.19)

We remark in particular that the covariant tensor Rgp caer = Rab,cdgh Py ef is completely

symmetric under the interchange of any of its indices, according to (A.18).

Some other useful identities are
Rab,cdefGef - 2Pab,cd7 LZfRef,ade = 252?

LZchd,ab = Gab ) Lngcd,abe =0 (A20)

where L;b is the inverse inertia tensor (2.7) of the affine-Sugawara construction.
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Appendix B: Covariant Structures on Affine-Virasoro Space

Covariant forms of the C-function (3.2), the master equation (2.6) and the flow equa-
tion (3.11) under reparametrizations L'(L) are quite ordinary. The metric Py 4(L) and
the third rank tensor R 4%/ (L) are obtained in an arbitrary frame L/(L) by transforming
from the original frame of the text, for example

, oLl QLI

wbcd(L') = meef,gh- (B.1)

The metric has vanishing Riemann tensor in any frame since it is globally flat in the

original frame.

The action is defined to transform as a scalar
A'(L") = A(L) (B.2)

which determines its form in any frame. The covariant flow equation is

'abi_i ab,cd aA(L)
L = — S Pl

B = 3"(L) (B.3)

since, as defined, the G-function is a contravariant vector. The covariant form of the mas-
ter equation is 3%°(L,) = 0 and the central charge is invariant under reparametrizations.

The covariant flow near a fixed point L = L, + 0L is

DL*™ = -8 .4(L,)o L (B.4)
DyOL™ = 0,0 L% 4 0L o 0y L (B.5)
1 OA(L)
® (L) = —DyB%(L) = —P®*' D B.
S cd( ) cdﬁ ( ) 192 cd (9Lef ( 6)

where Dy, is the covariant derivative with respect to L, D, is the covariant time deriva-
tive along a line of flow and Fabvcdef is the Christoffel connection of Py .q4(L). Moreover,
the stability matrix S in (B.6) is a mixed second rank tensor, so that its eigenvalues are

reparametrization invariant.

The invariant distance along a path P between two points Ly and Lo in Affine-Virasoro

space is

d(L1, Ls; P) = / " ds\/ Lo Py oq (L) Lt (B.7)

where overdot is derivative with respect to s, which parametrizes the path L(s) from
Ly to Ly. The distance is independent of reparametrizations s'(s), L'(L) and is real on
xyr € N of affine compact g. The “flow distance” between two points on a line of flow is
obtained from (B.7) with s = t.
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Appendix C. The stability matrix and the affine vacuum module.

In this appendix we analyze level two of the affine vacuum module, as organized by
some solution to the master equation. In particular, we relate a subset of eigenvalues of
the stability matrix S to a subset of conformal weights at this level. Let V5 be the vector
space spanned by the states J{~2|0) and Té; 2)|O> with mode number two. We restrict
our discussion to integer level x > 1 of affine compact g so that all the states in V; are
linearly independent [31] and dim Vo= D + D(D + 1)/2, where D =dim g.

Let L% be a unitary solution of the master equation and L™ = L®T" the modes of
the corresponding Virasoro operator, so that (L(™)f = L&) Let L™ be the commuting
K-conjugate Virasoro algebra L = Lg”) — L™ The following commutation relations
are obtained from the OPE’s of Appendix A,

(L0, g = —nMEIT 4 N (C.1)
(L ) = =] = M = NPT (C2)
(L™ T = Pgb(m3 — M) 8min0 + ngc (m* 4 n? —mn — 1)J™m 4
(mz_") RadeTc(Zanrn) + S, cdeW m+n 1 U, X (m+n) (C.3)
Lo, £ = (C.4)
where the quantities
Py, = LidPab,cd ) Mab = Lindd,ab , Py =M, Gy (0-5)
NS = LN o™ . Qu = LY Qupac’ , Rap™ = LY Ry o™ (C.6)
are linear in L®. We also need J™2°|0) = T/3=710) = W7Z7%0) = X2772[0) = 0,

where |0) is the affine vacuum.

Consider first the following states in V5,

1L,) = LUV I 0) = M IT2|0) + N1 |0) (C.7a)
£a) = LEVIY(0) = (88 — M) J210) — N ?)0) (C.7b)
and the inverse relations
“210) = |L,) + |La) (C.8a)
NLT210) = (88 — M) | L) — ML) (C.8b)

Let Vi C V; and V; C V, be the vector spaces spanned by |£,) and |£,) respectively.

Proposition 1: V; is orthogonal to V.
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Proof: (L4|L;) =(0]JWLOLED 7V (0y =(0[JWLEY L g |0)= 0, using (C.7),
(C.4) and (C.1).

Let Ny, Ny be the number of zero, one eigenvalues of the matrix M,
Proposition 2: dimV; = D — Ny = rank(M), and dimV; = D — N; = rank(1 — M).

Proof: Evaluate the inner products
(Lol Ly) = (O[T LOLED JED10) = 2M,°G (C.9a)

(Lol Ly) = (O|JDLMOLED JED10) = 2(6¢ — M) G (C.9b)

It follows from (C.9a) that the number of linear relations among the states |£,) is equal to
the number Ny of zero eigenvalues of M, since G, is invertible. Then, dim span{|L,)}=
D — Ny =rank(M). The conclusion for dim V; follows in the same way from (C.9b).

Next, evaluate (£,|L,) = 0 using the right sides of (C.7a,b) to obtain
NN Py oy = 2M G (M, — 6,°). (C.10)

Consider {N,"} as a collection of D vectors (indexed by a), each with D(D + 1)/2

components (indexed by bc). The inner product on these vectors,

(Na|Np) = (N Prger No = =N, P ey N,/ (C.11)
is positive because Py qq is positive definite and N, is pure imaginary (see (A.6)). This is
the inner product in the space of right eigenvectors of the stability matrix (see eq.(4.5a)).

Proposition 3: {N,"} generates a vector space Vi with dim Vy = D — Ny — Nj.
Proof: It follows from (C.10) that the matrix of inner products (NV,|Ny) has Ny + Ny

zero eigenvalues, which correspond to the zero, one eigenvalues of M.

Remark: In [33], it is shown that Ny + N7 =dim h where h C g is the Lie subgroup

symmetry of the construction L.
The stability matrix
1
Sabcd — 5(5(zc(sbd 4 5ad5bc> o Rcdab (012)

is defined in (4.1).

Proposition 4: S%,; has at least dim Vi zero eigenvalues. The right eigenspace cor-

responding to these eigenvalues is V.

Proof: We compute L NabCTb(; 2)|0> in two ways. The first computation uses (C.8b),
(C.1) and (C.7),

LONLTIP|0) = (88 — ML)LO|L,) — MO|L,) =
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= (M, — (M?),") I 210) + N1 20y, (C.13a)

The second computation uses (C.3),
LONSTED10) = N [Quetd210) + R 7 20y (C.13b)
Matching the right hand sides of (C.13a,b) we obtain (C.10) and
N = N, %Ry (C.14)

It follows from (C.12) and (C.14) that Vy is a right eigenspace of S with zero eigenvalue.

Proposition 5: When ) is a left eigenvector of M," with an eigenvalue which is either

one or zero, then ¢*N,” = 0.
Proof: Consider first the case when ¢*M? = ¢*. Compute the norm of the state
Y LEDJD)0),
[ LD IPN0)* = w0l SV LWL 7V 0) =

= 22t (6¢ — M,%)(0|JM JD]0) = 0 (C.15)

which implies that the state is identically zero, L% J(-D|0) = 0. On the other hand,
this state has the explicit form

0 = LWy g0y = v [(3) — MD)ITP = NTy P [0) = =g Nty ) |0)  (C.16)
which implies that 1*N,* = 0. The same follows for the case ¥*M,” = 0 using the state
LD J=D|0) = 0.

Corollary 1: Let ¢¢ (¢¢) be an eigenvector of M,” with eigenvalue one (zero). Then

(L7, 8 M) = =t S L 4T = 0 (C.17a)

(L0 g I =0, [L0, ygJ"M]) = —nypg ) (C.17b)

follows from Proposition 5: The L, theory contains a (1,0) operator (current) for each
unit eigenvalue of M,°(L,), and the current commutes with the K-conjugate theory L.

The conclusions for L, and [N/* are reversed for zero eigenvalues of Mab(L*).

Consider next the orthogonal decomposition Vo = V; @ Vi @ Vp, which defines the

subspace Vp of all vectors in V5 orthogonal to V; and V;. The dimension of Vr is
dim Vp =dim Vo—dim V,—dim V; =Ny + Ny — D + D(D + 1)/2. We now give a charac-
terization of the vectors in V.

Proposition 6: Iff a vector is in Vp then the vector has the form x“bTCEb_ 2)|0> where
NeabXCdPab,cd = 07 Ve.
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Proof: The general vector in Vi is |T) = T2, ?|0) + B2J(~2|0). We require that
|T") is orthogonal to V, & V,

<‘Ca|T> = 2PabBb - Nabcxdepbc,de =0 (Cl8a)
(Lo|T) = 2(Gap — Pup) B + N2X% Pyege = 0 (C.18b)

The solution of (C.18) is
B*=0, NSX*Pycqc = 0. (C.19)

Corollary 2: When X“bTéb_ 2)|O) € Vp then x®Qu° = 0, V¥ ¢. This follows from Propo-
sition 6 and the identity (A.14).

Proposition 7 L) maps V, into itself and V; into itself.

Proof: By explicit computation with (C.3), we obtain
LONL,) = (62 + M,")|Ly) (C.20a)
LO|L,) = MO |Ly). (C.200)
because Téb_l)\m = 0.

Corollary 3: L maps Vy into itself.

Proof: Compute (L£q|LO|T) =(L,|L|T) = 0 using Proposition 7 and the hermiticity
of L. It follows that LO|T) € Vi.

Proposition 8: Let |x;) = x2T%, 2|0 be the cigenvectors of L) in Vi with respective

eigenvalue A,
LOXTE210) = A" TG 210) i = 1,2, dim Vi (C.21)

Then x¢ is a right eigenvector of the stability matrix S with corresponding eigenvalue

1—-A;.

Proof: We compute L®|y;) using (C.3). The spin 3 terms proportional to W and X
do not contribute because W(72)\0) =X C(ng)‘m = 0. According to corollary 2, the spin-1

terms proportional to J do ncg)‘g contribute either because x?°Qq° = 0V 4, c. The result
Xi"Ra™ = Aix(* Vi (C.22)
is then obtained by comparison with (C.21), and
SPeaxi® = (1= A)x{"® (C.23)

is obtained from (C.12).

Proposition 9: The eigenspace of S generated by x%° i = 1,2, - - -, dim V- is orthogonal
to the eigenspace Vy of S (see Prop. 3.4).
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Proof: Using Corollary 2 and the inner product (4.5a) in the right eigenspace of S,

compute
<Na|X1> = _Nabcpbc,dexge = _XgeQdebia =0. (024)

Let V, be the eigenspace generated by x° V i, with dim V,, =dim V7. Since dim V, +dimVy =
D(D +1)/2, it follows that Vi @ V, is the space of right eigenvectors of S. We have
established the following

Theorem: S%.; has D — Ny — N; zero eigenvalues, with right eigenvectors in V. The
other No+ Ny — D + D(D + 1) /2 eigenvalues of S are given by {1 — A;} where {A,;} are

the eigenvalues of L(® in V.

Proposition 10: There exists an orthogonal decomposition Vy = span{|L)}®
span|L) ® V., where |L) = L2|0) and |L) = LE20). All the states in V) are pri-
mary with respect to the Virasoro generators L™,

Proof: (L|L) = (0|L®L2]0) = (0|LE-? LP)|0) = 0, so the decomposition is orthog-
onal. Each state |x) in V. satisfies (L|x) = (L|x) = 0 which implies, according to (C.3),
that Y P, = Y®Gy, = 0. Then

L 2x) =0, LP[x) = x*"Pu|0) =0 (C.25a)

3 _
L(1)|X> — §XabRadeTC(d 1)|0> =0 <C25b)

also follows by (C.3) for each state in V.
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