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1. Introduction

The algebra of differential operators on a circle is becoming increasingly important
in two dimensional physics, in particular the theory of conformal models with extended
(higher spin) symmetries, the KP hierarchy of integrable differential equations and more
recently in quantum gravity. Central extensions of this algebra provide a natural gener-
alization of the Virasoro algebra which is generated by first order differential operators.
It also contains the affine U(1) current algebra generated by diffential operators of zero
order.

¿From a mathematical point of view, the algebra of differential operators on S1 de-
scribes a linear deformation of the algebra of divergence–free (or Hamiltonian) vector
fields on T ?S1. This relation can be easily understood by applying Leibniz’s rule to the
commutator of two differential operators of order k and l; indeed, the result is an operator
of order k + l− 1 modulo lower order terms, which correspond to the deformation of the
area preserving diffeomorphism algebra in question. In mathematical terms, the princi-
pal (leading) symbol of the commutator is the Poisson bracket of the principal symbols
of the initial operators. The analogous description in quantum mechanics, in terms of
Weyl ordered differential operators, is known as Moyal bracket [1].

Central extensions of the algebra of differential operators on S1 have been considered
only recently. In the physics literature the first results in this direction were obtained
by considering the large N limit [2] of Zamolodchikov’s WN algebras [3]. The com-
plete structure of W∞, which was subsequently proposed by Pope, Romans and Shen
[4] on a purely algebraic basis, has been established field theoretically in the context of
parafermion models [5]. W∞ and more generally W1+∞, which includes an additional
U(1) current in the spectrum, describe a central extension of the algebra of differential
operators on S1. The existence and uniqueness of such central extension was earlier es-
tablished in the mathematics literature by various authors [6] (in the context of cyclic
homology), thus generalizing the result of Gelfand and Fuchs for the Virasoro algebra
[7].

In this paper we adopt the new concept of the logarithm of the derivative operator [8],
which is very useful for defining the corresponding 2–cocycle and making the identification
with the W1+∞ algebra mathematically elegant. Our work should be considered in this
regard as providing a systematic description of the mathematical aspects of W∞ type
algebras in terms of a single object, namely log D. This notion is introduced in section 2,
following [8], using the calculus of pseudo–differential operators. In section 3 we construct
a basis in the algebra of all differential operators which makes the identification with
W1+∞ explicit. In this basis the log D cocycle diagonalizes, in the sense that it is non–
zero only when the order of two differential operators is the same. We also present a
closed formula for the truncation of W1+∞ to W∞. These results are further extended in
section 4 to higher spin truncations of W1+∞ with spectrum s ≥ M, for all M ≥ 2. In
section 5 we consider the generalization to matrix valued differential operators and the
log D generalization of the Maurer–Cartan cocycle. Finally, in section 6 we present our
conclusions together with some ideas about the algebra of differential operators in more
than one dimension.

2. The logarithm of the Derivative Operator
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The ring R of pseudo–differential operators on a circle is the ring of formal series
A(x,D) =

∑n
−∞ ai(x)Di, where ai(x) ∈ C∞(S1, k) with k ∈ R,C and D corresponds to

d/dx. The multiplication law in R is determined by the product of symbols

A(x, ξ) ◦B(x, ξ) =
∑

k≥0

1

k!
A

(k)
ξ (x, ξ)B(k)

x (x, ξ), (2.1a)

where

A
(k)
ξ (x, ξ) ≡

n∑

i=−∞
ai(x)(ξi)(k) , B(k)

x (x, ξ) ≡
n∑

i=−∞
b
(k)
i (x)ξi (2.1b)

and coincides with the usual multiplication law on the subalgebra R+ ⊂ R, consisting of
differential operators which are polynomial in D. The notation used in eq.(2.1b) means
that (k) is the k–th derivative of ξi and bi(x) respectively. The law (2.1) determines the
Lie algebra structure on R,

[A,B] = A ◦B −B ◦ A. (2.2)

There is also an operation res : R → C∞(S1) on the ring R defined by res(
∑

aiD
i) =

a−1(x). The main property of the residue is
∫

res[A,B] = 0, for any A,B ∈ R (here and
below the integration is over the circle S1).

We now consider the formal expression log D. For any pseudo–differential operator
A ∈ R the formal product A ◦ log D, according to eq.(2.1), where log ξ is the symbol
of log D, is certainly not contained in R. The crucial point, however, is that the formal
commutator [log D,A] = log D ◦A−A ◦ log D belongs to R. Thus, we define the action
of log D on R by commutator, [log D, ∗]. In coordinate form it is

[log D, A] =
∑

k≥1

(−1)k−1

k
A(k)

x D−k. (2.3)

Note that even if A is a differential operator (A ∈ R+), the result [log D,A] is in general
a pseudo–differential operator.

THEOREM [8]: A non–trivial central extension of the Lie algebra R is given by the
2–cocycle

C(L,M) =
∫

res([L, log D] ◦M) =
∫

res


∑

k≥1

(−1)k

k
L(k)

x D−kM


 , (2.4)

where L and M are arbitrary pseudo–differential symbols on S1. The restriction of this
cocycle on R+ gives a non–trivial central extension of R+.

The restriction of this cocycle on the subalgebra of vector fields (i.e., first order differential
operators) is the Gelfand–Fuchs cocycle of the Virasoro algebra. Indeed,

C(f(x)D, g(x)D) =
∫

res([f(x)D, log D] ◦ g(x)D)

=
∫

res((−f ′(x)D0 + f ′′D−1/2− f ′′′D−2/3 + . . .)g(x)D)

=
∫

res(. . . + f ′′′(x)g(x)D−1/6 + . . .)

=
1

6

∫
f ′′′(x)g(x)dx,

(2.5)
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which implies the non–triviality of the cocycle on R and R+.

For the proof, the skew symmetry of C(L, M) follows immediately from the identities

[log D, LM ] = [log D, L]M + L[log D,M ] and
∫

res[log D, A] = 0, (2.6)

for any L,M, A ∈ R. These identities themselves are consequences of eqs.(2.1)–(2.3).
The same identities, together with the Jacobi identity on R, allow the verification of the
cocycle property,

∑

cyclic

C(L, [M,N ]) =
∫

res([L, log D][M,N ] + [N, log D][L,M ] + [M, log D][N, L]) = 0.

(2.7)

The value of C(f(x)Dm, g(x)Dn) on the homogeneous generators of R vanishes for
n + m + 1 < 0, but in general it does not vanish for m + n + 1 ≥ 0. The restriction of
this cocycle on differential operators (n,m ≥ 0) coincides with the formula [9],[10]

C(f(x)Dm, g(x)Dn) =
m!n!

(m + n + 1)!

∫
f (n)g(m+1)dx. (2.8)

As we mentioned, this central extension of the algebra of differential operators on S1 is
unique [6] (up to a multiplicative constant).

In the remaining part of this section we describe another basis in R, in which the
action of [log D, ∗] becomes simple. For this we remind that the algebra R carries a
natural conjugacy operation ∗ : (

∑
i ai(x)Di)∗ =

∑
i(−1)iDiai(x). We also recall that

an arbitrary pseudo–differential operator is a sum of self–adjoint and skew self–adjoint
operators. A basis for self–adjoint operators is {Dmf(x)Dm}, where m is integer, while
skew self–adjoint operators have odd degree and can not be written in this form. For them
we consider the same expression Dmf(x)Dm, with half–integer m. Even though fractional
powers of D do not belong in R, the above expression defines a pseudo–differential
operator. To verify this we only have to rewrite DmfDm in the canonical form

∑
ajD

j,
applying the commutation relation and observing that all fractional powers disappear at
the end. We also note that log D is a self–adjoint operator (more precisely, we consider
log |D| which is an even function of D) and the commutator [log D, A] changes the parity
of A.

If we now consider the value of the logarithmic 2–cocycle on the generators in this
basis, we find that

C(Dmf(x)Dm, Dng(x)Dn) , where m,n are integer or half-integer (2.9)

depends on the sum m + n, but it does not depend on the particular choice of m and n.
Indeed,

C(Dmf(x)Dm, Dng(x)Dn) =
∫

res([Dmf(x)Dm, log D]Dng(x)Dn)

=
∫

res(Dm[f(x), log D]DmDng(x)Dn)

=
∫

res([f(x), log D]Dm+ng(x)Dm+n).

(2.10)
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It also vanishes for m + n + 1 < 0.

In the next section we will describe yet another basis in which the 2–cocycle becomes
diagonal, being non–zero only if the order of two differential operators is the same. The
latter is more natural from the point of view of conformal field theory, in view of the
explicit identification we would like to establish with W1+∞. The dictionary that one
should keep in mind is that the order of a differential operator is equal to s− 1, where s
is the spin (conformal dimension) of the corresponding W–generator.

3. W1+∞, W∞ and log D

The starting point in this section is the W1+∞ algebra whose generators are denoted
by V s

m, with m ∈ Z and s ∈ Z+. Following [11], it is convenient to introduce the notation

gss′
l (m,n; µ) =

ϕss′
l (µ)

2(l + 1)!
N ss′

l (m,n) , (3.1)

where

ϕss′
l (µ) :=

∞∑

k=0

(
−1

2
− 2µ

)
k

(
3
2

+ 2µ
)

k

(
− l+1

2

)
k

(
− l

2

)
k

k!
(
−s + 3

2

)
k

(
−s′ + 3

2

)
k

(
s + s′ − l − 3

2

)
k

, (3.2)

N ss′
l (m,n) :=

l+1∑

k=0

(−)k

(
l + 1

k

)
(2s− l − 2)k[2s

′ − k − 2]l+1−k·

·[s− 1 + m]l+1−k[s
′ − 1 + n]k (3.3)

and
(a)k := a(a + 1) · · · (a + k − 1) , [a]k = a(a− 1) · · · (a− k + 1). (3.4)

Then, the commutation relations of W1+∞ are given by

[V s
m, V s′

n ] = ((s′ − 1)m− (s− 1)n) V s+s′−2
m+n + cs(m; µ)δs,s′δm+n,0+

+
∑

r≥1

gss′
2r (m, n; µ)V s+s′−2−2r

m+n , (3.5)

with µ = −1
2
. The central term is

cs(m;−1

2
) = c

(m + s− 1)!

(m− s)!

22(s−3)[(s− 1)!]2

(2s− 1)!!(2s− 3)!!
. (3.6)

The series of subleading terms with r ≥ 1 terminates with either V 2
m+n or V 1

m+n,
depending on whether s + s′ is even or odd respectively. This is reflected in the form of
the hypergeometric function (3.2) and the other combinatorial factors (3.3). They both
have zeros (complementing each other), which guarantee the termination of the series
(3.5) at V 2 or V 1 for µ = −1

2
. W1+∞ contains the Virasoro algebra as a subalgebra,

generated by {V 2
m}. The conformal dimension of all other generators V s is s, as follows

from the commutation relations [V 2
m, V s

n ].

It is more convenient in the sequel to introduce z = eix and work with Laurent series
in z instead of trigonometric functions in x. We will also denote ∂z by D and use contour
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integration for the definition of the log D cocycle. Having set up the notation, we now
consider differential operators {zm+s−1Ds−1} on S1 with m ∈ Z , s ∈ Z+. In order to
make the identification between the two algebras explicit, we introduce the basis

V s
m = −B(s)

s∑

k=1

αs
k

(
m + s− 1

k − 1

)
zm+s−kDs−k, (3.7)

where

B(s) =
2s−3(s− 1)!

(2s− 3)!!
; αs

k =
(2s− k − 1)!

[(s− k)!]2
. (3.8)

THEOREM: The differential operators (3.7) satisfy the commutation relations (3.5)
with c = 0. The value of the log D cocycle in this basis is given by

C(V s
m, V s′

n ) = − B(s)2

2s− 1

(m + s− 1)!

(m− s)!
δs,s′δm+n,0. (3.9)

This establishes the desired result, the advantage of the basis (3.7) being that the 2–
cocycle vanishes unless s = s′.

We note that the diagonal basis so constructed is natural from the point of view of
conformal field theory, since the corresponding local quantum field theoretic operators
V s(z) :=

∑
m∈Z V s

mz−m−s are quasi–primary (i.e., highest weight with respect to the
SL(2, R) subalgebra of the Virasoro algebra.) Moreover, the SL(2, R) Ward identities,
which reflect the respective invariance of the vacuum, imply that 〈V s(z)V s′(w)〉 ∼ δs,s′ .
In this basis, the generators (3.7) are not self–adjoint (as differential operators) for s ≥ 3;
if that were the case, the coefficients of the subleading terms in eq.(3.5) would be identical
to those of the Moyal bracket algebra, which assumes a hermitian (e.g., Weyl) ordering
for the differential operators. To obtain the value of the cocycle (3.6), we have to multiply
C by a constant −c, c being the central charge of the Virasoro subalgebra

[V 2
m, V 2

n ] = (m− n)V 2
m+n +

c

12
(m3 −m)δm+n,0. (3.10)

Next, we consider the algebra W∞ whose generators {W s
m ; s ≥ 2, m ∈ Z satisfy the

commutation relations

[W s
m,W s′

n ] = ((s′ − 1)m− (s− 1)n)W s+s′−2
m+n + cs(m; µ)δs,s′δm+n,0

+
∑

r≥1

gss′
2r (m,n; µ)W s+s′−2−2r

m+n , (3.11)

with µ = 0 and

cs(m; 0) =
c

2

(m + s− 1)!

(m− s)!

22(s−3)s!(s− 2)!

(2s− 1)!!(2s− 3)!!
. (3.12)

The complete structure of W∞ , which arises as the large N limit of Zamolodchikov’s WN

algebras [2], [5], was proposed by Pope, Romans and Shen [4]. It resembles the structure
of W1+∞ , but since µ = 0 now, the series of terms with r ≥ 1 automatically terminates
at W 2

m+n or W 3
m+n, depending on whether s+s′ is even or odd respectively. We also note

that the normalization of the central charges (3.12) is different from (3.6).
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The W∞ algebra can be obtained from W1+∞ by truncation to s ≥ 2, provided that
W s

m are expressed in terms of V s
m as

W s
m = V s

m +
B(s)

s− 1

s−1∑

l=1

(−)l (2s− 2l − 1)

B(s− l)

(m + s− 1)!

(m + s− l − 1)!
V s−l

m (3.13)

for all s ≥ 2. Of course, from the point of view of the algebra of all differential operators
on S1, the truncation to s ≥ 2 can be done automatically, using a basis that does not
contain operators of zero order. We point out, however, that the log D cocycle will not
maintain its diagonal form, if we naively use the basis (3.7), after subtracting the k = s
terms. Therefore, in order to accomodate the commutation relations of W∞ into the
present framework, we have to construct a different basis.

In terms of differential operators, the appropriate basis can be found by combining
eqs.(3.7), (3.8) and (3.13). The result we find is

W s
m = −B(s)

s− 1

s−1∑

k=1

βs
k

(
m + s− 1

k − 1

)
zm+s−kDs−k, (3.14)

with

βs
k =

(2s− k − 1)!

(s− k)!(s− k − 1)!
. (3.15)

A theorem analogous to the previous one also holds for the W∞ algebra (3.11), but in
this case the value of the log D cocycle for the operators (3.14) is

C(W s
m,W s′

n ) =
B(s)B(s + 1)

2(s− 1)

(m + s− 1)!

(m− s)!
δs,s′δm+n,0. (3.16)

To obtain arbitrary values for the central charge of the Virasoro subalgebra, we simply
have to multiply C by the numerical factor c/2.

The general relation between the algebra of diferential operators on S1 and W∞ has
also been addressed by Fairlie and Nuyts [12]. Using the theory of Moyal brackets they
found, among other things, a basis of operators which yield the structure constants gss′

l

of W∞ . In this regard, some of the closed formulae we have presented here should be
considered as being complementary to theirs.

4. Higher Spin Truncations of W1+∞

The algebra of differential operators on S1 can be truncated from below by considering
only elements with order bigger or equal than a fixed positive integer. This procedure
leads to higher spin algebras with spectrum s ≥ M , for all M ∈ Z+. The truncation
from above, on the other hand, is not possible while maintaining the linear structure of
the algebra. A truncation method of the second type has been discussed by Radul and
Vaysburd [13], who proposed a systematic description of WN algebras as factor algebras
of R+ and of its central extension. In this section we focus on truncations of the first
type and construct bases in which the log D cocycle becomes diagonal for all M . This
is a natural generalization of the results described in the previous section. Such higher
spin algebras have been discussed before in a different context [14] and clearly, for all
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M ≥ 3, they do not contain a Virasoro subalgebra. Hence, although consistent with the
Jacobi identity, their meaning in quantum field theory is obscure, if these algebras are
supposed to represent all the symmetries of a chiral two dimensional model. They are
interesting, nevertheless, from a mathematical point of view. It might also turn out that
these algebras admit a natural interpretation in the framework of higher dimensional
field theories, but this point of view is still lacking.

THEOREM: For any M ∈ Z+, the subalgebra of differential operators with order bigger
or equal than M − 1 admits a non–trivial central extension, given by the restriction of
the log D cocycle. In the basis

W s
m = −(s−M)!

(s− 1)!
B(s)

s−M+1∑

k=1

(2s− k − 1)!

(s− k)!(s− k −M + 1)!

(
m + s− 1

k − 1

)
zm+s−kDs−k (4.1)

the log D cocycle is diagonal.

In this basis, the commutation relations of the corresponding higher spin algebra assume
the form (3.11), with µ = (M − 2)/2. The series of subleading terms terminates in the
general case with either WM or WM+1 and, of course, the overall normalization of the
central terms also depends on M .

This result implies equivalently a relation between the W generators of the higher
spin algebra with s ≥ M and those of W1+∞ of the form W s

m = V s
m+ lower spin V–terms,

which is analogous to eq.(3.13). We will present this relation in a field theoretic form,
for arbitrary M , using the standard realization of W1+∞ [15] in terms of a complex free
fermion ψ (and its conjugate ψ̄) in two dimensions. We have

W s(z) :=
∑

m∈Z

W s
mz−m−s = B(s)

(s + M − 2)!(s−M)!

[(s− 1)!]2
·

·
s−M∑

k=0

(−1)k

(
s− 1

k

)(
s− 1

k + M − 1

)
∂kψ(z)∂s−1−kψ̄(z), (4.2)

for all s ≥ M . The higher spin truncations of W1+∞ become obvious in this realization,
since for fixed M , the operator product expansion of any two fields (4.2) generates in its
singular terms only fields with spin bigger or equal than M .

5. Colored W∞ and Matrix log D

In this section we consider the algebra of matrix valued differential operators and
study its central extension using a logarithmic generalization of the Maurer–Cartan co-
cycle. We will show that for the unitary group U(p), this extension reproduces the colored
W p
∞ algebra [16] and more generally the non–abelian current version of W1+∞ [17].

Let G be a reductive matrix Lie algebra. In analogy with section 2, we consider
the space of pseudo–differential operators on the circle with matrix coefficients, i.e.,
A(x,D) =

∑n
i=−∞ ai(x)Di with ai ∈ C∞(S1,G). The same multiplication law (2.1) now

includes not only the usual Leibniz rule, but also the matrix product of the coefficients.
These operators form an associative and hence Lie algebra RG. An operation res :
RG → C∞(S1,G) is naturally defined on this algebra by the trace of the coefficient of
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the D−1 term, res(
∑

ai(x)Di) = tr[a−1(x)]. The action of log D on RG is given by the
same formula

[log D, A(x,D)] =
∑

k≥1

(−1)k−1

k
A(k)

x D−k, (5.1)

as before, but now the symbol of log D is the matrix (log ξ) · 1G, where 1G is the unit
matrix.

THEOREM: For an arbitrary reductive matrix Lie algebra G, the algebra of pseudo–
differential operators RG has a non–trivial central extension given by the 2-cocycle

C(A,B) =
∫

res ([A, log D] ◦B) . (5.2)

The cocycle property of C(A,B) can be verified in the same way as in section 2. The
algebra RG contains the subalgebra of the zeroth order differential operators {a(x)D0},
which is naturally isomorphic to the corresponding loop algebra G̃. It is easy to see that
the restriction of C(A,B) on this subalgebra gives the Maurer-Cartan cocycle

∫
tr[a′b] and

thus defines the corresponding affine (centrally extended current) algebra Ĝ. This remark
implies by itself the non–triviality of the 2–cocycle and that of the central extension of
RG.

In analogy with the scalar case, we may restrict ourselves to the subalgebra R+
G of all

matrix differential operators, {∑n
i=0 aiD

i} and show that R+
G has a non–trivial central

extension. It turns out that this specific central extension forR+
U(p) (differential operators

with unitary coefficients) coincides with the colored W p
1+∞ algebra [17] and with W p

∞ [16],
when truncated to spin s ≥ 2. It is straightforward to extend the results of the previous
sections to this case and construct a basis in which the cocycle becomes diagonal and the
commutation relations of the algebra assume the form

[V s
a,m, V s′

b,n] = ((s′ − 1)m− (s− 1)n)(δabV s+s′−2
0,m+n + dabcV s+s′−2

c,m+n )+

+cs(m; µ)δabδs,s′δm+n,0 +
∑

r≥1

gss′
2r (m,n; µ)(δabV s+s′−2−2r

0,m+n + dabcV s+s′−2−2r
c,m+n )−

−1

4
fabc(V s+s′−1

c,m+n + 2
∑

r≥1

gss′
2r−1(m,n; µ)V s+s′−1−2r

c,m+n ), (5.3a)

[V s
0,m, V s′

α,n] = ((s′ − 1)m− (s− 1)n)V s+s′−2
α,m+n + cs(m; µ)δα,0δs,s′δm+n,0+

+
∑

r≥1

gss′
2r (m, n; µ)V s+s′−2−2r

α,m+n , (5.3b)

with group indices α = (0, a), a = 1, 2 · · · p2 − 1. fabc are the structure constants of the
SU(p) subgroup of U(p) and dabc is the third order completely symmetric Casimir tensor
(which vanishes for SU(2).) As before, µ = −1

2
for W p

1+∞, µ = 0 for W p
∞ and so on for

the colored higher spin truncations of the algebra.

The scalar W1+∞ algebra is contained in (5.3) as the U(1) (trace) part of U(p). We
also note that the truncations of R+

G from below do not contain the current algebra G̃
and thus, the corresponding restrictions of the log D do not include the Maurer–Cartan
cocycle. One can show, however, that the restriction of the log D cocycle on any such
truncation is still non–trivial [18], as in the scalar case.
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6. Discussion

In this paper we have presented the mathematical aspects of W∞ type algebras, using
the notion of the logarithm of the derivative operator [8] and its matrix generalizations.
This notion provides a systematic way to describe central extensions of the algebra of all
differential operators on the circle and establish the isomorphism with W1+∞ .

We would also like to point out that in this context, the connection of the W1+∞
algebra and the KP hierarchy (see for instance [14]) is not surprising. For zero central
charge, W1+∞ becomes the pure algebra of all differential operators, which is dual to
integral operators defining the phase space of the KP equations.

The log D cocycle admits a natural generalization to higher dimensional compact
manifolds M. This was constructed by Radul [19], using Wodzicki’s residue formula [20].
To emphasize the significance of this problem we remind that for higher dimensional
manifolds there is no invariant decomposition of pseudo–differential operators X into
purely differential and integral parts, X = X+ + X−. Hence, the knowledge of a residue
formula is very important for defining central extensions of the algebra of (pseudo)–
differential operators on M. The latter is closely related to the structure of the cotangent
bundle ofM and to the group of symplectomorphisms of T ?M, since the principal symbol
of a differential operator naturally defines a Hamiltonian flow in T ?M. For any pseudo–
differential operator X on M, resX, which was originally introduced by Wodzicki in the
framework of spectral geometry, is unique and defines a trace functional. ForM' S1 the
usual residue formula is recovered. With this ingredient, the log D cocycle is naturally
generalized to all compact manifolds.

The field theoretical aspects of the resulting infinite dimensional algebras have not
been studied for general M. This could justify further work on the subject, both from
the physical and mathematical point of view.
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