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Abstract

We study the general Virasoro construction L = Lab
∗∗JaJb ∗∗ on the currents of

affine g, obtaining the master equation for the inverse inertia tensor Lab. Sugawara
and coset constructions are only the simplest solutions of this system, as illustrated
here by a class of generalized spin-orbit constructions with generically irrational
central charge.
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Affine Lie algebras were discovered independently in mathematics [1] and physics

[2]. The first representations [2] were constructed with world-sheet fermions [2,3] to

implement the proposal of current-algebraic spin and internal symmetry on the string

[2]. Examples of affine-Sugawara constructions [2,4] and coset constructions [2,4] were

also given in the first string era, as well as the vertex operator construction of fermions

and SU(N)1 from compactified spatial dimensions [5]. The group-theoretic generalization

of these constructions [6,7,8] and their application to the heterotic string [9] mark the

beginning of the present era. See [10-14] for further remarks.

Less familiar is the original spin-orbit∗ construction [2,15] studied in parallel with the

early coset constructions, which has remained for 18 years as an example of a class of

conformal constructions more general than Sugawara and coset constructions.

Motivated by the spin-orbit construction and recent consideration of Virasoro con-

structions with arbitrary (2,0) operators [16], we study the general Virasoro construction

on the currents Ja of affine g

Lm = Lab
∗
∗J

aJ b ∗
∗m , [Lm, Ln] = (m− n)Lm+n +

c

12
m(m2 − 1)δm+n,0 (1)

with symmetric normal-ordering ∗
∗J

aJ b ∗
∗ = ∗

∗J
bJa ∗

∗, obtaining the master equation

for the inverse inertia tensor Lab = Lba. Remarks on the most general quadratic form

including linear terms in Ja are found in the concluding paragraph. The master equation

contains at least Sugawara, coset and generalized spin-orbit constructions, the latter

being distinguished by generically irrational central charge.

We begin our construction with the algebra of affine g [1,2]

Ja(z)J b(w) =
Gab

(z − w)2
+ ifab

c

[
1

(z − w)
+

1

2
∂

]
J c(w) + T ab(w) + O(z − w) (2.a)

[Ja
m, J b

n] = ifab
cJ

c
m+n + Gabmδm+n,0 , m, n ∈ Z (2.b)

for Lie algebra g not necessarily semi-simple or compact with structure constants fab
c.

To obtain level xi = 2ki/ψ
2
i of gi in g = ⊕igi take

Ga(i)b(j) = δijkig
ab
i , T a = ⊕iT

a
i (3)

where gab
i is a Killing metric of gi and (T a)b

c = −ifab
c is the adjoint of g with Tr(T a

i T b
i ) =

Qig
ab
i and h̃gi

= Qi/ψ
2
i . The quadratic Casimirs in the adjoint Qi of the non-compact

∗Affine-Sugawara and coset constructions were originally called additive or spin-spin interactions [2,4]
among the new currents Jg on the string, since they had no interaction terms with the orbital operators
∂φ of spacetime. String physics today is additive in the original sense. In order to introduce new
spin-gauges, the non-additive or spin-orbit construction [2,15] also coupled the spin currents JG/H of
G/H=SO(N − 1, 2)/SO(N − 1, 1) (for any level of N=4 [2] and level one of any N [15]) to the orbital
operators in the form ∂φJG/H .
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generalizations of gi are the same as in the compact case and we choose ψi to be the

highest root of the compact group, so the dual Coxeter numbers h̃gi
are also the same

for the compact and non-compact cases. The OPE (2.a) defines the symmetric normal-

ordered current bilinear T ab(z) = T ba(z),

T ab
m =

∑

n∈Z

∗
∗J

a
m+nJ b

−n
∗
∗ =

∑

n>−m

J b
−nJa

m+n +
∑

n<−m

Ja
m+nJ

b
−n +

1

2
[Ja

0 , J b
m]+ +

i

2
fab

cmJ c
m (4)

which satisfies (T ab
m )† = T ab

−m when Ja is hermitian and

〈0|T ab(z)J c(w)|0〉 = 0 , T ab
m≥−1|0〉 = 0 (5)

where |0〉 is the SL(2, R)-invariant vacuum defined by Ja
m≥0|0〉 = 0.

We then compute

T ab(z)J c(w) = Mab,c
d

[
1

(z − w)2
+

1

(z − w)
∂ +

1

2
∂2

]
Jd(w)+

+Nab,c
de

[
1

(z − w)
+

3

4
∂

]
T de(w) + W abc(w) + O(z − w) (6.a)

Mab,c
d =

1

2
(f bc

ef
ea

d + fac
ef

eb
d) + Gacδb

d + Gbcδa
d (6.b)

Nab,c
de =

i

2

[
(δa

df
bc

e + δa
ef

bc
d) + (a ↔ b)

]
(6.c)

which defines the (3,0) operator W abc(z) and

T ab(z)T cd(w) =
P ab,cd

(z − w)4
+ Qab,cd

e

[
1

(z − w)3
+

1

2(z − w)2
∂ +

1

6(z − w)
∂2

]
Je(w)+

+Rab,cd
ef

[
1

(z − w)2
+

1

(z − w)
∂

]
T ef (w) + Sab,cd

efg
W efg(w)

(z − w)
+ O(1) (7)

among the bilinears. The coefficients in (7) are

P ab,cd = (
1

2
f bc

ef
ad

fG
ef + GacGbd) + (a ↔ b) (8.a)

Qab,cd
e =i

[
(Gacf bd

e + Gbcfad
e) + (c ↔ d)

]
+

i

4

[
(faf

ef
bd

gf
cg

f+

+faf
ef

bc
gf

dg
f + f cf

ef
ad

gf
bg

f + fdf
ef

ac
gf

bg
f ) + (a ↔ b)

] (8.b)

Rab,cd
ef = (R1 −R2 −R3)

ab,cd
ef (8.c)

Rab,cd
1 ef =

1

2

[
Gac(δb

eδ
d
f + δd

eδ
b
f ) + Gad(δb

eδ
c
f + δc

eδ
b
f )

]
+ (a ↔ b) (8.d)

Rab,cd
2 ef =

1

2
(fac

ef
bd

f + fad
ef

bc
f ) + (a ↔ b) (8.e)
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Rab,cd
3 ef =

1

4

[
δd
f (f

ac
gf

bg
e + f bc

gf
ag

e) + δc
f (f

ad
gf

bg
e + f bd

gf
ag

e)+

+δa
f (f

cb
gf

dg
e + fdb

gf
cg

e) + δb
f (f

ca
gf

dg
e + fda

gf
cg

e)
]
+ (e ↔ f)

(8.f)

Sab,cd
efg =i

[
δb
e(δ

d
ff

ac
g + δc

ff
ad

g) + δb
f (δ

d
ef

ac
g + δc

ef
ad

g)+

+δb
g(δ

d
ff

ac
e + δc

ff
ad

e) + δb
f (δ

d
gf

ac
e + δc

gf
ad

e)+

+δb
e(δ

d
gf

ac
f + δc

gf
ad

f ) + δb
g(δ

d
ef

ac
f + δc

ef
ad

f )
]
+ (a ↔ b)

(8.g)

so that, in particular, Q and S are antisymmetric under ab ↔ cd while P and R are

symmetric.

We now focus on L(z) = LabT
ab(z) with Lab the inverse inertia tensor, for which

[Lm, Ja
n] = −n

[
2GabLbe + fab

dLbcf
cd

e

]
Je

m+n − 2ifab
dLbcT

cd
m+n (9)

is obtained from (6). The Virasoro algebra (1) for Lm follows with (7) for any solution

Lab of the master equation

2Lab = LcdLefR
cd,ef

ab , c = 2GabLab = 2Tr(GL) (10)

alternate forms of which include

Lab = 2LacG
cdLdb − LcdLeff

ce
af

df
b − Lcdf

ce
f (Leaf

df
b + Lebf

df
a) (11.a)

Lij
ab = 2

∑

l

(LilklglL
lj)ab + Lij

cdL
ij
ef (T

c
i )e

a(T
d
j )f

b + [Ljj
cdL

ji
ea(T

c
j T d

j )e
b + (i, a ↔ j, b)] (11.b)

where La(i)b(j) ≡ Lij
ab are the (gi,gj) blocks of Lab and c = 2

∑
i kiTr(giL

ii). The simple

form of the central charge in (10) is obtained with the help of the master equation.

We discuss a number of properties of the master equation (10-11).

(A) The Sugawara construction

Lg : (Lg)ij
ab = (gi)ab

δij

2ki + Qi

, cg =
∑

i

xidimgi

xi + h̃gi

(12)

is always a solution, and similarly for Lh when g ⊃ h.

(B) K-conjugate pairs [2,4]: If L is a solution, so is K ≡ Lg−L with c(K) = cg−c(L).

This pairing was shown for an arbitrary conformal construction in [16] and follows in the

present case because

UcdL
g
efR

cd,ef
ab = 2Uab (13)

is an identity for any symmetric matrix U . Moreover, [Lm, Kn] = 0 follows with (13) and

the further identity (Lg)abQ
ab,cd

e = 0. The coset constructions [2,4,8] K = Lg − Lh are

recovered for L = Lh.
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(C) There are no solutions infinitesimally close to Sugawara since any such deforma-

tion δL about Lg must satisfy δLab=δLcdL
g
efR

cd,ef
ab=2δLab according to (10) and (13),

so that δLab = 0. Conformal deformations about Sugawara and coset constructions by

linear terms in Ja are studied in [12,17,18].

(D) There are no deformations δL =εLg, ε ¿ 1 in the Sugawara direction about any

solution L since δLab =εLg
ab=εLg

cdLefR
cd,ef

ab=2εLab according to (10), (13), and L = Lg/2

is not a solution.

(E) We have examined the case g = su(2) with Gab = kδab and a, b = 1, 2, 3 in detail

since the inverse inertia tensor can be diagonalized to Lab = λaδab by a transformation

in G. The solutions of the resulting equations

λa(1− 2kλa)δab = 2
∑

c,d

λc(λa + λb − λd)εcdaεcdb (14)

coincide with the Sugawara and coset constructions.

We turn now to generalized spin-orbit constructions on u(1)Dg/h ⊕ g, g ⊃ h with the

ordering Ja=(πI ≡ i∂φI ,J I ,JA) where I = 1, · · · , Dg/h, A = 1, · · · , Dh and Dg, Dh, Dg/h

are the dimensions of g, h, g/h respectively. The simplest spin-orbit ansatz is

Lab =


 gIJ

(
εα β

β γ

) (
0

0

)

( 0 0 ) gABδ


 , Gab = k




εgIJ 0 0

0 gIJ 0

0 0 gAB


 (15)

with ε = ±1 for simple g and h, which corresponds to Virasoro operators L = απ2+2βπ ·
Jg/h+γ(Jg/h)2+δ(Jh)2. Consistency of this ansatz in the master equation (10-11) requires

that G/H be a symmetric space, so that f IKAfJKA = δI
JQg/2 and fAIJfBIJ = (Qg −

Qh)δ
A
B, which includes SU(N)/SO(N), SU(2N)/Sp(N), SO(N+1)/SO(N), F4/Spin(9),

E6/Sp(4), E6/F4, E7/SU(8), E8/SO(16) and their non-compact generalizations. In what

follows we refer without loss of generality only to compact g, since all results are the same

for the non-compact generalizations. The restriction to a symmetric space follows from

the requirement that the OPE of the spin-orbit term π · Jg/h with (Jh)2 reproduces the

simple spin-orbit term, and not a matrix generalization. In fact, the ansatz (15) with

δ1(J
h1)2+δ2(J

h2)2 and the results below hold also for h = h1⊕h2, h1 = h2, Qh1 = Qh2 =

Qh and δ1 = δ2 = δ which includes SO(2N)/SO(N)⊗ SO(N), Sp(2N)/Sp(N)⊗ Sp(N)

and G2/SU(2)⊗SU(2) as well. More general h ⊂ g will require more complicated matrix

couplings.

The resulting equations with β̄2 = εβ2

α = 2k(α2 + β̄2) , β̄ = β̄(2k(α + γ) +
1

2
(γ + δ)Qg) (16.a)

γ = (2k + Qg)γ
2 + 2kβ̄2 , δ = (2k + Qh)δ

2 + γ(2δ − γ)(Qg −Qh) (16.b)
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c = 2k((α + γ)Dg/h + δDh) (16.c)

exhibit only Sugawara and coset solutions when β = 0. For β 6= 0 we obtain after some

algebra the spin-orbit solutions

α =
1

4k

(
1 + ηF−1(8k + 4Qh − 3Qg)

)
(17.a)

β = η̃F−1
√

(−ε/k)(4k + 2Qh −Qg) (17.b)

γ =
1− ηF−1(8k + 4Qh −Qg)

2(2k + Qg)
(17.c)

δ =
1 + ηF−1(5Qg − 4Qh)

2(2k + Qg)
(17.d)

F =
√

(3Qg − 4Qh)2 − 32k(Qg −Qh) (17.e)

with η, η̃= ±1. The corresponding central charges

c =
1

2

[
xDg

x + h̃g

+ Dg/h

]
+

η
[
x(5h̃g − 4h̃h)Dh + h̃g(2x + 4h̃h − 3h̃g)Dg/h

]

2F̃ (x + h̃g)
(18.a)

F̃ =
√

(3h̃g − 4h̃h)2 − 16x(h̃g − h̃h) (18.b)

are generically irrational for each of the 4 solutions L(η, η̃). Among these the K-conjugate

pairs are identified with L(η, η̃) + L(−η,−η̃) = Lg while L±(η) = L(η, η̃ = ±1) for each

η are pairs with the same central charge. The latter pairing, corresponding to a sign

change of the spin-orbit term, is an accidental degeneracy due to the abelian nature of

g1 or g2 , since the corresponding symmetry L12 → −L12 in the master equation follows

only when the second term on the right of (11.b) vanishes.

A restriction to real central charge puts an upper bound on the level

x <
(3h̃g − 4h̃h)

2

16(h̃g − h̃h)
(19)

which also implies reality of the coefficients α, γ and δ. Under this condition, the levels

of the exceptional groups are limited to x ≤ 2 for E6/Sp(4), x ≤ 3 for E7/SU(8), x ≤ 4

for E8/SO(16) and there are no solutions for F4/Spin(9), E6/F4 and G2/SU(2)⊗SU(2).

Reality of the spin-orbit coefficient β for x ≥ 1 also requires that ε = −1. This means

that the spin-orbit constructions are not explicitly unitary, although it may be possible

to find unitary subspaces [2,15,19]. Indeed, Mandelstam [15] showed that the spin-

orbit construction for level one of SO(9, 2)/SO(9, 1) with c = 28,−25/2 is equivalent

to the NS model [20] in 10 dimensions.† We have also checked that the central charges

†More generally, one has gIJ =
(

1 0
0−1

)
for the original construction [2,15] on SO(N − 1, 2)/

SO(N−1, 1), so that εgIJ =
(−1 0

0 1

)
for the abelian group is the ordinary Minkowski metric on N spacetime

dimensions.
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come in positive-negative pairs for η = ±1 when ξ ≡ 4h̃h − 3h̃g > 0, which includes

SO(N + 1)/SO(N), but there are cases with both central charges positive when ξ < 0,

e.g. level one of SU(2N)/Sp(N), N ≥ 8.

The generalized spin-orbit solutions above should be considered as conformal con-

structions with couplings JhiJgj/hj , i 6= j where hi is an abelian subgroup of gi such

that Dhi
= Dgj/hj

. The spin-orbit couplings are distinct from the JgiJgj interactions

obtainable in coset constructions. A systematic solution of the master equation, say at

large level, and/or a geometric interpretation of its form is clearly desirable.

We also remark that the OPE’s (6,7) can be easily applied to the most general

quadratic form Lm = LabT
ab
m + Da(m)Ja

m+constant. As an example, the c-changing

but SL(2, R)-preserving case [12,17,18] L(z) = LabT
ab(z) + Da∂Ja(z) gives

2Lab = LcdLefR
cd,ef

ab + 2∆ab , Da(2G
abLbe + fab

dLbcf
cd

e) = De (20.a)

∆ab = i(Lacf
ce

b + Lbcf
ce

a)De , c = 2Gab(Lab −∆ab − 6DaDb). (20.b)

Conformal deformations by the (1,0) currents of Sugawara and coset constructions

[12,17,18] solve this system for arbitrary Da with ∆ab = 0, although reality of the central

charge and Lab is also guaranteed with Da imaginary. The c-fixed deformations [12,17,18]

Lm = LabT
ab
m +DaJ

a
m + 1

2
GabDaDb maintain the original master equation and the central

charge in (10-11), requiring only the additional eigenvalue condition in (20.a) on Da.
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