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It has been a major goal of Conformal Field Theory (CFT) to 
lassify all the universality
lasses of 
riti
al behavior in two dimensions. Stated from the point of view of string theory, thiswould 
orrespond to a 
lassi�
ation of the 
lassi
al ground states of the string. There has beena lot of progress in re
ent years in understanding the tools to a
hieve su
h a 
lassi�
ation, andsome partial results have emerged. Despite the fa
t that a 
omplete 
lassi�
ation seems out ofrea
h at present, some partial 
lassi�
ations may shed light on whi
h ingredients are importantand whi
h are not.Ginsparg, in a ni
e paper [1℄, gave a list of 
=1 theories. There are two 
ontinuous families inthis list 
orresponding to the torus and Z2 orbifold models. In [2℄, it was shown that there are nomarginal deformations that lead outside these two lines. In [1℄, three dis
onne
ted models havebeen 
onstru
ted, that 
ould not be rea
hed from the rest via marginal deformations. Therewas a wide-spread suspi
ion that his list was 
omplete. In fa
t, in ref. [3℄, it was shown thatunder the assumption that the building blo
ks are toroidal partition fun
tions, then this list is
omplete.In this paper we will supplement this 
lassi�
ation by a rigorous proof that the subset ofrational CFT's at 
=1 is 
omplete.In order to set the notation, we will write the partition fun
tions of these models. For thetorus models, whi
h are parametrized by the radius R of the target spa
e, the partition fun
tionis Z(R) = 1n�n Pm;n 2 z q 12P 2L �q 12P 2R ; (1)where PL = mR + nR2 ; PR = mR � nR2 . The partition fun
tion (1) is modular invariant, and is alsoinvariant under the duality transformation R ! 2R . De�ne ZN � Z(Np2). Then the orbifoldpartition fun
tion at radius R is given by:Z(R)orb = 12 (Z(R) + 2Z2 � Z1) : (2)The dis
onne
ted models whi
h are in one-to-one 
orresponden
e with the three non-trivialdis
rete subgroups of SU(2) have the following partition fun
tions:ZT = 12 (2Z3 + Z2 � Z1) ; Z0 = 12 (Z4 + Z3 + Z2 �Z1)Z1 = 12 (Z5 + Z3 + Z2 �Z1) : (3):1



The ratiional theories belonging to this list are the ones whi
h 
ontain partition fun
tions withR being the square root of a rational number.The partition fun
tion of a CFT with 
entral 
harge 
 behaves as � ! i1 as in ref. [4℄:Z(� ; ��) �! he2ni(����)i� 
24 �1 + 0 �e2ni��e�2ni������ (4)with � ; �� > 0.In a rational 
onformal theory the partition fun
tion 
an be 
onstru
ted out of modularforms invariant under a �nite index subgroup of the modular group, [5℄. The modular formshave to have the appropriate behavior as � ! i1 as indi
ated in eq. (4). In parti
ular for
=1 they have to be what mathemati
ians 
all one-singular forms. Fortunately the one-singularmodular forms have been 
lassi�ed by Serre and Stark, [6℄.De�ne: fa;b = Pn 2 Z q�(n+ b2a )2 ; ga;b = Pn 2 Z(�1)n q�(n+ b2a )2 ; (5)with a; b�12Z ; � > 0 and as usual q = e2�i� , fa;b(�) satis�ed the following peridi
ity properties inb: fa;b(� ) = fa;�b(� ) = fa;2a+b(� ) = fa;2a�b(� ) : (6)Thus for ea
h ��Z the \fundamental domain" in b�Z is 0 � b � a.The modular properties of fa;b and ga;b are as follows:f�;�(�1=� ) =r�i�2� 2��1Xk=0 ei�kb=�( falpha;k if b 2 Zg�;k(�) if b 2 Z+ 1=2 (7)g�;�(�1=� ) =r�i�2� 2��1Xk=0 ei�(2k+1)b=�( falpha;k+1=2 if b 2 Zg�;k+1=2 if b 2 Z+ 1=2 (70)f�;beta(� + 1) = ( ei�ub2=2�falpha;�(�) if � � b 2 Zei�b2=2�g�;�(�) if � � b 2 Z + 1=2 (8)and similarly for g�;�. Thus F�;� � f�;�� where � is the Dedkind n-fun
tion are modular formsfor some �(N) and if � � � 2 Z then N = (4�; 24).?? By (�; �) we mean the lowest 
ommon multiple of �; beta.2



Thus at this point we 
an invoke the Serre{Stark theorem, [6℄, whi
h states that any 1-singular modular form on some �(N) is a �nite linear 
ombination of the fun
tions F�;�(� ).That any modular form of a �nite index subgroup � of the modular group 
an be 
onstru
tedout of F�;� 
an be inferred from the following. If 
; h are rational then there is an integer(positive) N su
h that TN = 1 on the representation. Thus the representation 
an be shown tobe invariant under some T (N) with N large enough.Thus the general partition fun
tion for a rational 
 = 1 CFT 
an be written up to overallnormalization as Z(�; �� ) = X(�;�)��;�� N ��;���;�F�;�(� ) �F��;��(�� ) (9)There are two basi
 
onstraints on (9). The �rst is modular invarina
e and the se
ond is thatall multipli
ities should be non-negative integers when one normalizes the partition fun
tion sothat the unit operator appears on
e.yThe �rst step will be to 
onstru
t all possible modular invariants of the form (9). We 
all� in F�;�(� ) the \level." From (7) it is obvious that b 2 Z and from (8) that � 2 Z+. Sin
ethe a
tion of S and T does not 
hange the level of the modular form F�;�(� ) we 
an 
lassify theinvariants at a given level separately.Lemma 1: Let � 2 Z+. Then for any divisor Æ of � there exists an invariant Z�Æ . Theinvariant generated by �Æ = �=Æ is the same. The form of the invariant is given by:Z�Æ = Æ�1Xk=0 �Æ�1X�=0fF�k�Æ+�Æ(�) �F�;k�Æ��Æ(�tau)+F�;�+k�Æ+�Æ(�) �F�;�+k�Æ��Æ(�� )g (10)Proof: The line of arguments follows the dis
ussion in [7℄. To save spa
e we will just sket
hthe proof. Invarian
e under T implies that b2 � b02 = 0mod(4a) for the term F�;�(�) �F�;�(��)to appear in the partition fun
tion. Choosing Æ su
h that Æj�, �delta = �=Æ we see that (b �b0)(b + b0) = 0mod(4Æ�Æ), and the solution is bÆm+ �Æn, b0 = Æm� �Æn, m, n integers. One theny There is an extra 
onstraint and this is that the theory has to have a 
onsistent operator algebra. We willreturn to this point later on. 3



by using the arguments in [5℄ 
an show that these solutions for every divisor Æ of a generatethe 
ommutant of T . We 
an then 
he
k that the partition fun
tion invariant under T is alsoinvariant under S by using (7). Restri
ting b; b0 in the domain 0 � b; b0 � 2a � 1 gives theinvariant (10). It is obvious that Z�Æ = Z��delta. The above shows that the invariant Z�Æ exhaustall possible invariants. Not all of them are independent though.Lemma 2: Let � = �0p2 where p is a prime greater than one. Then for every divisor Æ of�0 we have Z�0p2Æp = Z�0Æ :Proof: The proof is obvious on
e we establish the following identity:N�1Xk=0 F�N2;N(2�k+b)(�) = F�;�(�) (11)whi
h follows trivially from the de�nition (5).Theorem: Let � 2 Z+. Let Æ be a divisor of �, �delta = �=Æ su
h that the greatest 
ommondivisor [Æ; �Æ℄ = 1 For all su
h pairs Æ; �Æ there exists an independent invariant Z�Æ given by (10).Moreover, this list of invariants is 
omplete.Proof: Let Æ be a divisor of � su
h that [Æ; �Æ℄ > 1 then by Lemma 2 this invariant 
an beredu
ed to an invariant at a lower level �0 = �=[Æ; �Æ℄2. At a given level invariant for di�erentpairs (Æ; �Æ) and (Æ0; �Æ0) are distin
t by inspe
tion. Furthermore it is easy to show that relation(11) is the only relation between forms at di�erent levels. Completeness follows from Lemma 1.It is obvious that the invariant Z�Æ is equal to the toroidal partition fun
tion Z(R) (see (1))at R =pÆ=2Æ. Duality is the statement that Z�Æ = Z��Æ .Thus we have proven that an arbitrary modular invariant partition fun
tion is a �nite linear
ombination of the invariants Z�Æ (toroidal partition fun
tions). The �nal step is to impose the
onstraint of non-negative integer multipli
ities. This question has been answered in ref. [3℄. Inorder to make the line of thought 
lear we will present the statements without proofs. Detailsfo the proofs will appear in [8℄.We will distinguish two 
ases. The �rst 
ase is when no 
hiral (1,0) operator appears inthe partition fun
tion. In this 
ase there is no U(1) symmetry and we have to write partitionfun
tions in terms of Virasoro 
hara
ters. 4



The general partition fun
tion 
an be written as a �nite sum Z =PNi=1 
iZ(Ri),PNi=1 
i = 1,in order to have a unique (0,0) operator.Lemma 3: The multipli
ity of (s2; 0) operators, s 2 Z+, s 2 s is given by 1 + 2[s=N ℄ forZN and is 1 otherwise. In parti
ular Z1 
ontains 3(1,0) operators and any other Z(Ri) only one.The 
onstraint that there are no (1,0) operators in the partition fun
tion for
es 
1 = �1=2.Lemma 4: For all i, z
i 2 Z. This is so be
ause we 
an show that in the opposite 
asethere will always be fra
tional multipli
ities in Z.Lemma 5: Ex
ept for 
1 = �1=2 all other 
i have to be zero or positive. This is be
ausewe 
an show that if one of them is negative there will be at least one state that appears with aminus sign in Z(�; �� ).Theorem: Any partition fun
tion Z(�; �� ) not 
ontaining any (1,) operators has to be eitherof the form (2) or of the form (3).This follows for Lemmas 3, 4, 5 and the 
onstraint that operators of dimension (s2; 0), s � 5have positive integer multipli
ities. The only 
ase left to 
onsider is the 
ase that there exist(1,0) operators in the theory, so that states are in representations of a 
hiral U(1) algebra. Ifthe number of operators (1,0) is N1 > 0 then 
1 (the 
oeÆ
ient of Z) has to be N1 � 1=2.Lemma 4 still remains true for the same reason, and Lemma 5 extends trivially in the statementthat 
1 � 08i. From the above it is obvious that there are only two possible solutions, eitherthe torus models Z = Z(R) or ~Z = 1=2(Z(R) + Z(R0)). The models with partition fun
tion ~Zdo not have a 
onsistent operator algebra. In parti
ular they do not satisfy the requirement ofadditively 
onserved U(1) 
hanges. Thus they do not 
orrespond to CFT models.Thus our 
laim is proven. There are no other rational CFT's with 
 = 1 ex
ept those in [1℄.I would like to thank R. Dijkgraaf for very illuminating dis
ussions, and P. Ginsparg forreading the manus
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