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Abstract

By using the Serre-Stark theorem we prove that the list of rational conformal theories with

¢ = 1, given by Ginsparg is in fact complete.
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It has been a major goal of Conformal Field Theory (CFT) to classify all the universality
classes of critical behavior in two dimensions. Stated from the point of view of string theory, this
would correspond to a classification of the classical ground states of the string. There has been
a lot of progress in recent years in understanding the tools to achieve such a classification, and
some partial results have emerged. Despite the fact that a complete classification seems out of
reach at present, some partial classifications may shed light on which ingredients are important

and which are not.

Ginsparg, in a nice paper [1], gave a list of ¢c=1 theories. There are two continuous families in
this list corresponding to the torus and Zs orbifold models. In [2], it was shown that there are no
marginal deformations that lead outside these two lines. In [1], three disconnected models have
been constructed, that could not be reached from the rest via marginal deformations. There
was a wide-spread suspicion that his list was complete. In fact, in ref. [3], it was shown that
under the assumption that the building blocks are toroidal partition functions, then this list is

complete.

In this paper we will supplement this classification by a rigorous proof that the subset of

rational CFT’s at c=1 is complete.

In order to set the notation, we will write the partition functions of these models. For the
torus models, which are parametrized by the radius R of the target space, the partition function
1s
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where P, = 7+ % , PR="TF— % The partition function (1) is modular invariant, and is also

invariant under the duality transformation R — % Define Zy = Z(N+/2). Then the orbifold

partition function at radius R is given by:

Z(R)omy = = (Z(R) + 22 — Z1) . (2)
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The disconnected models which are in one-to-one correspondence with the three non-trivial

discrete subgroups of SU(2) have the following partition functions:

Zr=-(223+Zo—-71) , Zo=-(Zs+Z3+Zy—17)
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Z, = (Z5—|—Z3—|—Z2—Z1) . (3)
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The ratiional theories belonging to this list are the ones which contain partition functions with

R being the square root of a rational number.

The partition function of a CFT with central charge ¢ behaves as 7 — oo as in ref. [4]:
Z(T 77—_) . {62“(7-_%)} D < 40 < 2niTe —2nzre>> (4)

with e,€ > 0.

In a rational conformal theory the partition function can be constructed out of modular
forms invariant under a finite index subgroup of the modular group, [5]. The modular forms
have to have the appropriate behavior as 7 — ioo as indicated in eq. (4). In particular for
c=1 they have to be what mathematicians call one-singular forms. Fortunately the one-singular

modular forms have been classified by Serre and Stark, [6].

Define:
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with a, be%z ;o > 0 and as usual ¢ = €2™7, fap(r) satistied the following peridicity properties in
b:

fa,b(T) = fa,—b(T) = fa,2a+b(T) = fa,2a—b(T) . (6)
Thus for each aeZ the “fundamental domain” in beZ is 0 < b < a.

The modular properties of f,; and g, are as follows:
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and similarly for g, g. Thus F,, g = f%’ﬁ where 7 1s the Dedkind n-function are modular forms

for some I'(N) and if o« — 3 € Z then N = (4@,24).*

* By (a, 8) we mean the lowest common multiple of «, beta.



Thus at this point we can invoke the Serre-Stark theorem, [6], which states that any 1-
singular modular form on some I'(/V) is a finite linear combination of the functions Fy 3(7).
That any modular form of a finite index subgroup I' of the modular group can be constructed
out of F}, g can be inferred from the following. If c,h are rational then there is an integer
(positive) N such that TV =1 on the representation. Thus the representation can be shown to

be invariant under some 7T (N) with NV large enough.

Thus the general partition function for a rational ¢ = 1 CFT can be written up to overall
normalization as
= Y NoFas()Fy (%) (9)
(2,8)
a,p
There are two basic constraints on (9). The first is modular invarinace and the second is that
all multiplicities should be non-negative integers when one normalizes the partition function so

that the unit operator appears once!

The first step will be to construct all possible modular invariants of the form (9). We call
o in I, g(7) the “level.” From (7) it is obvious that b € Z and from (8) that a € ZT. Since
the action of S and T does not change the level of the modular form F, g(7) we can classify the

invariants at a given level separately.

Lemma 1: Let o € Z*. Then for any divisor § of a there exists an invariant Z$. The

invariant generated by § = a/é is the same. The form of the invariant is given by:

6—16-1
> AF, wk8-426(r) F o k5= 26 (au)
k=0 A=0
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Proof: The line of arguments follows the discussion in [7]. To save space we will just sketch
the proof. Invariance under 7' implies that b*> — 6" = Omod(4a) for the term F), B(r )Faﬁ(f)
to appear in the partition function. Choosing ¢ such that 6|a, delta = o/6 we see that (b —
V)(b+ V) = 0mod(486), and the solution is bdm + én, b’ = dm — én, m, n integers. One then

1 There is an extra constraint and this is that the theory has to have a consistent operator algebra. We will
return to this point later on.



by using the arguments in [5] can show that these solutions for every divisor ¢ of a generate
the commutant of 7. We can then check that the partition function invariant under 7" is also
invariant under S by using (7). Restricting 6,5 in the domain 0 < b,8' < 2a — 1 gives the
invariant (10). It is obvious that Z§ = Z3 ., The above shows that the invariant Z§ exhaust
all possible invariants. Not all of them are independent though.

Lemma 2: Let a = o/p? where p is a prime greater than one. Then for every divisor 6 of

/2 ,
o we have Z°F = 72,
bp 1)

Proof: The proof is obvious once we establish the following identity:

T

Fy w2 N 2ak4b)(r) = Fag(r) (11)
0
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which follows trivially from the definition (5).

Theorem: Let o € Z*. Let § be a divisor of o, delta = a/§ such that the greatest common
divisor [6,8] = 1 For all such pairs &,¢ there exists an independent invariant Z$ given by (10).

Moreover, this list of invariants is complete.

Proof: Let § be a divisor of a such that [6,6] > 1 then by Lemma 2 this invariant can be
reduced to an invariant at a lower level o’ = a/[§,6)%. At a given level invariant for different
pairs (6,0) and (¢',¢8') are distinct by inspection. Furthermore it is easy to show that relation

(11) is the only relation between forms at different levels. Completeness follows from Lemma 1.

It is obvious that the invariant Z§ is equal to the toroidal partition function Z(R) (see (1))
at B = 1/6/26. Duality is the statement that Zg = Z{.

Thus we have proven that an arbitrary modular invariant partition function is a finite linear
combination of the invariants Z§ (toroidal partition functions). The final step is to impose the
constraint of non-negative integer multiplicities. This question has been answered in ref. [3]. In
order to make the line of thought clear we will present the statements without proofs. Details

fo the proofs will appear in [8].

We will distinguish two cases. The first case is when no chiral (1,0) operator appears in
the partition function. In this case there is no U(1) symmetry and we have to write partition

functions in terms of Virasoro characters.



The general partition function can be written as a finite sum Z = ElNzl GZ(R;), ElNzl ¢ =1,

in order to have a unique (0,0) operator.

Lemma 3: The multiplicity of (s2,0) operators, s € ZT, s € s is given by 1 + 2[s/N] for

Zy and is 1 otherwise. In particular Z; contains 3(1,0) operators and any other Z(R;) only one.

The constraint that there are no (1,0) operators in the partition function forces ¢; = —1/2.

Lemma 4: For all 2, z¢; € Z. This i1s so because we can show that in the opposite case

there will always be fractional multiplicities in Z.

Lemma 5: Except for ¢; = —1/2 all other ¢; have to be zero or positive. This is because
we can show that if one of them is negative there will be at least one state that appears with a

minus sign in Z(7, 7).

Theorem: Any partition function Z(7, 7) not containing any (1,) operators has to be either

of the form (2) or of the form (3).

This follows for Lemmas 3, 4, 5 and the constraint that operators of dimension (s%,0), s <5
have positive integer multiplicities. The only case left to consider is the case that there exist
(1,0) operators in the theory, so that states are in representations of a chiral U(1) algebra. If
the number of operators (1,0) is N3 > 0 then ¢; (the coeflicient of Z) has to be N; — 1/2.
Lemma 4 still remains true for the same reason, and Lemma 5 extends trivially in the statement
that ¢; > 0Vi. From the above it is obvious that there are only two possible solutions, either
the torus models Z = Z(R) or 7 = 1/2(Z(R) + Z(R')). The models with partition function 4
do not have a consistent operator algebra. In particular they do not satisfy the requirement of

additively conserved U(1) changes. Thus they do not correspond to CFT models.
Thus our claim is proven. There are no other rational CFT’s with ¢ = 1 except those in [1].

I would like to thank R. Dijkgraaf for very illuminating discussions, and P. Ginsparg for

reading the manuscript.
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