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Abstract

The critical O(2) Gaussian and Askin-Teller models are studied. The magnetic operator is
identified as the twist field of the scalar field and the electric operator as a particular vertex
operator. Invariance under a local SU(2) symmetry is shown to be hidden in the systems above.
At a particular point on the critical line (A = —4), it is shown that the electric operator

generates a degenerate representation of the Virasoro algebra and that it transforms as the

fundamental representation under the SU(2) symmetry. The implications are discussed.
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There has been a lot of progress recently in understanding critical phenomena in two di-
mensions, through conformal field theory and the study of the representations of the Virasoro

algebra [1,2].

In this note we intend to add a small piece to the already huge amount of knowledge
concerning 2-d critical phenomena. We will identify the electric and magnetic (spin) operators of
the Askin-Teller,(A-T), model on the critical line where it is described by a free scalar field which
takes values on a circle. In particular we will show that the magnetic operator is the “twist”
field that changes the boundary conditions of the scalar field and that its scaling dimension is
constant along the critical line. The electric operator will be represented by the vertex operator
et9: Local SU(2) invariance is present on the critical line. We will explicitly construct the
currents and a pair of operators that transform in the fundamental of SU(2). At the point
A= —g on the # = 1 critical line we will show that the electric operator transforms non-
trivially under the local SU(2) symmetry and that it generates a degenerate representation of

the Virasoro algebra. We will also study the consequences of this fact.

The A-T model is described by two Ising spins coupled with a four-spin interaction [3]. There
are two couplings, 3, governing the strength of the four-spin interaction and A, governing the
spin-spin interactions! At B =1 the strength of the four spin interaction vanishes and there is
a line of critical points , —1 < A < 1, of the Kosterlitz-Thouless type with continuously varying
critical exponents. The point A = 0 corresponds to two independent Ising models whereas at

A = +£1 the model has Z4 symmetry corresponding to the critical Potts model.

It is well known that the Gaussian model on the critical line is described by a free scalar
field which is the phase of the O(2) vector. It is a map : ¢(c) : St — S! which is periodic in
o : ¢(o+2x) = ¢(0). The operators of this theory can be represented by the so-called vertex
operators, Vy(o) =: ¢'@?(7) . and their derivatives. The action in the continuum limit on the

critical line g =1 is

S = —K/drdaw2¢, (1)

where K = %(1 — %‘S(A)) Going to complex coordinates, In(z) = 7 + to it is easy to see that

7 For more details on the model and its phase diagram we refer the reader to ref. [3]. We will be following
the notation of the previous reference.



.
the theory has a factorized z, 7 dependence’” The two-point function is,

1

(0]6(=)(w)]0) = ———

In(z — w) (2)

whereas the energy momentum tensor is given by, 7(z) = —21—; 1 050(2)0,9(2) :, satisfying the
standard O.P.E.,

T () = —L2 o 2T a‘”T(w)) 3)

(2 —w)

(2 —w)

(In the O.P.E. we will always omit the regular pieces). From (3) we derive the Virasoro anomaly
for the system, namely ¢ = 1. A vertex operator, Vy(z) =: ¢'@?() . is a primary field with

dimension’ Ay = #2](, as shown by the following O.P.E.

(4)

K can be related to the thermal critical exponent x7, as xp = Lj so that A, = a?%Z. Since

7K 8
the electric operator is known to have physical dimension z, = “f, the right candidate is
Vip =: et .. Its dimension is a function of A and varies continuously along the critical line.

On the other hand the magnetic critical exponent is known to be zp = % and 1s constant
along the critical line. We will identify the magnetic operator with the twist field, H*(z), for
the scalar ¢(z). A twisted scalar field is defined to be an anti-periodic instead of a periodic map.
On the z-plane this means that the operator ¢(z) is double valued around the position of a twist
field. If we place a twist field at z = 0, (7 = —o0), and another one at z = oo, (7 = +0), they
generate a cut on the z-plane that causes the double-valuedness of ¢. In the presence of twist

fields the two-point function of ¢ is modified [4]:

(0] H(s0)8(=)6(w) HE(0)[0) _ 1 zn(ﬁ+ﬁ)> (5)

ploz ool = ST - L (VA

We would like to calculate the scaling dimension of the twist field for arbitrary A. In order

1 From now on we will concentrate on the z dependence, the total theory being a direct product of the left

and right pieces.
§ This is the holomorphic dimension of an operator. There is also the antiholomorphic one, A. The physical
dimension is A + A whereas the spin is A — A.



to do that we have to calculate

(O] H=(00)T(2) H*(0)[0)

O = =Gz ooy mE )0y

Using the two-point function, (5), and the definition of the energy-momentum tensor it is
straightforward to calculate:

11
16 -2

(O ()0} = -

(6)

Equation (6) gives us two pieces of information. First, that the scaling dimension of the twist
field is % and second that the twist field is a primary field of the Virasoro algebra (that is it
satisfies an O.P.E. of the form depicted in (4)). Thus the physical dimension of the twist field

is % and it is constant on the # = 1 line.

It is easy to see that the SU(2) affine algebra is realized in the models on the critical lineY.
Let’s remind ourselves that the algebra is defined by the current operators J*(z),a = 1,2,3 of
dimension one, by the following O.P.E.

Jc(w) N E 5ab

JY(2) JP(w) = iebe o T o (7)

where N = 1,2, ... is the central charge.

The realization is achieved through:

J3(2) = iVar K o.6(2) Ji(z):%:eiim¢(z): %(Jl(z)iiﬂ(z)) (8)

and N = 1. The only integrable representation” of the algebra above that can appear is the
fundamental [6] which is realized by the A = % family (: eV 27K6(2). with isospin :l:%) Under
the semidirect product of the Virasoro algebra and the Kaé—Moody algebra, it is a degener-

ate” representation, the null vector being:

UEELAVIN LI (9)

o being the Pauli matrices, £ is the isospin index.

€ The SU(2) invariance of the action has been first noticed in [5].
# An integrable representation is, in physical terms, a representation whose correlation functions with other
operators do not vanish identically
xx See ref. [7] for more details.



Due to the degeneracy of the representation the correlation functions satisfy linear differen-
tial equations [7]. In our case we have an explicit representation of the operators which makes

it possible to compute the correlation functions using the standard formula,

n
a;a;

(0] H ) o) = TT i) ™60 ai) (10)

1<g

Thus if ¢'(2) is the operator transforming in the fundamental of SU(2), (i=1,2 being the isospin
index), then using (10),

(06" (21)@7 (22)6" (23)8' (20)[0) = (212254) 2 [y(y — 1)] 7> [§87 + (y = 1)87s"|  (11)

Z14 %23

where y = 2422

. The correlation function in (11) does indeed satisfy the differential equation
stemming from the degeneracy of the fundamental representation. We should mention that the

SU(2) operators are non-local with respect to the electric and magnetic operators.

There i1s a special value of A, namely A = —g, where the electric operator coincides with
the operator transforming with the fundamental of SU(2), both having dimension %. In this case
as we subsequently see, the structure of the Virasoro algebra implies some extra information

about the operator content of the theory. Thus we digress a little to develop this point.

There is a special class of representations of the Virasoro algebra called degenerate repre-
sentations. These are representations with the following property: If one starts from a hwv and
generates secondary states by applying the lowering operators of the algebra, at some point one

obtains a secondary state that has the properties of a hwo.

This state is null and orthogonal to the rest of the representation. It generates another
representation which is embedded in the initial one. Then the Kac¢-determinant has a zero

corresponding to this null hwv. (For more details see [1].)

The Kac¢-determinant for ¢ = 1 and level m is [2]

)2] e : (12)

det M,, = ﬁ I1 [A—(T_TS
k=1

r-s=k
r<s

where p(n) are the number of partitions of n.



From eq. (4) it is obvious that the Kac¢-determinant has a zero when A = ’2—2, n=20,1,2..

In fact there is an infinity of families embedded in the family with A = ’2—2 .

Let’s consider the representation with the lowest nontrivial dimension, namely A = %. The

Ka¢-determinant shows that there is a null hwv at level two. Its form is given below:

x) = [L2 = L44]]A). (13)

Since the null vector 1s orthogonal to everything else, it’s correlations with other operators
will vanish. This fact implies linear differential equations for the correlation functions of ¢, /4(2)

with other operators [1].

Consider the n-point function:

Fo(z1,22, ..., 2) = (0[¢1(21)d2(22)-.- n—1(2n—1)b1/4(2)[0)

and assume that all ¢;(z1) are primary. Then F, satisfies the following differential equation,

due to eq. (13):

where we shifted z; — z; — 2z, 1 =1,2....n — 1.

Let’s study the operator products of the A = % family with other primary operators. The
natural place to look at is the three-point function. The condition that the family [As] is
contained in the operator product [Aj] @ [As]is that the three-point function of [Aq], [As], [As]

be non-zero. From projective invariance:

(016, (21) DAy (22) 6y (23)]0) = Cay apap21 > 215" 2952, (15)

where as usual A2 = A; 4+ As — Az and so on, while Ca; A, A, is an overall constant (O.P.E.

coeflicient) not fixed by projective invariance.



Suppose now that Az = %. Then the three-point function in eq. (15) has to satisfy eq. (14).
This implies some constraint on A, As which 1is:
A1+ Ay 1

(Ap — Ag)? — — =1 (16)

2
Solving for A; we obtain A; = (VA2 + %)2 If Ay = ’1—2, then Aq = (njil) . This reminds
us of the composition rule for vertex operators. That is the primary field with A = ’1—2 can be

represented by : €"9(?): neZ. Then it is easy to evaluate: [’2—2] ® [%2] ~ [(n+4m)2] ® [(n_4m)2]

which for m =1 is what eq. (16) implies.

Thus it is obvious that the operator set with A = ’2—2, neZ is closed under O.P.E. due to the

O.P.E. for vertex operators.

A non-trivial check that in fact the representation through vertex operators is valid, is

obtained by calculating the four-point functions:

(01on2/4(21)P1/4(22) P2 ja(23) d1/4(24)[0) = 294 "7 215 (17)

, n/2
—1/2 —n?/4 [212234]
214723

It is easy to verify that eq. (17) satisfies eq. (14). Thus there is an infinite family of operators

associated with the electric operator which form a closed operator algebra.

Now we would like to know what happens if one includes the magnetic operator in the

previous set of operators. The operator product of the magnetic and electric operator contains,

1

according to (16), two families, [E] and [11—6 + %] By induction it easy to show that we have

2
to include a set of operators, the “ twist class”, having dimensions A, = (217,1—1(—51) . In fact

‘2n+1 . . . .
+1757¢ . neZ, is a valid assumption in the operator set

representing this class of operators by : e
that we are discussing. This fact can be checked again by investigating the respective correlation

functions. An important conclusion of the analysis above is that the existence of the electric

and magnetic operators implies the existence of the [% + %] operator. This is important since

at A = —@ the model has additional local symmetries (N=1,2 superconformal invariance [8]),

and the previous operator is a crucial part of the spectrum. Parafermionic operators that have
been found can also be described as above. For example, a parafermionic operator with spin 1/2
and physical dimension 5/8, on the whole § = 1 line [9] can be described by the family (%, 19—6)

2
belonging to the twist class of operators (A = %)



To summarize, using conformal field theory, we analyzed certain aspects of the operator
content of the A-T model on the g = 1 critical line. In particular, we identified the magnetic
operator as the twist field for the scalar field by showing that it has the correct dimension
independent of A and the electric operator as a certain vertex operator. We subsequently showed
that a local SU(2) symmetry is realized on the critical line by constructing the currents and the
fundamental representation. At the special point, A = —4, we showed that the electric operator
transforms non-trivially under this SU(2) symmetry. By using the fact that the electric operator
is a special (degenerate) representation of the Virasoro algebra, we were able to find a whole set
of operators required to be present in the spectrum of the theory. Some of the aforementioned
results are probably not new to most physicists. However what we want to stress most is the
power of conformal field theory and/or algebraic techniques in deducing correlation functions,

operator product rules and the operator content of the theory as well as the existence of local

symmetries present.

I would like to thank J. Preskill for useful discussions and encouragement.

Note Added

After the completion of this work we received reference [10] where the operator spectrum
is discussed on the critical line of the A-T model and reference [11] where issues of modular

invariance are discussed for the system above.
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