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There has been a lot of progress re
ently in understanding 
riti
al phenomena in two di-mensions, through 
onformal �eld theory and the study of the representations of the Virasoroalgebra [1,2℄.In this note we intend to add a small pie
e to the already huge amount of knowledge
on
erning 2-d 
riti
al phenomena. We will identify the ele
tri
 and magneti
 (spin) operators ofthe Askin-Teller,(A-T), model on the 
riti
al line where it is des
ribed by a free s
alar �eld whi
htakes values on a 
ir
le. In parti
ular we will show that the magneti
 operator is the \twist"�eld that 
hanges the boundary 
onditions of the s
alar �eld and that its s
aling dimension is
onstant along the 
riti
al line. The ele
tri
 operator will be represented by the vertex operator:e�i�:. Lo
al SU(2) invarian
e is present on the 
riti
al line. We will expli
itly 
onstru
t the
urrents and a pair of operators that transform in the fundamental of SU(2). At the point� = �p22 on the � = 1 
riti
al line we will show that the ele
tri
 operator transforms non-trivially under the lo
al SU(2) symmetry and that it generates a degenerate representation ofthe Virasoro algebra. We will also study the 
onsequen
es of this fa
t.The A-T model is des
ribed by two Ising spins 
oupled with a four-spin intera
tion [3℄. Thereare two 
ouplings, �, governing the strength of the four-spin intera
tion and �, governing thespin-spin intera
tions.y At � = 1 the strength of the four spin intera
tion vanishes and there isa line of 
riti
al points , �1 � � � 1, of the Kosterlitz-Thouless type with 
ontinuously varying
riti
al exponents. The point � = 0 
orresponds to two independent Ising models whereas at� = �1 the model has Z4 symmetry 
orresponding to the 
riti
al Potts model.It is well known that the Gaussian model on the 
riti
al line is des
ribed by a free s
alar�eld whi
h is the phase of the O(2) ve
tor. It is a map : �(�) : S1 ! S1 whi
h is periodi
 in� : �(� + 2�) = �(�). The operators of this theory 
an be represented by the so-
alled vertexoperators, Va(�) �: eia�(�) : and their derivatives. The a
tion in the 
ontinuum limit on the
riti
al line � = 1 is S = �K Z d�d��r2�; (1)where K = 2� (1 � ar

os(�)� ) Going to 
omplex 
oordinates, ln(z) = � + i� it is easy to see thaty For more details on the model and its phase diagram we refer the reader to ref. [3℄. We will be followingthe notation of the previous referen
e. 1



the theory has a fa
torized z; �z dependen
e.z The two-point fun
tion is,h0j�(z)�(w)j0i = � 14�K ln(z � w) (2)whereas the energy momentum tensor is given by, T (z) = �K2� : �z�(z)�z�(z) :, satisfying thestandard O.P.E., T (z)T (w) = 1=2(z � w)4 + 2T (w)(z � w)2 + �wT (w)(z � w) (3)(In the O.P.E. we will always omit the regular pie
es). From (3) we derive the Virasoro anomalyfor the system, namely 
 = 1. A vertex operator, Va(z) �: eia�(z) : is a primary �eld withdimensionx �a = a28�K , as shown by the following O.P.E.T (z)Va(w) = �a Va(w)(z � w)2 + �wVa(w)(z � w) (4)K 
an be related to the thermal 
riti
al exponent xT , as xT = 1�K so that �a = a2 xT8 . Sin
ethe ele
tri
 operator is known to have physi
al dimension xp = xT4 , the right 
andidate isV�1 =: e�i� :. Its dimension is a fun
tion of � and varies 
ontinuously along the 
riti
al line.On the other hand the magneti
 
riti
al exponent is known to be xH = 18 and is 
onstantalong the 
riti
al line. We will identify the magneti
 operator with the twist �eld, H�(z), forthe s
alar �(z). A twisted s
alar �eld is de�ned to be an anti-periodi
 instead of a periodi
 map.On the z-plane this means that the operator �(z) is double valued around the position of a twist�eld. If we pla
e a twist �eld at z = 0, (� = �1), and another one at z =1, (� = +1), theygenerate a 
ut on the z-plane that 
auses the double-valuedness of �. In the presen
e of twist�elds the two-point fun
tion of � is modi�ed [4℄:h0j�(z)�(w)j0iT � h0jH�(1)�(z)�(w)H�(0)j0ih0jH�(1)H�(0)j0i = 14�K ln�pz +pwpz �pw� (5)We would like to 
al
ulate the s
aling dimension of the twist �eld for arbitrary �. In orderz From now on we will 
on
entrate on the z dependen
e, the total theory being a dire
t produ
t of the leftand right pie
es.x This is the holomorphi
 dimension of an operator. There is also the antiholomorphi
 one, ��. The physi
aldimension is �+ �� whereas the spin is �� ��. 2



to do that we have to 
al
ulateh0jT (z)j0iT � h0jH�(1)T (z)H�(0)j0ih0jH�(1)H�(0)j0i :Using the two-point fun
tion, (5), and the de�nition of the energy-momentum tensor it isstraightforward to 
al
ulate: h0jT (z)j0iT = 116 1z2 (6)Equation (6) gives us two pie
es of information. First, that the s
aling dimension of the twist�eld is 116 and se
ond that the twist �eld is a primary �eld of the Virasoro algebra (that is itsatis�es an O.P.E. of the form depi
ted in (4)). Thus the physi
al dimension of the twist �eldis 18 and it is 
onstant on the � = 1 line.It is easy to see that the SU(2) aÆne algebra is realized in the models on the 
riti
al line{.Let's remind ourselves that the algebra is de�ned by the 
urrent operators Ja(z); a = 1; 2; 3 ofdimension one, by the following O.P.E.Ja(z)J b(w) = i�ab
 J
(w)(z �w) + N2 Æab(z �w)2 ; (7)where N = 1; 2; ::: is the 
entral 
harge.The realization is a
hieved through:J3(z) = ip2�K�z�(z) ; J�(z) = 1p2 : e�ip8�K�(z) :� 1p2(J1(z)� iJ2(z)) (8)and N = 1. The only integrable representation� of the algebra above that 
an appear is thefundamental [6℄ whi
h is realized by the � = 14 family (: e�ip2�K�(z):, with isospin �12). Underthe semidire
t produ
t of the Virasoro algebra and the Ka�
{Moody algebra, it is a degener-ate��representation, the null ve
tor being:[L�1 � �a2 Ja�1℄j14i� (9)�a being the Pauli matri
es, � is the isospin index.{ The SU(2) invarian
e of the a
tion has been �rst noti
ed in [5℄.� An integrable representation is, in physi
al terms, a representation whose 
orrelation fun
tions with otheroperators do not vanish identi
ally�� See ref. [7℄ for more details. 3



Due to the degenera
y of the representation the 
orrelation fun
tions satisfy linear di�eren-tial equations [7℄. In our 
ase we have an expli
it representation of the operators whi
h makesit possible to 
ompute the 
orrelation fun
tions using the standard formula,h0j nYi=1 : eiai�(zi) : j0i = nYi<j(zij)aiaj4�K Æ(Xai) (10)Thus if �i(z) is the operator transforming in the fundamental of SU(2), (i=1,2 being the isospinindex), then using (10),h0j�i(z1)�j(z2)�k(z3)�l(z4)j0i = (z12z34)� 12 [y(y� 1)℄� 12 hÆikÆjl + (y � 1)ÆijÆkli (11)where y = z14z23z12z34 . The 
orrelation fun
tion in (11) does indeed satisfy the di�erential equationstemming from the degenera
y of the fundamental representation. We should mention that theSU(2) operators are non-lo
al with respe
t to the ele
tri
 and magneti
 operators.There is a spe
ial value of �, namely � = �p22 , where the ele
tri
 operator 
oin
ides withthe operator transforming with the fundamental of SU(2), both having dimension 14 . In this 
aseas we subsequently see, the stru
ture of the Virasoro algebra implies some extra informationabout the operator 
ontent of the theory. Thus we digress a little to develop this point.There is a spe
ial 
lass of representations of the Virasoro algebra 
alled degenerate repre-sentations. These are representations with the following property: If one starts from a hwv andgenerates se
ondary states by applying the lowering operators of the algebra, at some point oneobtains a se
ondary state that has the properties of a hwv.This state is null and orthogonal to the rest of the representation. It generates anotherrepresentation whi
h is embedded in the initial one. Then the Ka�
-determinant has a zero
orresponding to this null hwv. (For more details see [1℄.)The Ka�
-determinant for 
 = 1 and level m is [2℄detMm = mYk=1264Yr�s=kr�s ��� (r � s)24 �2p(m�k)375 ; (12)where p(n) are the number of partitions of n. 4



From eq. (4) it is obvious that the Ka�
-determinant has a zero when � = n24 ; n = 0; 1; 2:::In fa
t there is an in�nity of families embedded in the family with � = n24 .Let's 
onsider the representation with the lowest nontrivial dimension, namely � = 14 . TheKa�
-determinant shows that there is a null hwv at level two. Its form is given below:j�i = [L2 � L2�1℄j�i: (13)Sin
e the null ve
tor is orthogonal to everything else, it's 
orrelations with other operatorswill vanish. This fa
t implies linear di�erential equations for the 
orrelation fun
tions of �1=4(z)with other operators [1℄.Consider the n-point fun
tion:Fn(z1; z2; :::; z) � h0j�1(z1)�2(z2):::�n�1(zn�1)�1=4(z)j0iand assume that all �i(z1) are primary. Then Fn satis�es the following di�erential equation,due to eq. (13): 24n�1Xi=1 � 1zi ��zi � �iz2i �+ n�1Xi;j=1 ��zi ��zj35Fn(z1; z2:::;= 0; (14)where we shifted zi ! zi � z; i = 1; 2:::; n� 1.Let's study the operator produ
ts of the � = 14 family with other primary operators. Thenatural pla
e to look at is the three-point fun
tion. The 
ondition that the family [�3℄ is
ontained in the operator produ
t [�1℄ 
 [�2℄ is that the three-point fun
tion of [�1℄; [�2℄; [�3℄be non-zero. From proje
tive invarian
e:h0j��1(z1)��2(z2)��3(z3)j0i = C�1;�2;�3z��1212 z��1313 z��2323 ; (15)where as usual �12 = �1 + �2 ��3 and so on, while C�1;�2;�3 is an overall 
onstant (O.P.E.
oeÆ
ient) not �xed by proje
tive invarian
e. 5



Suppose now that �3 = 14 . Then the three-point fun
tion in eq. (15) has to satisfy eq. (14).This implies some 
onstraint on �1;�2 whi
h is:(�1 ��2)2 � �1 +�22 = � 116 : (16)Solving for �1 we obtain �1 = (p�2 � 12)2. If �2 = n24 , then �1 = (n�1)24 . This remindsus of the 
omposition rule for vertex operators. That is the primary �eld with � = n24 
an berepresented by : ein�(z): n�Z. Then it is easy to evaluate: [n24 ℄ 
 [m24 ℄ � [ (n+m)24 ℄ � [ (n�m)24 ℄whi
h for m = 1 is what eq. (16) implies.Thus it is obvious that the operator set with � = n24 ; n�Z is 
losed under O.P.E. due to theO.P.E. for vertex operators.A non-trivial 
he
k that in fa
t the representation through vertex operators is valid, isobtained by 
al
ulating the four-point fun
tions:h0j�n2=4(z1)�1=4(z2)�n2=4(z3)�1=4(z4)j0i = z�1=224 z�n2=413 �z12z34z14z23�n=2 : (17)It is easy to verify that eq. (17) satis�es eq. (14). Thus there is an in�nite family of operatorsasso
iated with the ele
tri
 operator whi
h form a 
losed operator algebra.Now we would like to know what happens if one in
ludes the magneti
 operator in theprevious set of operators. The operator produ
t of the magneti
 and ele
tri
 operator 
ontains,a

ording to (16), two families, � 116� and � 116 + 12�. By indu
tion it easy to show that we haveto in
lude a set of operators, the \ twist 
lass", having dimensions �n = (2n+1)216 . In fa
trepresenting this 
lass of operators by : e�i 2n+12 � :, n�Z, is a valid assumption in the operator setthat we are dis
ussing. This fa
t 
an be 
he
ked again by investigating the respe
tive 
orrelationfun
tions. An important 
on
lusion of the analysis above is that the existen
e of the ele
tri
and magneti
 operators implies the existen
e of the � 116 + 12� operator. This is important sin
eat � = �p22 the model has additional lo
al symmetries (N=1,2 super
onformal invarian
e [8℄),and the previous operator is a 
ru
ial part of the spe
trum. Parafermioni
 operators that havebeen found 
an also be des
ribed as above. For example, a parafermioni
 operator with spin 1/2and physi
al dimension 5/8, on the whole � = 1 line [9℄ 
an be des
ribed by the family ( 116 ; 916)belonging to the twist 
lass of operators (� = (2n+1)216 ).6



To summarize, using 
onformal �eld theory, we analyzed 
ertain aspe
ts of the operator
ontent of the A-T model on the � = 1 
riti
al line. In parti
ular, we identi�ed the magneti
operator as the twist �eld for the s
alar �eld by showing that it has the 
orre
t dimensionindependent of � and the ele
tri
 operator as a 
ertain vertex operator. We subsequently showedthat a lo
al SU(2) symmetry is realized on the 
riti
al line by 
onstru
ting the 
urrents and thefundamental representation. At the spe
ial point, � = �p22 , we showed that the ele
tri
 operatortransforms non-trivially under this SU(2) symmetry. By using the fa
t that the ele
tri
 operatoris a spe
ial (degenerate) representation of the Virasoro algebra, we were able to �nd a whole setof operators required to be present in the spe
trum of the theory. Some of the aforementionedresults are probably not new to most physi
ists. However what we want to stress most is thepower of 
onformal �eld theory and/or algebrai
 te
hniques in dedu
ing 
orrelation fun
tions,operator produ
t rules and the operator 
ontent of the theory as well as the existen
e of lo
alsymmetries present.I would like to thank J. Preskill for useful dis
ussions and en
ouragement.Note AddedAfter the 
ompletion of this work we re
eived referen
e [10℄ where the operator spe
trumis dis
ussed on the 
riti
al line of the A-T model and referen
e [11℄ where issues of modularinvarian
e are dis
ussed for the system above.
7
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