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Abstract

The structure of the ¢ = % minimal N = 1 superconformal system is analyzed in detail.
The primary operators are constructed as operators in the critical O(2) Gaussian model at some
specific fixed radius. The operator algebra is verified explicitly. Operator product coefficients

and some superspace correlation functions are calculated exactly.
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1. Introduction

There has been a lot of progress recently concerning two-dimensional critical phenomena
and the whole structure of conformal invariance in two dimensions [1]. Supersymmetry seems
to play also some role in certain critical models [2,3,4]. Tecniques have been advanced to deal

with the calculation of correlation functions and the representation content of critical models.

The purpose of this paper is to analyze extensively a particular superconformal minimal
theory and to show that it is fully realized in a certain critical system, namely the O(2) Gaussian

model at a point on the critical Kosterlitz-Thouless line.

As shown by FQS [5], when the central charge of the NV = 1 superconformal algebra is less
than one, there exists a discrete infinity of unitary superconformal theories. They contain a
finite set of operators, which closes into itself under the operator product expansion (O.P.E).

The first non-trivial model in this series has been identified with the tricritical Ising model [2].

The unitary superconformal models with ¢ < 1 are given by, [5],

=1 5 2,3,4 (1.1)
c=1—— m= :
m(m T 2) sy Ey
There are two sectors, the NS sector where the fermionic components of superfields are single
valued on the complex plane and the R sector where the fermionic components are double valued

around the spin fields, which generate the R ground states from the NS vacuum, [2]. The finite

set of primary operators contained in these theories have dimensions given by,

[(m 4 2)p —mq]® — 4

Ap’q: 8m(m—|—2) 71§p<m71§q<m‘|‘27(p_Q)even (12@)
in the NS sector and
p—mqgl>—4 1
Ap,q:[(m+ Jp —ma +—,1<p<m,1<q¢<m+2,(p—gq)odd (1.20)
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in the R sector.

The system that we will deal with has a central charge given by the m = 4 term in the series,

[5]. It has a Virasoro anomaly ¢ = % ¢ = 1 which coincides with a ¢ of the critical Gaussian model.

The dimensions of its primary operators are shown in Table 1. In fact, the set of the primary



operators in the ¢ = % theory, including the twisted sector coincides with the content of the first
minimal model of the N = 2 superconformal algebra. This was proven rigorously in [6] using

the characters of the N = 2 superconformal algebra.

In [3] it was shown that the N = 2 superconformal algebra is realized in the critical O(2)

Gaussian model at a fixed radius.

Below we show that in fact the full ¢ = % superconformal model is realized in the critical
Gaussian model. We will be discussing the N=1 formalism since it is easier to deal with. Later
on we will discuss how we can assemble the N=2 structure from the N=1 one. The O(2)
Gaussian model is described at the critical line by a single free scalar field. The remaining piece
that needs to be added i1s the “twist” field of the scalar field. This is known to describe the
twisted sector of the first N=2 superconformal minimal model, [6]. The strategy is to construct
explicitly all the primary operators in the ¢ = % model from vertex operators and the twist
family, and then show that they obey the correct operator algebra implied by the structure of

the N=1 superconformal algebra, [8]. Some correlation functions will be also calculated and

shown to be super-meromorphic functions in N=1 superspace.

The structure of this paper is the following: In section 2 we explicitly construct the “un-
twisted” primary operators of the NS and R sectors and we verify the respective operator algebra.
In section 3 the “twisted” set of operators are constructed and the relevant fusion rules verified.
Some correlation functions are also calculated as functions in N=1 superspace. We also discuss
the possible modular invariant models by “sewing” together left and right sectors. Finally sec-
tion 4 contains remarks concerning the realization of the ¢ = % N=1 superconformal system in

the critical X-Y and A-T models as well as our conclusions.

2. Construction of the untwisted operators

At the critical point the O(2) Gaussian model is described by a two-dimensional vector. We
will consider the radius of this vector to be fixed to R = /3. The only remaining degree of
freedom is the phase which is a free scalar field ¢(o) and for fixed time 7 it provides a map
¢(0) : St— S1. This map is periodic in o, (é(c + 27) = &(c)), and the target space is a circle
due to the fact that ¢(c) is a phase. The operators in this theory are the “vertex” operators,
Va(o) =: ¢'@?(7) . and their derivatives. In order for these operators to be well-defined in the

target space, a must take the values: a = % ,neZ or Z @ % , where R is the radius. Integer

% In our case, R = /3.



values for n correspond to bosonic operators, while half-integer ones correspond to fermionic
operators. We will work from now on with holomorphic coordinates z and Z. At the critical
point the z and Z dependence factorizes. We will discuss the left sector of the theory which

depends one z only. The discussion of the right sectors parallels that of the left one.

The two-point function of ¢(z) is given by:

(0]¢(2)8(w)[0) = —ln(z — w) (2.1)

where radial quantization is assumed and the vacuum is the S(2,C) invariant vacuum.

The energy-momentum tensor is of the standard form, 7'(z) = —% 0 050(2)0;¢(2) : with an
0.PE.
1 1 2T (w) 0w T (w)
2 (z —w)

T(2)T(w) = (2.2)

(2 —w)

2
a

A vertex operator V;(z) has dimension A = % as shown by the following O.P.E.

T(2)Va(w) = & Valw) | OuValw) (2.3)

To find the superpartner of T'(z), we have to find an operator with A = % There are two
candidates, V\/g(z) and V_\/g(z), as well as any linear combination of the two, which has the
correct dimension. For reasons that will be explained below, the correct form is:

i

G(z) = 7§ L (1V36(2)

CL VB (2.4)

Then the N = 1 superconformal algebra closes correctly:

1 2T
2w

G(=)Gw) = (2.5)

C-wp (- w)

The primary operators in the NS sector are generated by primary superfields acting on

the NS vacuum. A superfield is a function in superspace:I ®(z) = g(z) + 0(z). If A is the

1 We will always suppress non-singular contributions to the O.P.E.
1 z and 0 are the coordinates in superspace denoted collectively with z.



dimension of the bosonic component ¢(z), then the corresponding dimension for the fermionic
partner ¢ (z) is A+ % A primary superfield operator is defined through the following OPE with

the super-energy-momentum tensor:

G(2)g(w) = L T()gw) = DU Dugl) (2.6)

(2 —w)

)
G=)b(w) = a“’g(w; 12 9 ) = (A ¥ %) <Z¢fﬁ>2 + ?w ‘f(;”i

The obvious candidate for the A = 1 primary operator is the U(1) current of the system,
g1(z) = 10:0(z). It has an O.P.E. with G(z):

G(2)g1(w) = —i- (2.7)

From (2.6) we can infer that the superpartner of ¢1(z) is ¢1(z) = —i[V\/g(z) + V_\/g(z)]. It

is an easy exercise to check that the rest of the relations (2.6) are satisfied.

(/(z) and t1(z) are the two supercharges of the corresponding N = 2 minimal theory which,
along with 7'(z) and ¢1(z), complete the N = 2 super-energy momentum tensor multiplet, [3,4].
As far as the other representations are concerned they can be built from the N=1 representations
without adding new fields in the super-multiplet. As it was shown in [4], for N=2 representations
degenerate at level 1/2 one of the fermionic components vanishes identically while the second
bosonic component is the derivative of the first one. Thus the N=2 super-multiplets contain the
same number of degrees of freedom as the N=1 super-multiplets. Using the remarks above the

N=2 structure can be easily reconstructed from the N=1 structure.

There are two A = % operators with opposite U(1) charge: gf(z) = 4 Using the
6

following relation:

celadlz) L gibd(w) L (z — w)ab . erad(z2)+ibg(w) (2.8)

. 21
we can calculate the superpartners of gf(z): ;/)fc/ﬁ = ZF% L TUo0)
6

Fig. 1, apart from the A = % operator, the above exhaust the set of primary operators in the

. As it can be seen from



NS sector. Correlation functions of vertex operators can be calculated through the standard

formula:

O TT Vau()lo) = [Ty o (Z) (29)

1<y 1

The sum of the coefficients a; in (8) has to be zero, otherwise [ R divergences force the correlation
function to vanish, [7]. To calculate the operator algebra of the operators above, one has to
calculate the appropriate three-point functions. The idea is that if [®1] @ [P2] ~ [P3], then

(©1P2P3) # 0. The only non-trivial three-point functions that are non-zero are given below:

(91(21)91(22)T(23)) = (213223)*, (9 (21)97 6 (22) T (23)) = %Zf§3(213223)_2 (2.10a)

(9176 (#1)976(22)91(23)) = % 1 (z13703) 7Y, (91 76(21)9)6 (22)11 5 (23))

_ L[ 212 ]1/3 (2.100)
V3 253233 ‘

Relations (9) imply the following operator algebra:

[ei]=[] , [ [é] = E] (2.11a)
ot mmramraliy] ast et e

which is in accord with the known “fusion rules,” [8].

In the Ramond sector the two ground states are generated from the NS vacuum by the

corresponding spin field operators, ©(z) and ©(z) of dimension A = 21—4 , Go| ©) =| ©).

One of them, | ©) is degenerate at level zero and thus decouples. Correspondingly,

G(2)0(w) ~ O[(Z—w)%]. O(z) can be also represented as a vertex operator: OF(z) =:



T2 We can explicitly compute:

n ? : e:Fi%(b(w) :
G(2)0%(w) = ZF% W (2.12)

As expected, ©F(2) create cuts in the complex plane around which the fermionic components
of the superfields are double valued. The Ramond primary operators are generated from the

Ramond ground state by the action of superfield operators.

The operator of dimension A = % in the R-sector can be represented by ggc(z) = FT 00,
8

It is generated by the superfield operator ®1(z) acting on the R-vacuum. We can explicitly verify
6
the following O.P.E.:

[0+3]® L [0+3]® 3] I3
2] |24, |24 )7 2 8]_ 8],
1 (L] ]2 . 1} _[1 (213)
6], |24, 8], 6] [24]_ |24 ‘
[1+1 N _'3] [1+1 - 1} _[1+1
6 2], [24], |8 6 2], [24]_ |24 "],

By replacing + < —, (12) remains valid.

The operators constructed so far correspond to all the operators of the NS and R sectors

of the corresponding N = 2 model.

3. Construction of the Twisted Operators

In this section we are proceeding to introduce the notion of a “twist” field and use it to

construct the remaining operators in the model.

%, N = 2 model

In [6] it was shown that the single operator of the twisted sector of the ¢ =
with A = % decomposes into the A = 11—6 operator in the NS sector of the N = 1 system. Since
the operator in the T-sector twists one of the two bosonic components of the N = 2 superfields,
it is natural to expect that a candidate for the A = L operator is the “twist” field H¥(z),

16
which twists the scalar field qb(z)*

* A similar idea has been also advocated by D. Friedan.



A twisted scalar field can be defined as a map : S — S! which is antiperiodic in o:

¢(0 4 27) = —¢(0) (3.1)

There are two twist fields, H¥(z), corresponding to the two fixed points of the map (20), one
at zero and the other at 7 R. Correlation functions of twist fields are invariant under any of the
following three transformations: H+ — —H+, H~ — —H~, H" «» H~. A twist field at z = 0
and another one at z = oo generate a cut in the complex plane. ¢(z) transported around a
closed contour encircling z = 0, picks up a minus sign. In the presence of twist fields ¢(z) has

a different two-point function, [9].

(3.2)

(0| H(00)g(=)é(w) HF(0) |0) _ [vVe+Vw
{0 [ ¢(2)p(w) | O)7 (0| H=(c0)Ht(0) | 0) [\/—_ \/—]

The operator d.¢(z) is double valued in the presence of spin fields, information which is

encoded in the O.P.E.:

0. 0(=) HE () = ()

1 3.3
(z —w)z (3:3)

where 7% (w) are excited twist fields with dimension differing by 1 from that of H*(2). To find
explicitly the dimension of H¥(z) we have to calculate, F'(z) = 7(0 | T(z) | 0)7. Using the

explicit form of T'(z) and (21) we obtain G/(z) = 16 272, Then:
1 1
Ay = 37 zdzF(z) = n (3.4)
0

It will be useful to be able to calculate correlation functions of vertex operators in the

presence of twist fields. After some straightforward algebra, one obtains:

ViV
VA=V,

(3.5)

::

OIHVm z)|0) = [
1=1

_2] »
i

1<y
Using (17) one can ascertain that from the primary operators in the N.S sector, only ¢1(z)

and (/(z) have vanishing three-point functions with two twist fields. The three-point function

of three twist fields is automatically zero due to “twist conservation.”



Thus we have the following O.PE."

i o [-oe B ool e [l eafl) oo

where the coefficients can be found by computing the respective three-point functions. It is now
clear why we decided in the beginning to choose a particular linear combination as a candidate

for G/(z). It had to give the correct O.P.E., (18), according to the known “fusion rules,” [8].

The superpartner of H¥(z) is given by:

HE(w . 11
() ) A:I::E‘|‘§

G(2)HE (w) = (3.7)

In fact, the form of the null vectors of the N = 2 T-algebra at level %, [6], imply that
the operators 7%(z) and H*(z) are identical, something that can be deduced also directly by

computing (rtH~) and finding a non-zero result.

Let’s now investigate the operator product [1] @ [{]. Due to twist conservation, the only

families that are allowed to appear are [£] and [& + 1].

Since the expectation value of ¢1(z) in the presence of two twist fields is zero, [11—6] is
not present in the operator product. To investigate the appearance of [11—6 + %] we must find

(0|H (00)id, ¢ H*(0)]0). To evaluate this three-point function, we first compute:

(0| 1 ()i o(2)Ge) HH(0) [0) _ iV & (35)
(0] HF (s0) H(0) | 0) 4 () |

F(z,w)
Now, if we let w — 0, using (19) we can find (0 | H*(00)i0.¢(z)HT(0) | 0) as the residue of the
% pole. This gives:

O] HH ()b HHO0) [0) V3 s
(0] HF(0o)HF(0) |) 4

(3.9)

Consequently [1] @ [{x] = %[% + 3]. The only remaining O.P.E. to compute in the N5 sector

is [#] ® [£]. Again, conservation of twist implies that only the families [{] and [{ + 3] can

1 We should remind the reader that the phases of the operator product coeflicients are arbitrary. They are
irrelevant in a theory with scalar operators.



appear in the operator product. Doing an analogous computation as above we find:

1 @ 1 B 2_& 1 @ 7 2_& 1 n 1 (3 10)
6 16| 16 N3 16 2 '
in accord with [8]. Now the picture of the NS sector is complete.

Moving back again to the R-sector, we have to identify the remaining operators of dimension

1 9 9 : .
6 and 6 Let’s consider:

(010~ (00) H (2) HF (w)©7(0)[0)
(0]©7(00)07(0)]0)

(RIHT (2)H (w)|R) = (3.11)
We can compute this correlation function by making a Mobius transformation, pushing z —
0,w — oo and thus reducing it to a correlation of vertex operators in the twisted vacuum:

L

() H Y (w —_%sz—w;_‘i7\/E—I_\/I_U12
(R HF )T () | B) = 27 F [z — w)] [f_ﬂ] (3.12)

Letting w — 0 we obtain:

R | I ) | Ry = 2 [1 + %\/% * O(“’)] (313

w —

which shows that the lowest dimension operator in the O.P.E. [1¢]ns @ [34] has A = L whereas
the next lowest one, A = %. The operator with dimension 11—6 is in fact the primary operator
generating [11—6] Rr. We claim that the operator above with dimension 19—6 is also a primary operator
generating []z. To verify our claim we have to calculate the expectation value of 7'(z) in the

presence of this operator. If this state is primary the singular terms can be at most O(272). We

find for this correlation function:

9 z24

(RIHT ()T (w)l5) R ~ ol )
2z | 1 32 3% 9w 3z-w
X[(w)+6\/g<2_z—w+w+2 s —w 2w >] (3.14)

which shows explicitly that [19_6]R is primary.”

* This does not guarantee that [x]r is not the superpartner of [1=]g, but another computation shows that

the two operators are in fact orthogonal.



Thus [L]vs @[] = [£]r @ 27 53 3 [ 2]k, and the construction of the primary operators

of ¢ = %N = 1 superconformal system is now complete.

Correlation functions of the operators above can be easily computed. We give here two

examples of four-point functions. We use superfields, ®a(z) = ga(z) + 0a(2),

W=

_ + _ - % )
<0|(I)1/6( ) 1/6(Z2)(I)1/6(Z3)(I)1/6(Z4)|0> - (Z14Z23) ( + ) [ + 3(u n 1)] (3.15@)
_ _L 3u(u +1)+1 y  3Bu+2
<0|(I)1/6( ) 1/6(Z2)(I)1(Z3)(I)1(Z4)|0> - Z12 Z34 (u + ) _g' u(u—l— 1)2 (3'156)
where u, y are OSP(2|1) invariants given by:
714793 713724
u = ——— y=u+1-— 7Z12Z34 , 2 = 0,2z =2 — 25 — 0;0; (3.16)

So far we have been discussing the left sector. The full theory is the tensor product of the
left and right sectors. There is not a unique way to take the tensor product though. However,
there 1s a physical principle that restricts the possible ways of sewing together the left and right
sectors, and this is modular invariance. If one defines the system on a plane rectangle with
periodic boundary conditions (a topological torus), then modular invariance is equivalent to the
invariance of the system under global reparametrizations of the torus. Modular invariance puts
severe constraints in the operator content of conformal field theories, [10]. A similar analysis
carries through for the N = 1 superconformal models, [11]. In our case, there are two modular
invariant combinations. Let’s denote the operators by (A, A), where A, (A) are their dimensions
under the left(right) Virasoro algebra. The physical dimension of the operator is # = A+ A and
its spin, S = A — A. The first solution contains only scalar operators with A = A, and A takes
all the possible values of Fig. 1. In fact, this describes two different theories, since there is a sign
ambiguity in the partition function of the R-operators with antiperiodic boundary conditions in
time. The second solution contains the following operators: In the NS sector, [0,0],[§, 3], and
[1,1], all of spin zero and [1,0],[0,1] of spin 41. In the R-sector, [5, 5;] and [2, 3], both being
scalar. The second theory is N = 2 superconformal invariant and contains both the NS and R

sector but not the T-sector.

4. Conclusions and remarks

10



As mentioned previously, the model describes a specific critical point in the O(2) Gaussian
model or the X-Y model. The X-Y model below the Kosterlitz-Thouless critical temperature
T, flows to the Gaussian critical line with ¢c=1. Where one ends on this line has to do with
the specific value of f= J/kT it starts from. Since different radii just rescale 3, a fixed radius
corresponds to a fixed point on the critical line. There is a whole series of conjectured or
proven critical exponents for the O(n) models, [7,12,13]. From them we can extrapolate to n=2

in which case we recover the exponents at the Kosterlitz-Thouless point. In particular, the

thermal exponents x7, = "2—2 for n even correspond to the [1,1] family whereas the exponents
2

rg, = % for n = 0,1mod(4) correspond to the [11—6, 11—6] family, while for n = 2,3mod(4)

they correspond to the [19—6, %] family.

The Gaussian model describes also the A-T model along the f=1, —1 < A <1 critical line.”
The A-T model is described by two Ising spins coupled with a four spin interaction. There
are two couplings, 3, governing the strength of the four-spin interaction and A, governing the
spin-spin interactions. At J = 1 the stregth of the four-spin interaction vanishes and there is a
line of critical points, —1 < A < 1, of infinite order (what is known as of the Kosterlitz-Thouless
type). The critical exponents are varying continuously on the line. The point A = 0 corresponds
to two decoupled Ising models (73 @ 72 symmetry), whereas at A = +1 the models has a 74

symmetry corresponding to the critical Potts model (ferromagnetic or anti-ferromagnetic).

As it was mentioned above the A-T model on the critical line is described by a free boson.

The action in the continuum limit on the line # =1 is,

S = —K(A)/drdaw% (4.1)

where K = %(1 — %‘S(A)) Going to complex coordinates, In(z) = 7 4 i0 it is easy to see

that the theory has a factorized z, Z dependence. The two point function is,

1
47 K

(0]¢(2)9(w)[0) = ——=In(z — w) (4.2)

whereas the energy momemtum tensor is given by, T'(z) = —21—; : 00(2)0,0(z) :, satisfying (2.2).

* For more details on the model and its phase diagram we refer the reader to ref. [14]. We will follow the
notation of the previous reference.

11



a® From this it is obvious that

The dimension of the vertex operator e'*® is given by A, =

8t K
the radius of the boson is given by R = V67 K.
The point A = —4 is the Kosterlitz-Thouless point and as we mentioned earlier the system
is described by the ¢ = % N=1 superconformal system, (realizing also N=2 superconformal

invariance, [3,4]). This is supported by the existence in the spectrum of the thermal critical
exponent x7 = 2 the magnetic exponent z gy = % the second magnetic exponent x;, = % and a
parafermionic operator found in [15], with spin % and dimension % constant on the whole critical

line corresponding to the family [%, %] If we use the previously mentioned relation between

R and K we find R = /3 which is what we used in the begining. By redefining the scalar field
and the corresponding vertex operators in the previous sections we can easily map the previous
V2

construction to the A = -5 model.

The critical system above is of phenomenological importance since it seems to describe the
superfluid-to-normal transition of Helium films, [16], and possibly critical behaviour in planar
magnets, [17], and liquid crystals, [18].

To conclude, we constructed the full operator content of the ¢ = % minimal N=1 supercon-
formal model using the operators of the Gaussian model at a specific point on the critical line.
We verified explicitly the corresponding O.P.E. and evaluated some correlation functions. This

proves the existence of N=1 superconformal symmetry in the Gaussian model at a fixed radius.

We should stress once more the importance of the conformal approach to critical systems,
which will eventually (and hopefully) unify the description of the different universality classes

of critical behavior in two dimensions.
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Note Added

After the completion of this work we received references [19,20,21] where related issues have

been discussed.
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Dimension

NS R
1

0 2
1

1 16
1 9

6 16
1 3
16 8

Table 1
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