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1. Introdu
tionThere has been a lot of progress re
ently 
on
erning two-dimensional 
riti
al phenomenaand the whole stru
ture of 
onformal invarian
e in two dimensions [1℄. Supersymmetry seemsto play also some role in 
ertain 
riti
al models [2,3,4℄. Te
niques have been advan
ed to dealwith the 
al
ulation of 
orrelation fun
tions and the representation 
ontent of 
riti
al models.The purpose of this paper is to analyze extensively a parti
ular super
onformal minimaltheory and to show that it is fully realized in a 
ertain 
riti
al system, namely the O(2) Gaussianmodel at a point on the 
riti
al Kosterlitz-Thouless line.As shown by FQS [5℄, when the 
entral 
harge of the N = 1 super
onformal algebra is lessthan one, there exists a dis
rete in�nity of unitary super
onformal theories. They 
ontain a�nite set of operators, whi
h 
loses into itself under the operator produ
t expansion (O.P.E).The �rst non-trivial model in this series has been identi�ed with the tri
riti
al Ising model [2℄.The unitary super
onformal models with 
̂ < 1 are given by, [5℄,
̂ = 1 � 8m(m+ 2) m = 2; 3; 4; :::: (1:1)There are two se
tors, the NS se
tor where the fermioni
 
omponents of super�elds are singlevalued on the 
omplex plane and the R se
tor where the fermioni
 
omponents are double valuedaround the spin �elds, whi
h generate the R ground states from the NS va
uum, [2℄. The �niteset of primary operators 
ontained in these theories have dimensions given by,�p;q = [(m+ 2)p �mq℄2 � 48m(m+ 2) ; 1 � p < m ; 1 � q < m+ 2 ; (p� q) even (1:2a)in the NS se
tor and�p;q = [(m+ 2)p �mq℄2 � 48m(m+ 2) + 116 ; 1 � p < m ; 1 � q < m+ 2 ; (p � q) odd (1:2b)in the R se
tor.The system that we will deal with has a 
entral 
harge given by the m = 4 term in the series,[5℄. It has a Virasoro anomaly 
 = 32 
̂ = 1 whi
h 
oin
ides with a 
 of the 
riti
al Gaussian model.The dimensions of its primary operators are shown in Table 1. In fa
t, the set of the primary1



operators in the 
̂ = 23 theory, in
luding the twisted se
tor 
oin
ides with the 
ontent of the �rstminimal model of the N = 2 super
onformal algebra. This was proven rigorously in [6℄ usingthe 
hara
ters of the N = 2 super
onformal algebra.In [3℄ it was shown that the N = 2 super
onformal algebra is realized in the 
riti
al O(2)Gaussian model at a �xed radius.Below we show that in fa
t the full 
̂ = 23 super
onformal model is realized in the 
riti
alGaussian model. We will be dis
ussing the N=1 formalism sin
e it is easier to deal with. Lateron we will dis
uss how we 
an assemble the N=2 stru
ture from the N=1 one. The O(2)Gaussian model is des
ribed at the 
riti
al line by a single free s
alar �eld. The remaining pie
ethat needs to be added is the \twist" �eld of the s
alar �eld. This is known to des
ribe thetwisted se
tor of the �rst N=2 super
onformal minimal model, [6℄. The strategy is to 
onstru
texpli
itly all the primary operators in the 
̂ = 23 model from vertex operators and the twistfamily, and then show that they obey the 
orre
t operator algebra implied by the stru
ture ofthe N=1 super
onformal algebra, [8℄. Some 
orrelation fun
tions will be also 
al
ulated andshown to be super-meromorphi
 fun
tions in N=1 superspa
e.The stru
ture of this paper is the following: In se
tion 2 we expli
itly 
onstru
t the \un-twisted" primary operators of the NS and R se
tors and we verify the respe
tive operator algebra.In se
tion 3 the \twisted" set of operators are 
onstru
ted and the relevant fusion rules veri�ed.Some 
orrelation fun
tions are also 
al
ulated as fun
tions in N=1 superspa
e. We also dis
ussthe possible modular invariant models by \sewing" together left and right se
tors. Finally se
-tion 4 
ontains remarks 
on
erning the realization of the 
̂ = 23 N=1 super
onformal system inthe 
riti
al X-Y and A-T models as well as our 
on
lusions.2. Constru
tion of the untwisted operatorsAt the 
riti
al point the O(2) Gaussian model is des
ribed by a two-dimensional ve
tor. Wewill 
onsider the radius of this ve
tor to be �xed to R = p3. The only remaining degree offreedom is the phase whi
h is a free s
alar �eld �(�) and for �xed time � it provides a map�(�) : S1! S1: This map is periodi
 in �; (�(� + 2�) = �(�)), and the target spa
e is a 
ir
ledue to the fa
t that �(�) is a phase. The operators in this theory are the \vertex" operators,Va(�) � : eia�(�) : and their derivatives. In order for these operators to be well-de�ned in thetarget spa
e, a must take the values: a = nR ; n�Z or Z � 12 , where R is the radius.? Integer? In our 
ase, R = p3: 2



values for n 
orrespond to bosoni
 operators, while half-integer ones 
orrespond to fermioni
operators. We will work from now on with holomorphi
 
oordinates z and �z. At the 
riti
alpoint the z and �z dependen
e fa
torizes. We will dis
uss the left se
tor of the theory whi
hdepends one z only. The dis
ussion of the right se
tors parallels that of the left one.The two-point fun
tion of �(z) is given by:h0j�(z)�(w)j0i = �`n(z � w) (2:1)where radial quantization is assumed and the va
uum is the SL(2;C) invariant va
uum.The energy-momentum tensor is of the standard form, T (z)��12 : �z�(z)�z�(z) : with anO.P.E.y T (z)T (w) = 12 1(z � w)4 + 2T (w)(z �w)2 + �wT (w)(z � w) (2:2)A vertex operator Va(z) has dimension � = a22 as shown by the following O.P.E.T (z)Va(w) = a22 Va(w)(z � w)2 + �wVa(w)(z � w) (2:3)To �nd the superpartner of T (z), we have to �nd an operator with � = 32 . There are two
andidates, Vp3(z) and V�p3(z), as well as any linear 
ombination of the two, whi
h has the
orre
t dimension. For reasons that will be explained below, the 
orre
t form is:G(z) � ip3 h : eip3�(z) : � : e�ip3�(z) :i (2:4)Then the N = 1 super
onformal algebra 
loses 
orre
tly:G(z)G(w) = 23 1(z � w)3 + 2T (w)(z � w) (2:5)The primary operators in the NS se
tor are generated by primary super�elds a
ting onthe NS va
uum. A super�eld is a fun
tion in superspa
e:z �(z) = g(z) + � (z). If � is they We will always suppress non-singular 
ontributions to the O.P.E.z z and � are the 
oordinates in superspa
e denoted 
olle
tively with z.3



dimension of the bosoni
 
omponent g(z), then the 
orresponding dimension for the fermioni
partner  (z) is �+ 12 . A primary super�eld operator is de�ned through the following OPE withthe super-energy-momentum tensor:G(z)g(w) =  (w)(z � w) ; T (z)g(w) = �g(w)(z �w)2 + �wg(w)(z � w) (2:6)G(z) (w) = �wg(w)(z � w) + 2 g(w)(z �w)2 ; T (z) (w) = ��+ 12�  (w)(z � w)2 + �w (w)(z � w)The obvious 
andidate for the � = 1 primary operator is the U(1) 
urrent of the system,g1(z) � i�z�(z). It has an O.P.E. with G(z):G(z)g1(w) = �i : eip3�(w) : + : e�ip3�(w)(z � w) (2:7)From (2.6) we 
an infer that the superpartner of g1(z) is  1(z) = �i[Vp3(z) + V�p3(z)℄. Itis an easy exer
ise to 
he
k that the rest of the relations (2.6) are satis�ed.G(z) and  1(z) are the two super
harges of the 
orresponding N = 2 minimal theory whi
h,along with T (z) and g1(z), 
omplete the N = 2 super-energy momentum tensor multiplet, [3,4℄.As far as the other representations are 
on
erned they 
an be built from the N=1 representationswithout adding new �elds in the super-multiplet. As it was shown in [4℄, for N=2 representationsdegenerate at level 1/2 one of the fermioni
 
omponents vanishes identi
ally while the se
ondbosoni
 
omponent is the derivative of the �rst one. Thus the N=2 super-multiplets 
ontain thesame number of degrees of freedom as the N=1 super-multiplets. Using the remarks above theN=2 stru
ture 
an be easily re
onstru
ted from the N=1 stru
ture.There are two � = 16 operators with opposite U(1) 
harge: g�16 (z) � e� ip3�(z) . Using thefollowing relation: : ei��(z) : : eib�(w) : = (z � w)ab : eia�(z)+ib�(w) : (2:8)we 
an 
al
ulate the superpartners of g�16 (z):  �1=6 = � ip3 : e� 2ip3�(z) . As it 
an be seen fromFig. 1, apart from the � = 116 operator, the above exhaust the set of primary operators in the4



NS se
tor. Correlation fun
tions of vertex operators 
an be 
al
ulated through the standardformula: h0j nYi=1 Vai (z)j0i = nYi<j(zij)aiaj Æ Xi ai! (2:9)The sum of the 
oeÆ
ients ai in (8) has to be zero, otherwise IR divergen
es for
e the 
orrelationfun
tion to vanish, [7℄. To 
al
ulate the operator algebra of the operators above, one has to
al
ulate the appropriate three-point fun
tions. The idea is that if [�1℄ 
 [�2℄ � [�3℄, thenh�1�2�3i 6= 0. The only non-trivial three-point fun
tions that are non-zero are given below:hg1(z1)g1(z2)T (z3)i = (z13z23)2; hg+1=6(z1)g�1=6(z2)T (z3)i = 16z5=312 (z13z23)�2 (2:10a)hg+1=6(z1)g�1=6(z2)g1(z3)i = 1p3 z2=312 (z13z23)�1 ; hg+1=6(z1)g+1=6(z2) +1=6(z3)i= � ip3 � z12z213z223�1=3 (2:10b)Relations (9) imply the following operator algebra:[1℄
 [1℄ = [0℄ ; [1℄
 �16� = �16� (2:11a)�16� 
 �16� = [0℄ + �1 [1℄ + �2 �16 + 12� ; �1 = 1p3 ; �2 = � ip3 (2:11b)whi
h is in a

ord with the known \fusion rules," [8℄.In the Ramond se
tor the two ground states are generated from the NS va
uum by the
orresponding spin �eld operators, �(z) and ��(z) of dimension � = 124 , G0j �i =j ��i:One of them, j ��i is degenerate at level zero and thus de
ouples. Correspondingly,G(z)�(w) � O[(z � w) 12 ℄. �(z) 
an be also represented as a vertex operator: ��(z) =:5



e� i2p3�(z). We 
an expli
itly 
ompute:G(z)��(w) = � ip3 : e�i 52p3�(w) :(z � w) 12 (2:12)As expe
ted, ��(z) 
reate 
uts in the 
omplex plane around whi
h the fermioni
 
omponentsof the super�elds are double valued. The Ramond primary operators are generated from theRamond ground state by the a
tion of super�eld operators.The operator of dimension � = 38 in the R-se
tor 
an be represented by g�38 (z) = : e�ip32 �(z):.It is generated by the super�eld operator � 16 (z) a
ting on theR-va
uum. We 
an expli
itly verifythe following O.P.E.:�0 + 32� 
 � 124�+ = � 124 + 1�+ ;�16�+ 
 � 124�+ = �38�+ ;�16 + 12�+ 
 � 124�+ = �38�� ; �0 + 32� 
 �38�� = �38�+�16�+ 
 � 124�� = � 124���16 + 12�+ 
 � 124�� = � 124 + 1�+ (2:13)By repla
ing +$ �, (12) remains valid.The operators 
onstru
ted so far 
orrespond to all the operators of the NS and R se
torsof the 
orresponding N = 2 model.3. Constru
tion of the Twisted OperatorsIn this se
tion we are pro
eeding to introdu
e the notion of a \twist" �eld and use it to
onstru
t the remaining operators in the model.In [6℄ it was shown that the single operator of the twisted se
tor of the ~
 = 13 , N = 2 modelwith � = 116 de
omposes into the � = 116 operator in the NS se
tor of the N = 1 system. Sin
ethe operator in the T -se
tor twists one of the two bosoni
 
omponents of the N = 2 super�elds,it is natural to expe
t that a 
andidate for the � = 116 operator is the \twist" �eld H�(z),whi
h twists the s
alar �eld �(z).?? A similar idea has been also advo
ated by D. Friedan.6



A twisted s
alar �eld 
an be de�ned as a map : S1 ! S1 whi
h is antiperiodi
 in �:�(� + 2�) = ��(�) (3:1)There are two twist �elds, H�(z), 
orresponding to the two �xed points of the map (20), oneat zero and the other at �R. Correlation fun
tions of twist �elds are invariant under any of thefollowing three transformations: H+ ! �H+, H� ! �H�, H+ $ H�. A twist �eld at z = 0and another one at z = 1 generate a 
ut in the 
omplex plane. �(z) transported around a
losed 
ontour en
ir
ling z = 0, pi
ks up a minus sign. In the presen
e of twist �elds �(z) hasa di�erent two-point fun
tion, [9℄.T h0 j �(z)�(w) j 0iT � h0 j H�(1)�(z)�(w)H+(0) j 0ih0 j H�(1)H+(0) j 0i = `n �pz +pwpz �pw� (3:2)The operator �z�(z) is double valued in the presen
e of spin �elds, information whi
h isen
oded in the O.P.E.: �z�(z)H�(w) = ��(w)(z � w) 12 (3:3)where ��(w) are ex
ited twist �elds with dimension di�ering by 12 from that of H�(z). To �ndexpli
itly the dimension of H�(z) we have to 
al
ulate, F (z) � T h0 j T (z) j 0iT . Using theexpli
it form of T (z) and (21) we obtain G(z) = 116z�2. Then:�� = 12�i I0 zdzF (z) = 116 (3:4)It will be useful to be able to 
al
ulate 
orrelation fun
tions of vertex operators in thepresen
e of twist �elds. After some straightforward algebra, one obtains:T h0j nYi=1 Vai(zi)j0iT = nYi=1 "2�a2i z�a2i2i # nYi<j "pzi +pzjpzi �pzj #�aiaj (3:5)Using (17) one 
an as
ertain that from the primary operators in the NS se
tor, only g1(z)and G(z) have vanishing three-point fun
tions with two twist �elds. The three-point fun
tionof three twist �elds is automati
ally zero due to \twist 
onservation."7



Thus we have the following O.P.E.:y� 116� 
 � 116� = [0℄ � ip38 �1 + 12� � 2� 13 �16� � �32� � 2 13 �16 + 12� (3:6)where the 
oeÆ
ients 
an be found by 
omputing the respe
tive three-point fun
tions. It is now
lear why we de
ided in the beginning to 
hoose a parti
ular linear 
ombination as a 
andidatefor G(z). It had to give the 
orre
t O.P.E., (18), a

ording to the known \fusion rules," [8℄.The superpartner of H�(z) is given by:G(z)H�(w) = ~H�(w)(z � w) ; ~�� = 116 + 12 (3:7)In fa
t, the form of the null ve
tors of the N = 2 T -algebra at level 12 , [6℄, imply thatthe operators ��(z) and ~H�(z) are identi
al, something that 
an be dedu
ed also dire
tly by
omputing h�+ ~H�i and �nding a non-zero result.Let's now investigate the operator produ
t [1℄ 
 [ 116℄. Due to twist 
onservation, the onlyfamilies that are allowed to appear are [ 116 ℄ and [ 116 + 12 ℄.Sin
e the expe
tation value of g1(z) in the presen
e of two twist �elds is zero, [ 116 ℄ isnot present in the operator produ
t. To investigate the appearan
e of [ 116 + 12 ℄ we must �ndh0jH+(1)i�z� ~H+(0)j0i: To evaluate this three-point fun
tion, we �rst 
ompute:F (z;w) � h0 j H+(1)i�z�(z)G(w)H+(0) j 0ih0 j H+(1)H+(0) j 0i = ip34 z 12(z � w) � w (3:8)Now, if we let w! 0, using (19) we 
an �nd h0 j H+(1)i�z�(z) ~H+(0) j 0i as the residue of the1w pole. This gives: h0 j H+(1)i�z�(z) ~H+(0) j 0ih0 j H+(1)H+(0) ji = �ip34 z� 32 6= 0 (3:9)Consequently [1℄ 
 [ 116 ℄ = ip34 [ 116+ 12 ℄. The only remaining O.P.E. to 
ompute in the NS se
toris [16 ℄ 
 [ 116℄. Again, 
onservation of twist implies that only the families [ 116 ℄ and [ 116 + 12 ℄ 
any We should remind the reader that the phases of the operator produ
t 
oeÆ
ients are arbitrary. They areirrelevant in a theory with s
alar operators. 8



appear in the operator produ
t. Doing an analogous 
omputation as above we �nd:�16� 
 � 116� = 2� 13 � 116� 
 i2p3 2� 13 � 116 + 12� (3:10)in a

ord with [8℄. Now the pi
ture of the NS se
tor is 
omplete.Moving ba
k again to the R-se
tor, we have to identify the remaining operators of dimension116 and 916 . Let's 
onsider:hRjH+(z)H+(w)jRi � h0j��(1)H+(z)H+(w)�+(0)j0ih0j��(1)�+(0)j0i (3:11)We 
an 
ompute this 
orrelation fun
tion by making a M�obius transformation, pushing z !0; w!1 and thus redu
ing it to a 
orrelation of vertex operators in the twisted va
uum:hR j H+(z)H+(w) j Ri = 2� 16 [zw(z � w)℄ 124 �pz +pwpz �pw� 112 (3:12)Letting w! 0 we obtain:`imw! 0hR j H+(z)H+(w) j Ri = 2� 16w� 124 �1 + 16r zw +O(w)� (3:13)whi
h shows that the lowest dimension operator in the O.P.E. [ 116 ℄NS 
 [ 124 ℄ has � = 116 whereasthe next lowest one, � = 916 . The operator with dimension 116 is in fa
t the primary operatorgenerating [ 116 ℄R. We 
laim that the operator above with dimension 916 is also a primary operatorgenerating [ 916 ℄R. To verify our 
laim we have to 
al
ulate the expe
tation value of T (z) in thepresen
e of this operator. If this state is primary the singular terms 
an be at most O(z�2). We�nd for this 
orrelation fun
tion:hRjH+(z)T (w)j 916iR � z 124w(z �w) �� �2pz(w) + 16pz �2 � 3zz �w + 3zw + 92 wz � w � 32 z �ww �� (3:14)whi
h shows expli
itly that [ 916 ℄R is primary.?? This does not guarantee that [ 916 ℄R is not the superpartner of [ 116 ℄R, but another 
omputation shows thatthe two operators are in fa
t orthogonal. 9



Thus [ 116 ℄NS 
 [ 124 ℄ = [ 116 ℄R � 2� 712p3 [ 916 ℄R, and the 
onstru
tion of the primary operatorsof 
̂ = 23N = 1 super
onformal system is now 
omplete.Correlation fun
tions of the operators above 
an be easily 
omputed. We give here twoexamples of four-point fun
tions. We use super�elds, ��(z) = g�(z) + � �(z),h0j�+1=6(z1)��1=6(z2)�+1=6(z3)��1=6(z4)j0i = (z14z23) 13 (u+ 1) 13 [1 + y3(u + 1)℄ (3:15a)h0j�+1=6(z1)��1=6(z2)�1(z3)�1(z4)j0i = z� 1312 z�234 �3u(u+ 1) + 13u(u+ 1) �y3 � 3u+ 2u(u+ 1)2 � (3:15b)where u; y are OSP (2j1) invariants given by:u = z14z23z12z34 ; y = u+ 1 � z13z24z12z34 ; y2 = 0 ; zij = zi � zj � �i�j (3:16)So far we have been dis
ussing the left se
tor. The full theory is the tensor produ
t of theleft and right se
tors. There is not a unique way to take the tensor produ
t though. However,there is a physi
al prin
iple that restri
ts the possible ways of sewing together the left and rightse
tors, and this is modular invarian
e. If one de�nes the system on a plane re
tangle withperiodi
 boundary 
onditions (a topologi
al torus), then modular invarian
e is equivalent to theinvarian
e of the system under global reparametrizations of the torus. Modular invarian
e putssevere 
onstraints in the operator 
ontent of 
onformal �eld theories, [10℄. A similar analysis
arries through for the N = 1 super
onformal models, [11℄. In our 
ase, there are two modularinvariant 
ombinations. Let's denote the operators by (�; ��), where �; ( ��) are their dimensionsunder the left(right) Virasoro algebra. The physi
al dimension of the operator is x = �+ �� andits spin, S = �� ��. The �rst solution 
ontains only s
alar operators with � = ��, and � takesall the possible values of Fig. 1. In fa
t, this des
ribes two di�erent theories, sin
e there is a signambiguity in the partition fun
tion of the R-operators with antiperiodi
 boundary 
onditions intime. The se
ond solution 
ontains the following operators: In the NS se
tor, [0; 0℄; [16; 16 ℄, and[1; 1℄, all of spin zero and [1; 0℄; [0; 1℄ of spin �1. In the R-se
tor, [ 124 ; 124 ℄ and [38 ; 38 ℄, both beings
alar. The se
ond theory is N = 2 super
onformal invariant and 
ontains both the NS and Rse
tor but not the T -se
tor.4. Con
lusions and remarks 10



As mentioned previously, the model des
ribes a spe
i�
 
riti
al point in the O(2) Gaussianmodel or the X-Y model. The X-Y model below the Kosterlitz-Thouless 
riti
al temperatureT
 
ows to the Gaussian 
riti
al line with 
=1. Where one ends on this line has to do withthe spe
i�
 value of �= J/kT it starts from. Sin
e di�erent radii just res
ale �, a �xed radius
orresponds to a �xed point on the 
riti
al line. There is a whole series of 
onje
tured orproven 
riti
al exponents for the O(n) models, [7,12,13℄. From them we 
an extrapolate to n=2in whi
h 
ase we re
over the exponents at the Kosterlitz-Thouless point. In parti
ular, thethermal exponents xTn = n22 for n even 
orrespond to the [1,1℄ family whereas the exponentsxHn = (2n�1)28 for n = 0; 1mod(4) 
orrespond to the [ 116 ; 116 ℄ family, while for n = 2; 3mod(4)they 
orrespond to the [ 916; 916 ℄ family.The Gaussian model des
ribes also the A-T model along the �=1, �1 � � � 1 
riti
al line.?The A-T model is des
ribed by two Ising spins 
oupled with a four spin intera
tion. Thereare two 
ouplings, �, governing the strength of the four-spin intera
tion and �, governing thespin-spin intera
tions. At � = 1 the stregth of the four-spin intera
tion vanishes and there is aline of 
riti
al points, �1 � � � 1, of in�nite order (what is known as of the Kosterlitz-Thoulesstype). The 
riti
al exponents are varying 
ontinuously on the line. The point � = 0 
orrespondsto two de
oupled Ising models (Z2 
 Z2 symmetry), whereas at � = �1 the models has a Z4symmetry 
orresponding to the 
riti
al Potts model (ferromagneti
 or anti-ferromagneti
).As it was mentioned above the A-T model on the 
riti
al line is des
ribed by a free boson.The a
tion in the 
ontinuum limit on the line � = 1 is,S = �K(�)Z d�d��r2� (4:1)where K = 2� (1 � ar

os(�)� ). Going to 
omplex 
oordinates, ln(z) = � + i� it is easy to seethat the theory has a fa
torized z; �z dependen
e. The two point fun
tion is,h0j�(z)�(w)j0i = � 14�K ln(z � w) (4:2)whereas the energy momemtum tensor is given by, T (z) = �K2� : �z�(z)�z�(z) :, satisfying (2.2).? For more details on the model and its phase diagram we refer the reader to ref. [14℄. We will follow thenotation of the previous referen
e. 11



The dimension of the vertex operator eia� is given by �a = a28�K .From this it is obvious thatthe radius of the boson is given by R = p6�K.The point � = �p22 is the Kosterlitz-Thouless point and as we mentioned earlier the systemis des
ribed by the 
̂ = 23 N=1 super
onformal system, (realizing also N=2 super
onformalinvarian
e, [3,4℄). This is supported by the existen
e in the spe
trum of the thermal 
riti
alexponent xT = 2 the magneti
 exponent xH = 18 the se
ond magneti
 exponent xh = 98 and aparafermioni
 operator found in [15℄, with spin 12 and dimension 58 
onstant on the whole 
riti
alline 
orresponding to the family � 916 ; 116�. If we use the previously mentioned relation betweenR and K we �nd R = p3 whi
h is what we used in the begining. By rede�ning the s
alar �eldand the 
orresponding vertex operators in the previous se
tions we 
an easily map the previous
onstru
tion to the � = �p22 model.The 
riti
al system above is of phenomenologi
al importan
e sin
e it seems to des
ribe thesuper
uid-to-normal transition of Helium �lms, [16℄, and possibly 
riti
al behaviour in planarmagnets, [17℄, and liquid 
rystals, [18℄.To 
on
lude, we 
onstru
ted the full operator 
ontent of the 
̂ = 23 minimal N=1 super
on-formal model using the operators of the Gaussian model at a spe
i�
 point on the 
riti
al line.We veri�ed expli
itly the 
orresponding O.P.E. and evaluated some 
orrelation fun
tions. Thisproves the existen
e of N=1 super
onformal symmetry in the Gaussian model at a �xed radius.We should stress on
e more the importan
e of the 
onformal approa
h to 
riti
al systems,whi
h will eventually (and hopefully) unify the des
ription of the di�erent universality 
lassesof 
riti
al behavior in two dimensions.A
knowledgementsI would like to thank S. Das and M. Douglas for useful dis
ussions and J.P. Preskill forsharing his intuition with me and for his 
onstant en
ouragement.Note AddedAfter the 
ompletion of this work we re
eived referen
es [19,20,21℄ where related issues havebeen dis
ussed. 12
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DimensionNS R0 1241 11616 916116 38Table 1
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