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Re
ently, there has been a lot of interest in Ka
-Moody algebras from both the mathemati
aland the physi
al point of view [1℄. In parti
ular, Ka
-Moody algebras are seen to play animportant role in 
onformally invariant two-dimensional models with 
ontinuous symmetries[2℄, [3℄, as well as in string theories [4℄,[5℄.Typi
al models exhibiting su
h an algebra are the Wess-Zumino models on group manifolds,des
ribing string propagation in the group manifold. Their supersymmetri
 version has beenstudied re
ently [6℄, and a new stru
ture, that of a (N = 1) super Ka
-Moody algebra, hasemerged. This algebra is essential to des
ribe superstring propagation in a group manifold 2.In this letter, we derive the �eld transformation under a super Ka
-Moody algebra, and wesolve the proje
tive Ward identities for the 2- and 3-point fun
tions. We fo
us attention on thedegenerate representations of the algebra that appear in the super Wess-Zumino model, andwe derive the linear equations for the 
orrelation fun
tions of the degenerate �elds. We solvethese equations for the 3-point fun
tion, obtaining 
onstraints on the dimensions of the �eldsthat may exist in the theory. We thus show that the operator algebra of the degenerate �elds
loses in the same way as in the ordinary Wess-Zumino model. We also solve these equations todetermine the 4-point fun
tion, whi
h is the �rst non-trivial Green fun
tion. Some impli
ationsare also dis
ussed.The super Ka
-Moody algebra is generated by the 
urrent super�eld Ja �  a(z) + �Ja(z).In terms of the fourier modes of the super
urrent, this algebra is[Jam; J bn℄ = ifab
J 
m+n + kÆabmÆm+n;0 ; [Jam;  br℄ = �ifab
 
m+r ;n ar ;  bso = ÆabÆr+s;0 ; (0.1)where fab
 are the stru
ture 
onstants of a semi-simple Lie group G. We also have (Jam)y = Ja�mand ( ar )y =  a�r. One distinguishes between two se
tors, the NS se
tor, where  a(z) is anti-periodi
 on the 
ylinder, and the R se
tor, where  a(z) is periodi
 on the 
ylinder. In this letterwe shall only 
onsider the NS se
tor. It is 
onvenient to pass from the 
ylinder to the planethrough the super-analyti
 transformation (lnz; z�1=2�) ! (� + i�; �). Then in the NS se
torfermioni
 �elds are single-valued on the plane whereas in the R se
tor the fermioni
 �elds aredouble-valued on the plane.A theory invariant under the algebra (0.1) also has an N = 1 super
onformal invarian
e.The generators of the super
onformal algebra 
an be 
onstru
ted from those of the super Ka
-Moody algebra (in the Sugawara form),Ln � 12 Xr2Z+ 12(r + 12) :  an�r ar : + 12k Xm2Z : ~Jan�m ~Jam : ; (2a)Gr � � 1pk Xm2Z :  ar�m ~Jam : + 16pk ifab
 Xm2Z ;r02Z+ 12 :  ar�m bm�r0 
r0 : ; (2b)2Despite some problems asso
iated with this s
enario (broken world-sheet supersymmetry in the Ramondse
tor of the group manifold), there is serious hope that some phenomenologi
ally relevant string theory will be
onstru
ted. 1



~Jam � ~Jam � i2fab
 Xr2Z+12 :  bm�r 
r : ; (2
)where ~Jam is the \bosoni
" 
urrent. It 
an be easily seen thath ~Jam ;  bri = 0 ; (3a)h ~Jam ; ~J bni = ifab
 ~J 
m+n + (k � 12
A)ÆabmÆm+n;0 ; (3b)where fa
df b
d = 
AÆab. The Fo
k in-va
uum j0i is de�ned as the state annihilated by thegenerators ~Jan (n � 0) and  ar (r > 0). We end up with the semidire
t produ
t of the N = 1super
onformal algebra and the super Ka
-Moody algebra de�ned by the 
ommutation relations(0.1) together with: [Lm; Ln℄ = (m� n) Lm+n + 18 
̂(m3 �m)Æm+n;0 ;[Lm; Gr℄ = (12 � r)Gm+r ; [Lm; Jan℄ = �nJam+n ;[Lm;  ar ℄ = �(12m+ r) am+n ;fGr; Gsg = 2Lr+s + 12 
̂(r2 � 14)Ær+s;0 ;[Gr; Jam℄ = pkm am+r ; fGr;  asg = �( 1pk )Jar+s ; (0.4)where 
̂ = (1 � 
A3k )D, D being the dimension of the group G. We fo
us on the left se
tor ofthe theory, the full theory being the dire
t produ
t of the left and right se
tors. The highestweight ve
tors of this algebra (primary states) are labeled by the eigenvalues of the zero modesL0, Ja0 , L0jRii = �jRii ; Ja0 jRii = (T aij)jRji ; (0.5)where R denotes an irredu
ible representation of the group G. We also have LnjRi = JanjRi =GrjRi =  ar jRi = 0, for n; r > 0. These states are generated by the a
tion of super�eldoperators, 
alled primary super�elds, on the in-va
uum,jRii � �Ri (0)j0i ; (6a)where �Ri (z; �) = �Ri (z) + � Ri (z) : (6b)The algebra a
ts on the primary super�elds as follows:hLm;�Ri (z; �)i = zm+1�z�Ri (z; �) + (m+ 1)zm(�+ 12��=��)�Ri (z; �) ; (7a)hGr;�Ri (z; �)i = zr+ 12 (�=��� ��=�z)�Ri (z; �)� 2�(r + 12)zr� 12 ��Ri (z; �) ; (7b)hJam;�Ri (z; �)i = zm(T aR)ij�Ri (z; �) ; (7
)h ar ;�Ri (z; �)i = 1pkzm� 12 (T aR)ij��j(z; �) : (7d)2



Here � is the 
onformal weight of the super�eld �, de�ned in equation (5). The algebraabove follows from the transformation of the super�eld under the super
onformal group andthe Ja
obi identities.The theory is invariant in parti
ular under the global super
onformal group, OSP (2j1),generated by G�1=2, L�1, L0, due to the fa
t that the va
uum is also OSP (2j1) invariant. We
an derive appropriate Ward identities for the 
orrelation fun
tions re
e
ting the invarian
ementioned above. The pro
edure is to insert a generator of OSP (2j1) in a 
orrelation fun
tiona
ting on the in-va
uum and move it to the left using the 
ommutation relations (7). Let's
onsider the 2-point fun
tion. The Ward identities from global super
onformal invarian
e �xits form to be [7℄, h0j�R1i (z1; �1)�R2j (z2; �2)j0i = Aijz�1+�212 Æ�1;�2 ; (0.8)where z12 = z1� z2 � �1�2. The va
uum is also invariant under global G-transformations, thatis, the zero mode Ja0 annihilates the va
uum. The Ward identity for the zero mode of Ja(z)implies (T aR1)ikAkj + (T aR2)jkAik = 0 ; (0.9)with a solution Aij � hR1; R2; i; jj1; 0i ; (0.10)whi
h is the Clebs
h-Gordan 
oeÆ
ient of the proje
tion of R1 �R2 on the singlet.The 3-point fun
tion is 
onstrained by the super
onformal invarian
e to have the form [7℄h0j�R1i (z1; �1)�R2j (z2; �2)�R3k (z3; �3)j0i = � Aijkz�1212 z�1313 z�2323 �(1 + a�̂) ; (0.11)where �̂ = (z12z13z23)�1=2(�1z23 � �2z13 + �3z12 + �1�2�3) (0.12)is the only 
ombination of the 
oordinates that is invariant under the global super
onformalgroup OSP (2j1), and squares to zero. Thus a is an extra undetermined Grassmann parameter.The 
urrent Ward identity is in this 
ase(T aR1)i`A`jk + (T aR2)j`Ai`k + (T aR3)k`Aij` = 0 ; (0.13)with the solution Aijk � hR1; R2; i; jjR3; ki ; (0.14)the appropriate Clebs
h-Gordan 
oeÆ
ient. The 
ondition for the 3-point fun
tion to be non-zero is that the primary super�eld �3 to be 
ontained in the operator produ
t of �1, and�2. Then the z-independent part of the 3-point fun
tion is the operator produ
t 
oeÆ
ientmultiplying �3 in the expansion of the produ
t �1 � �2. Let us remark that, unlike thenon-supersymmetri
 
ase, there are two operator-produ
t 
oeÆ
ients to be determined here,one 
orresponding to the overall normalization the other 
orresponding to the free parametermultiplying �̂. 3



A representation of the semi-dire
t produ
t of a super Ka
-Moody and a super
onformalalgebra is said to be degenerate if there is a se
ondary state in it, (that is a state generated fromthe hwv by the a
tion of lowering operators), that has the properties of a highest-weight ve
tor,i.e., it is annihilated by all the raising operators of the algebra. The 
orresponding primarysuper�eld is also said to be degenerate. This state is null. Its inner produ
t with any other statein the representation generated by the initial primary super�eld, vanishes identi
ally. Thus thesub-representation generated by the null ve
tor 
an be 
onsistently set to zero. In parti
ular,its 
orrelation fun
tions with all the other primary super�elds vanish. The Sugawara form ofthe super
onformal generators implies that su
h a state is of the formj�i = hpkG�1=2 + T aR a�1=2i jRi : (0.15)It is easy to verify that j�i is annihilated by all the raising operators, provided that its dimensionis, � = 
R2k , where (T aRT aR)ij = 
RÆij.The existen
e of degenerate representations in a theory, is of prime importan
e be
ausein su
h a 
ase the 
orrelation fun
tions of a degenerate super�eld satisfy additional linear(super)di�erential equations whi
h allow one to determine them 
ompletely.To make the above more pre
ise 
onsider the 3-point fun
tion with one of the �elds, �R3isay, being degenerate. Taking advantage of the invarian
e of the 
orrelation fun
tions underglobal super
onformal transformations, we 
an perform a translation and a supersymmetrytransformation, to bring it into the formFijk � h0j�R1i (~z1; �1)�R2j (~z2; ~�2)�R3k (0; 0)j0i= hAijk=(~z1 � ~z2 � ~�1~�2)�12 ~z�131 ~z�232 i (1 + a�̂) ; (0.16)where ~z1 = z1 � z3 � �1�3 ; ~�1 = �1 � �3 ;~z2 = z2 � z3 � �2�3 ; ~�2 = �2 � �3 : (0.17)Using the fa
t that the �eld �o 
orresponding to the null state j�i has vanishing 
orrelationfun
tions with all other �elds, we obtainh0j�R1i (~z1; ~�1)�R2j (~z2; ~�2)(pkG�1=2Æk` + (T aR3)k` a�1=2)�R3` (0; 0)j0i = 0 : (0.18)Commuting the generator of the algebra through to the left using Eq. (7), we arrive at thefollowing super-equation for the 3-point fun
tion (we drop the tildes from now on):k " 2Xi=1  ���i � �i ��zi!# Fijk+ �1z1 �T aR3�km �T aR1�i` F`jm+ �2z2 �T aR3�km �T aR2�j` Fi`m = 0 : (0.19)Eq.(0.19) implies that the odd part of the 
orrelation fun
tion is zero (a = 0), and alsok�13 Fijk + �T aR3�km �T aR1�i` F`jm = 0 ; (20a)4



k�23 Fijk + �T aR3�km �T aR2�i` F`jm = 0 ; (20b)Using the 
urrent Ward identities (Eq. (0.13)), it is easy to show that eqs.(20a) and (20b)are equivalent. We therefore only 
onsider Eq. (20b). After some straightforward algebra, itfollows from Eq. (0.13) that�T aR2�j` (TR3a)km Fi`m = 12 (
R1 � 
R2 � 
R3) Fijk : (0.21)Consequently, if the �elds �2R and �3R belong to degenerate representations, i.e., if �2 = 
R22kand �3 = 
R32k , then �1 = 
R12k . This proves the 
losure under operator-produ
t expansion of thedegenerate representations of the semidire
t produ
t of the super
onformal and the super Ka
-Moody algebra. Sin
e any 3-point fun
tion of se
ondary �elds is related via the super
onformaland G-Ward identities to the 3-point fun
tion of the 
orresponding primary super�elds ourresults apply to any 3-point fun
tion. This fa
t is important for the 
onstru
tion of a superstringtheory on a group manifold, sin
e it implies that the 
orresponding vertex operators form a
losed algebra and the amplitudes fa
torize onto physi
al intermediate states.When 
A = k, the representations of the super Ka
-Moody algebra possess additional nullstates that are 
onstru
ted out of the modes Ja�n,  a�r (n; r > 0). These states, however, arenot highest-weight ve
tors of the semidire
t produ
t with the super
onformal algebra.It remains to 
onsider the proper null highest-weight ve
tors of the Ka
-Moody algebra,that is the ones obtained by the a
tion of lowering operators of the Ka
-Moody algebra only,on primary states. The operator algebra of those representations has been dis
ussed in ref. [5℄3. Combining the results of ref.[5℄ with ours, we have 
omplete knowledge of the minimalsystem of representations of the super Wess-Zumino theory. In fa
t, the theory is exa
tlysolvable in the sense that all the 
orrelation fun
tions satisfy a superequation of the form (0.19)and are therefore 
omputable in prin
iple. Below, we present an expli
it evaluation of the 4-point fun
tion, whi
h 
ontains non-trivial information on the non-vanishing operator-produ
t
oeÆ
ients of the operator algebra. OSP (2j1) invarian
e implies that the 4-point fun
tion isof the form Fijk` � h0j�R1i (z1; �1) �R2j (z2; �2)�R3k (z3; �3) �R4l (z4; �4) j0i= XK AKijk` YI<J (zIJ)
IJ [fK(x) + ygK(x)℄ (0.22)where x; y are the two independent 
ommuting 
ombinations of the 
oordinates invariant underOSP (2j1), x = z12z34z13z2 ; y = x+ z14z23z13z24 � 1 ; y2 = 0 ; (23a)and 
IJ = 
JI ; XI 6=J 
IJ = �2�J : (23b)3The sele
tion rules derived in this 
ase state that all non-integrable representations de
ouple.5



Using the 
urrentWard identities for the 4-point fun
tion, we 
an 
ompute the group 
oeÆ
ient:AKijk` � XR;R0;m;m0hR1; R2; i; jjR;mihR0;m0jR3; R4; k; lihR;R0;m;m0j1K ; 0i : (0.24)where the index K labels the singlets in the produ
t. The equation satis�ed by the 4-pointfun
tion 
an be derived in the same way as Eq. (0.19) (The variables here are the tilded ones(
f Eq. (0.17)):k " 3Xi=1  ���i � �i ��zi!# Fijk`+ �T aR4�`m  �1z1 �T aR1�in Fnjkm + �2z2 �T aR2�jn Finkm + �3z3 �T aR3�kn Fijnm! = 0 : (0.25)We will present the solution to this equation for the simplest non-trivial 
ase, G=SU(2), R1,R2, R3, R4, all being the fundamental of SU(2). Other 
ases do not require new te
niques but
onsiderably more labor. There are two singlets in the produ
t above,so we 
an write,Fijk` = F1(x; y)�ij�k` + F2(x; y)�ik�j` (0.26)(25) in this 
ase is a two-by-two matrix equation. Using the identity,�T af �ij �T af �k` = 12 ��i`�jk � 12�ij�k`� (0.27)we 
an redu
e it to two independent equations for F1, F2 whi
h are of the hypergeometri
 type.Their solutions to lowest order in �i are,F1(x) = "(1 � x)x3 # 14k F  12k ;� 12k ; 1� 1k; x! (28a)F2(x) = [x(1� x)℄ 14k F � 34k ; 14k ; 1 + 1k ; x� (28b)It is straightforward to put ba
k the theta-dependen
e and to normalize it 
orre
tly by fa
tor-izing it over two point fun
tions.The equation above has a very simple power-law solution in the spe
ial 
ase where there isonly one singlet 
ontained in the produ
t. We 
an de�ne the 
onstants �ij as(T aR4)lm(T aR1)knFijnm = ka14Fijkl ; (0.29)and similarly for a24 and a34 where �14, �24, �34 are numbers. Using the Ward identity (13),we 
an show that a14 + a24 + a34 = � 
R4k = �2�4. Apart from the trivial solution, Eq. (0.25)has two other solutions 
14 = a14 ; g(x) = 0 ; f(x) = Cxa34�
34 ; (30a)6



and 
14 = a14 � 1 ; f(x) = 0 ; g(x) = Cxa34�
34�1 ; (30b)We 
an always eliminate 
12 by absorbing it into a rede�nition of the fun
tion f or g. Then,in the �rst 
ase, Eq. (26a), the exponents are determined to be:
14 = a14 ; 
13 = �2�1 � a14 ; 
34 = �1 +�2 ��3 ��4 ;
24 = �3 ��2 ��4 � a14 ; 
24 = �1 +�4 ��2 ��3 + a14 : (0.31)In the se
ond 
ase, Eq. (26b), they are given by Eq. (0.27) if we make the substitutiona14 ! a14 � 1.The evaluation of higher 
orrelation fun
tions pro
eeds in a similar manner.Ordinary Wess-Zumino models at their 
riti
al point des
ribe the 
riti
al behavior of quan-tum 
hains with an arbitrary spin and 
ontinuous internal symmetry [3℄. It would be interestingto see if some of these models are in fa
t supersymmetri
, or if there are other 
riti
al systemsthat realize the semidire
t produ
t of the super
onformal and the super Ka
-Moody algebra.A
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