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ABSTRACT

The projective Ward identities for the super Kac-Moody algebra are solved in
order to determine the 2- and 3-point functions in the N = 1 superspace. Linear
super-equations are derived for the correlation functions of degenerate operators.
These equations are solved for the 3- and 4-point functions, proving the closure of
the operator algebra of the super Wess-Zumino model.
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Recently, there has been a lot of interest in Kac-Moody algebras from both the mathematical
and the physical point of view [1]. In particular, Kac-Moody algebras are seen to play an
important role in conformally invariant two-dimensional models with continuous symmetries
(2], [3], as well as in string theories [4],[5].

Typical models exhibiting such an algebra are the Wess-Zumino models on group manifolds,
describing string propagation in the group manifold. Their supersymmetric version has been
studied recently [6], and a new structure, that of a (N = 1) super Kac-Moody algebra, has
emerged. This algebra is essential to describe superstring propagation in a group manifold 2.

In this letter, we derive the field transformation under a super Kac-Moody algebra, and we
solve the projective Ward identities for the 2- and 3-point functions. We focus attention on the
degenerate representations of the algebra that appear in the super Wess-Zumino model, and
we derive the linear equations for the correlation functions of the degenerate fields. We solve
these equations for the 3-point function, obtaining constraints on the dimensions of the fields
that may exist in the theory. We thus show that the operator algebra of the degenerate fields
closes in the same way as in the ordinary Wess-Zumino model. We also solve these equations to
determine the 4-point function, which is the first non-trivial Green function. Some implications
are also discussed.

The super Kac-Moody algebra is generated by the current superfield J* = ¢%(z) 4 6.J%(z).
In terms of the fourier modes of the supercurrent, this algebra is
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where f?*¢ are the structure constants of a semi-simple Lie group . We also have (J2 )T = J¢
and (¥2)" = ¢ . One distinguishes between two sectors, the NS sector, where ¥%(z) is anti-
periodic on the cylinder, and the R sector, where 1)%(z) is periodic on the cylinder. In this letter
we shall only consider the NS sector. It is convenient to pass from the cylinder to the plane
through the super-analytic transformation (Inz,z~'/20) — (1 4 i0,0). Then in the NS sector
fermionic fields are single-valued on the plane whereas in the R sector the fermionic fields are
double-valued on the plane.

A theory invariant under the algebra (0.1) also has an N = 1 superconformal invariance.
The generators of the superconformal algebra can be constructed from those of the super Kac-
Moody algebra (in the Sugawara form),
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2Despite some problems associated with this scenario (broken world-sheet supersymmetry in the Ramond
sector of the group manifold), there is serious hope that some phenomenologically relevant string theory will be
constructed.
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where jf;b is the “bosonic” current. It can be easily seen that
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where fo?f*d = ¢,46%. The Fock in-vacuum |0) is defined as the state annihilated by the
generators J° (n > 0) and ¥? (r > 0). We end up with the semidirect product of the N =1
superconformal algebra and the super Kac-Moody algebra defined by the commutation relations
(0.1) together with:
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where ¢ = (1 — 5¢)D, D being the dimension of the group G. We focus on the left sector of
the theory, the full theory being the direct product of the left and right sectors. The highest

weight vectors of this algebra (primary states) are labeled by the eigenvalues of the zero modes
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where R denotes an irreducible representation of the group (G. We also have L,|R) = J¢|R) =
G.|R) = ¢*R) = 0, for n,r > 0. These states are generated by the action of superfield
operators, called primary superfields, on the in-vacuum,
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where
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The algebra acts on the primary superfields as follows:
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Here A is the conformal weight of the superfield ®, defined in equation (5). The algebra
above follows from the transformation of the superfield under the superconformal group and
the Jacobi identities.

The theory is invariant in particular under the global superconformal group, OSP(2|1),
generated by G'iy/2, L11, Lo, due to the fact that the vacuum is also OSP(2[1) invariant. We
can derive appropriate Ward identities for the correlation functions reflecting the invariance
mentioned above. The procedure is to insert a generator of OSP(2|1) in a correlation function
acting on the in-vacuum and move it to the left using the commutation relations (7). Let’s
consider the 2-point function. The Ward identities from global superconformal invariance fix
its form to be [7],
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where z19 = 21 — 29 — 6165. The vacuum is also invariant under global G-transformations, that
is, the zero mode J§ annihilates the vacuum. The Ward identity for the zero mode of J*(z)
implies
(T, )inAr; + (Tr,)jpAir =0, (0.9)
with a solution
Aij ~ <R17R27i7j|170> 5 (010)
which is the Clebsch-Gordan coefficient of the projection of By x Ry on the singlet.

The 3-point function is constrained by the superconformal invariance to have the form [7]
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is the only combination of the coordinates that is invariant under the global superconformal
group OSP(2|1), and squares to zero. Thus ¢ is an extra undetermined Grassmann parameter.

The current Ward identity is in this case

(Tq, ieAvir + (Th,)jeAser + (T, JeeAije =0, (0.13)
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with the solution

Aijk ~ <R17R27i7j|R37k> ) (014)

the appropriate Clebsch-Gordan coefficient. The condition for the 3-point function to be non-
zero is that the primary superfield ®3 to be contained in the operator product of ®;, and
®,. Then the z-independent part of the 3-point function is the operator product coefficient
multiplying ®3 in the expansion of the product ®; x ®,. Let us remark that, unlike the
non-supersymmetric case, there are two operator-product coeflicients to be determined here,
one corresponding to the overall normalization the other corresponding to the free parameter
multiplying 7.



A representation of the semi-direct product of a super Kac-Moody and a superconformal
algebra is said to be degenerate if there is a secondary state in it, (that is a state generated from
the hwv by the action of lowering operators), that has the properties of a highest-weight vector,
1.e., it 1s annihilated by all the raising operators of the algebra. The corresponding primary
superfield is also said to be degenerate. This state is null. Its inner product with any other state
in the representation generated by the initial primary superfield, vanishes identically. Thus the
sub-representation generated by the null vector can be consistently set to zero. In particular,
its correlation functions with all the other primary superfields vanish. The Sugawara form of
the superconformal generators implies that such a state is of the form

X) = [VEG_1yo + Tty o] [R) (0.15)

It is easy to verify that |y) is annihilated by all the raising operators, provided that its dimension

: &
is, A = 3, where (TRTR)i; = croi;.

The existence of degenerate representations in a theory, is of prime importance because
in such a case the correlation functions of a degenerate superfield satisfy additional linear
(super)differential equations which allow one to determine them completely.

To make the above more precise consider the 3-point function with one of the fields, &I
say, being degenerate. Taking advantage of the invariance of the correlation functions under
global superconformal transformations, we can perform a translation and a supersymmetry
transformation, to bring it into the form
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Using the fact that the field ®° corresponding to the null state |y) has vanishing correlation
functions with all other fields, we obtain

(01 (21, 00) 812 (23, 02)(VEG_1 726k + (T ) reto™ 1 12)2£2(0,0)|0) = 0 . (0.18)

Commuting the generator of the algebra through to the left using Eq. (7), we arrive at the
following super-equation for the 3-point function (we drop the tildes from now on):
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Eq.(0.19) implies that the odd part of the correlation function is zero (a = 0), and also
kA13 ka —|— (T]%S)km (T]%I)M Fﬁ]m = 0 5 (20@)
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kA3 Fijk + (T]%B) (T]%2)Z,£ Ffjm =0, (206)

Using the current Ward identities (Eq. (0.13)), it is easy to show that eqgs.(20a) and (20Db)
are equivalent. We therefore only consider Eq. (20b). After some straightforward algebra, it
follows from Eq. (0.13) that
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Consequently, if the fields ®% and ®% belong to degenerate representations, i.e., if A, = Cgf
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degenerate representations of the semidirect product of the superconformal and the super Kac-

Moody algebra. Since any 3-point function of secondary fields is related via the superconformal
and G-Ward identities to the 3-point function of the corresponding primary superfields our
results apply to any 3-point function. This fact is important for the construction of a superstring
theory on a group manifold, since it implies that the corresponding vertex operators form a
closed algebra and the amplitudes factorize onto physical intermediate states.

When ¢4 = k, the representations of the super Kac-Moody algebra possess additional null
states that are constructed out of the modes J¢ . ¥ (n,r > 0). These states, however, are
not highest-weight vectors of the semidirect product with the superconformal algebra.

It remains to consider the proper null highest-weight vectors of the Kac-Moody algebra,
that is the ones obtained by the action of lowering operators of the Kac-Moody algebra only,

on primary states. The operator algebra of those representations has been discussed in ref. [5]
3

Combining the results of ref.[5] with ours, we have complete knowledge of the minimal
system of representations of the super Wess-Zumino theory. In fact, the theory is exactly
solvable in the sense that all the correlation functions satisfy a superequation of the form (0.19)
and are therefore computable in principle. Below, we present an explicit evaluation of the 4-
point function, which contains non-trivial information on the non-vanishing operator-product
coefficients of the operator algebra. OSP(2|1) invariance implies that the 4-point function is
of the form

Fire = (0] (21,01) D12 (22, 05) O (23, 05) /™ (24, 04) |0)
= Y Al T1 Gu)™ [fx(2) + ygx(x)] (0.22)
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where z, y are the two independent commuting combinations of the coordinates invariant under
OSP(2|1),

212734 214723
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V=1, g = =20 . (23b)
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3The selection rules derived in this case state that all non-integrable representations decouple.



Using the current Ward identities for the 4-point function, we can compute the group coefficient:

Al ~ 3" (Ry, Ry, IR, m) (R m|Rs, Ry, k, ) (R, R ym,m/ |1k, 0) . (0.24)
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where the index K labels the singlets in the product. The equation satisfied by the 4-point
function can be derived in the same way as Eq. (0.19) (The variables here are the tilded ones

(cf Eq. (0.17)):
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We will present the solution to this equation for the simplest non-trivial case, G=SU(2), Ry,
Ry, R3, R4, all being the fundamental of SU(2). Other cases do not require new tecniques but
considerably more labor. There are two singlets in the product above,so we can write,

Fijre = Fi(a, y) DA + Fo(x, y) A (0.26)

(25) in this case is a two-by-two matrix equation. Using the identity,

(TJ(})”‘ (TJ(}) ke % [AMAJ% - %AUAM] (0.27)

we can reduce it to two independent equations for Fy, Fy which are of the hypergeometric type.
Their solutions to lowest order in 6; are,

Fi(z) = [(1;x)]ﬁF(%,—%,l—k%) (284)
Fy(e) = [2(1 — 2)]F F (% ﬁ 14 %x) (280)

It 1s straightforward to put back the theta-dependence and to normalize it correctly by factor-
izing it over two point functions.

The equation above has a very simple power-law solution in the special case where there is
only one singlet contained in the product. We can define the constants «;; as

(T3, im (TR ) knFijrm = karaFin (0.29)

and similarly for ag4 and asy where aq4, aaq, azq are numbers. Using the Ward identity (13),
CR4

we can show that ay4 + az4 + a3y = ——* = —2A,. Apart from the trivial solution, Eq. (0.25)

has two other solutions

Na=au , gla)=0, fa)=Ca™ (30a)



and
ya=ag—1 , flz)=0 , g(x)=Cas=m"1 (30b)

We can always eliminate 71, by absorbing it into a redefinition of the function f or g. Then,
in the first case, Eq. (26a), the exponents are determined to be:

Y14 = Q14 ’}/13:—2A1_a14 y 734:A1+A2_A3_A4 9

Yoa = Ay — Ay — Ay —ary , Yuu=A1+ Ay — Ay —Ag+ayy . (0.31)
In the second case, Eq. (26b), they are given by Eq. (0.27) if we make the substitution

a14 — 414 — 1.
The evaluation of higher correlation functions proceeds in a similar manner.

Ordinary Wess-Zumino models at their critical point describe the critical behavior of quan-
tum chains with an arbitrary spin and continuous internal symmetry [3]. It would be interesting
to see if some of these models are in fact supersymmetric, or if there are other critical systems
that realize the semidirect product of the superconformal and the super Kac-Moody algebra.
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