
CALT-68-1347
DOE RESEARCH AND
DEVELOPEMENT REPORT

Character Formulae and the Structure of the Representations of the
N=1, N=2 Superconformal Algebras 1

Elias Kiritsis

California Institute of Technology, Pasadena, CA 91125

ABSTRACT

The unitary representations of the N=1 and N=2 superconformal algebras are an-
alyzed. The embedding structure of all the degenerate representations is studied.
Character formulae are derived for the degenerate representations including those
with c̃ ≥ 1. The relation between characters and the exact partition functions of 2-d
critical statistical systems is explored. The c̃ = 1/3, N=2 superconformal system is
analyzed from the group theoretic point of view and it is shown to be a subsector
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1 Introduction

Recently a number of authors, [1,2,3], found the unitary representations of the N=2 super-
conformal algebras (periodic, antiperiodic and twisted). They derived the formula for the Kač
determinant, which renders possible the classification of the unitary, irreducible representations.

The interest in the N=2 algebra is due to various reasons. First, it is the gauge algebra of
the U(1) string, [5] and of the N=2 nonlinear σ-models arising from compactifications of ten-
dimensional string theories. The N=2 superconformal invariance of the resulting nonlinear σ-
model is important because it is associated to the spacetime supersymmetry of the string theory
ground state after compactification which should be exact to all orders in the string coupling [6].
Knowledge about the unitary irreducible representations of the N=2 superconformal algebra
provides us with some nonperturbative tools that may be used to gain insights in the physics of
various compactifications. The algebra arises also in two-dimensional critical statistical systems
[7], and in some particular ghost systems [8].

Character formulae are very important for the following two reasons. First, they are an
extremely useful tool in the representation theory of these algebras, providing valuable infor-
mation in the determination of the Clebsch-Gordan series as well as in subgroup decompositions.
In fact, in section 5 we use the characters of the N=2 superconformal algebra to decompose
N=2 representations with c̃ = 1/3 into N=1 representations with ĉ = 2/3. Second , and most
important for physics, they provide direct means to evaluate exactly the partition function
of superconformal theories (in particular 2-d critical statistical systems). Information about
partition functions is also useful in studying the modular invariance of critical statistical sys-
tems. In the particular case of the N=2 superconformal algebras, character formulae give exact
information about the partition function of certain representations that arise in N=2 nonlinear
σ-models on Ricci-flat manifolds.

The general embedding structure of various representations of the conformal algebra was
given by Feigin and Fuchs [9], while Rocha-Caridi derived the character formula for the degen-
erate representations of the conformal algebra [10]. The character formulae for the degenerate
representations of the N=1 superconformal algebra were stated in [11].

In this paper we will analyze the embedding structure among unitary irreducible represen-
tations and derive the character formulae for all the degenerate representations of the N=1 and
N=2 superconformal algebras. We will also elaborate on the relation between characters and
the exact partition functions of 2-d critical statistical systems.

The structure of this paper is as follows. In section 2 we discuss the N=1 superconformal
algebras and we derive the embedding patterns of the degenerate representations as well as
their characters. In section 3 we discuss the respective subjects for the N=2 superconformal
algebras focusing on the c̃ < 1 representations. In section 4 we analyze the structure of the
N=2 degenerate representations with c̃ ≥ 1 and we derive their characters. In section 5 we
discuss the relation between characters and the exact partition functions of two-dimensional
critical statistical systems . A character proof of the equivalence of the c̃ = 1/3 N=2 system
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and the ĉ = 2/3 N=1 system is given. Section 6 contains our conclusions. In appendix A we
present explicit examples of null highest weight vectors of the N=2 superconformal algebras.
Finally in appendix B we derive all relevant N=2 partition functions.

2 N=1 Superconformal Algebras

As a warm-up exercise, we will start from the N=1 algebra which is given by the following
(anti)-commutation relations:

[Lm , Ln] = (m− n)Lm+n +
ĉ

8
(m3 −m)δm+n,0

[Lm , Gr] = (
m

2
− r)Gm+r (2.1)

[Gr , Gs]+ = 2Lr+s +
ĉ

2
(r2 − 1

4
)δr+s,0

The anomaly is normalized such that an N=1 free scalar superfield has ĉ = 1. It is related to
the anomaly of the Virasoro algebra by ĉ = 3

2
c. There are two possible N=1 algebras. The

Neveu-Schwarz (NS) algebra, where Gr has half-integer modes and the Ramond (R) algebra,
where Gr has integer modes (the energy-momentum tensor is always periodic).

The authors of ref. [12] by analyzing the Kač determinant, had given the possible irreducible
and unitary representations for ĉ < 1. They exist only when the anomaly takes the following
values:

ĉ = 1− 8

m(m + 2)
, m = 2, 3, 4, ... (2.2)

and the possible dimensions of the primary states (highest weight vectors -hwv-) are:

hp,q =
[(m + 2)p−mq]2 − 4

8m(m + 2)
+

ε

16
, 1 ≤ p ≤ m− 1 , 1 ≤ q ≤ m + 1 , p, q ∈ Z (2.3)

where in the NS-sector p − q is even and ε = 0, whereas in the R-sector p − q is odd and
ε = 1. The Kač determinant for the N=1 algebra, at level n, in the NS-sector is the following
[13,14,15]

detMn =
∏

1≤rs/2≤n

(h− hr,s(ĉ))
PNS(n−rs/2) (2.4)

where the product in (2.4) runs over positive integers p, q with p − q even. PNS(k) is the
dimension of level k: ∞∑

k=0

zkPNS(k) =
∞∏

k=1

(1 + zk−1/2)

(1− zk)
(2.5)

For the R-sector, [15]

det(M+
0 ) = 1 , det(M−

0 ) = h− ĉ

16
(2.6a)
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det(M+
n ) = det(M−

n ) = (h− ĉ

16
)PR(n)/2

∏

1≤rs/2≤n

(h− hp,q(ĉ))
PR(n−rs/2) n > 0 (2.6b)

where the product runs over all positive integers p, q with p − q odd, while PR(k) is half the
dimension of the kth level: ∞∑

k=0

zkPR(k) =
∞∏

k=1

1 + zk

1− zk
(2.7)

The superscripts +,− denote the parity of the corresponding hwv under the fermion number
operator (−1)F .

A vanishing of a factor in the product representing the Kač determinant in the NS sector for
some appropriate integers r, s, implies the existence of a hwv at level rs/2 which is embedded
in the family [h] and which is a null vector (the correlation functions with itself or any other
state vanish).

In order to show the assertion made in the previous paragraph we have to remind the reader
what the Kač determinant exactly is. Let Oi be a basis in the subspace of the Verma module
such that L0 = h + n. Then the Kač determinant is given by,

detMn(h, ĉ) ≡ det(< OiOj >)

The vanishing of the Kač determinant implies the existence of an eigenvector with a zero
eigenvalue, that is, M i,j

n vj = 0 for a non-zero vector vi. The fact that this vector is an
eigenvector of the matrix M i,j

n (with zero eigenvalue) implies that it is also a hwv of the algebra.
Now suppose that h = hr,s for some specific positive integers r, s, such that there are no other
pairs of positive integers r′, s′ with r′s′ < rs. Then det(Mrs/2) has a zero factor and there is a
unique corresponding hwv, (because PNS(0) = 1), at level rs/2. The existence of such hwv’s
implies that the representation generated by the hwv (h) is reducible since it contains (at least)
the representation generated by the previously mentioned hwv.

In order to derive the character of [h] we have to subtract all the possible representations
that are embedded in the Verma module M(h) generated by [h]. Consequently we need to
study the nesting structure of all the submodules of the initial Verma module, M(h).

We will focus first on the NS sector and in particular on the degenerate unitary represen-
tations with ĉ < 1, [12].

Starting from a hwv whose dimension hp,q is given by (2.3) we have to find the zeros of its
Kač determinant, which signal null hwv’s embedded in M(hp,q). The Kač determinant for hp,q

vanishes for,
r = nm + p , s = n(m + 2) + q , n = 0, 1, 2, ..... (2.8)

r = nm− p , s = n(m + 2)− q , n = 1, 2, 3, .....

The families with dimensions h = hp,q+rs/2 are embedded in M(h). Of course this is not
enough to guarantee that these families are the only ones that have this property. The strategy
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Figure 1: Embedding diagram for the degenerate representations of N=1 unitary minimal models
and for T0 representations of the N=2 algebra.

is to take the family with the lowest dimension and trace again the vanishings of its Kač
determinant. Doing that for the first null hwv of dimension

h =
[(m + 2)p + mq]2 − 4

8m(m + 2)

we find that its determinant vanishes for,

r = nm + p , s = n(m + 2)− q , n = 1, 2, .... (2.9)

r = nm− p , s = n(m + 2) + q , n = 1, 2, ...

which gives a different set of families.

Continuing this process down and using induction it is relatively easy to show that these are
actually all the null hwv’s embedded in M(h) and their embedding pattern is the one shown in
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fig. 1 (an arrow between two families means that the family at the tip of the arrow is embedded
in the family at the end of the arrow).

If we define:
r(k) = km + p , s(k) = k(m + 2) + q k ∈ Z (2.10a)

r′(k) = km− p , s′(k) = k(m + 2) + q k ∈ Z (2.10b)

then the dimensions of the hwv’s of the submodules hi, h′i in fig. 1 are given by :

h0 = hp,q

h2k+1 = hp,q +
r(k)s(k)

2
, h′2k+1 = hp,q +

r(−k − 1)s(−k − 1)

2

h2k+2 = hp,q +
r(0)s(0) + r′(k + 1)s′(k + 1)

2
,

h′2k+2 = hp,q +
r(0)s(0) + r′(−k − 1)s′(−k − 1)

2
(2.11)

The states listed above generate different irreducible representations. Their dimensions are
different a fact that can be easily checked.

The character of an irreducible representation h of the N=1 superconformal algebra is
defined by:

ch(ĉ, h, z) = Trh[z
L0 ] (2.12)

The trace over all the descendants of a hwv of dimension h is easily computed to be :

χ(h, z) = FNS(z)zh (2.13)

where FNS is the NS partition function,

FNS(z) =
∞∏

k=1

1 + zk−1/2

1− zk
(2.14)

To compute the character of the irreducible representation generated by hp,q, we have to
factor out the other families embedded in it. It is obvious from fig. 1 that

[hi] ∩ [h′i] = [hi+1] + [h′i+1] (2.15)

and that [hi+1] + [h′i+1] is the largest proper submodule of [hi] or [h′i]. The character is given
by, [9,10],

ch(h0, z) = [h0]− [h1]− [h′1] + [h1] ∩ [h′1]− ... = [h0] +
∞∑

i=1

(−1)i([hi] + [h′i]) (2.16)

An easy way to justify (2.16) is the following. We first take the trace over all the descendants
of the hwv h0. Then we subtract the contribution of the family h1 and thus we get rid of
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everything else in fig. 1 except from the irreducible representation generated by h′1. The
irreducible h′1 now is given by subtracting h2 and the irreducible h′2. Then (2.16) follows by
induction.

Using (2.11),(2.13), eq. (2.15) becomes,

ch(hp,q, ĉ, z) = FNS(z)
∑

k∈Z

[zhp,q+
r(0)s(0)+r′(k)s′(k)

2 − zhp,q+
r(k)s(k)

2 ] (2.16′)

Using then (2.10), and after some trivial manipulations, (2.15) takes the form,2

ch(hp,q, ĉ, z) = FNS(z)
∑

k∈Z

[za(k) − zb(k)]

a(k) =
[2m(m + 2)k − (m + 2)p + mq]2 − 4

8m(m + 2)
,

b(k) =
[2m(m + 2)k + (m + 2)p + mq]2 − 4

8m(m + 2)
(2.17)

The same remarks apply in the R-sector. The structure of the embeddings is the same as
in fig. 1, as well as the dimensions of the hwv’s occurring in it. Following the same procedure
we end up with the same result as in (2.17) but with FR(z) replacing FNS(z),

FR(z) = z
1
16

∞∏

k=1

1 + zk

1− zk
(2.18)

This ends our discussion of the character formulas for the degenerate representations of the
N=1 superconformal algebras.

3 N=2 Superconformal Algebras, c̃ < 1

In this section we will consider the situation in the N=2 superconformal algebra. It is given by
the following (anti-)commutation relations3

[Lm, Ln] = (m− n)Lm+n +
c̃

4
(m3 −m)δm+n,0

2This is the result stated in [10]. Their formula contains a minor misprint, having 2m(m + 1)k instead of
2m(m + 2)k as in (2.17).

3We have chosen a particular normalization for the central charge of the U(1) sub-algebra. It is worth noting
that the most general N=2 superconformal algebra includes, up to the freedom of redefinitions, another free
parameter, the U(1) charge of the supercharges. Then the respective commutation relations become: [Jm, Gi

r]
= iqεijGj

m+r and [Gi
r, G

j
s]+ = 2δijLr+s + i

q εij(r − s)Jr+s +c̃(r2 − 1
4 )δijδr+s,0. This new parameter does

not change the structure of the irreducible representations. Its only effect is to change the distance between
successive relative charge levels.
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Figure 2: Embedding diagram for NS2, NS3 degenerate reps, c̃ > 1, q 6= n
2
(c̃− 1)−m, n ∈ Z,

m ∈ Z+
0

[Lm, Gi
r] = (

m

2
− r)Gi

m+r , [Lm, Jn] = −nJm+n

[Jm, Jn] = c̃ mδm+n,0 , [Jm, Gi
r] = iεijGj

m+r

[Gi
r, G

j
s]+ = 2δijLr+s + iεij(r − s)Jr+s + c̃(r2 − 1

4
)δijδr+s,0 (3.1)

The normalization of the conformal anomaly is such that a free N=2 scalar superfield has
c̃ = 1. It is related to the anomaly of the Virasoro algebra by c̃ = 3c.

There are three4 N=2 algebras corresponding to different modings of the generators. Choos-
ing integer moding for Lm, Jn and half-integer for Gi

r we get the NS-type algebra. If we choose
integer moding for all the generators we get the R-type algebra. Finally there is another pos-
sibility in this case corresponding to the choice of integer moding for Lm, G1

n and half-integer
moding for Jr, G2

s. This last one gives the Twisted, (T), algebra.

We will start our discussion from the NS algebra and focus on the unitary representations
with c̃ < 1. In [1] it was shown that these exist only when :

c̃ = 1− 2

m
, m = 2, 3, 4, .... (3.2)

4In fact the NS and R algebras are isomorphic. There is a continuum of N=2 algebras interpolating between
these two.
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and have hwv’s with dimension and U(1) charge q given by,

hj,k =
4jk − 1

4m
, q =

j − k

m
, j, k ∈ Z +

1

2
, 0 < j, k, j + k ≤ m− 1 (3.3)

Hwv states are labeled by the eigenvalues of the zero modes, L0 and J0, which are the dimension
h and the U(1) charge q. Then any descendant is labeled by its level (eigenvalue of L0 minus
h) and its relative charge (eigenvalue of J0 minus q).

The Kač determinant at level n and relative charge m is given by [1]

detMNS
n,m(c̃, h, q) =

s even∏

1≤rs≤2n

[fNS
r,s ]PNS(n−rs/2,m) × ∏

k∈Z+ 1
2

[gNS
k ]P̃NS(n−|k|,m−sgn(k);k) (3.4)

where :

fNS
r,s = 2(c̃− 1)h− q2 − 1

4
(c̃− 1)2 +

1

4
[(c̃− 1)r + s]2 , r ∈ Z+ , s ∈ 2Z+ (3.5a)

gNS
k = 2h− 2kq + (c̃− 1)(k2 − 1

4
) , k ∈ Z +

1

2
, (3.5b)

while the NS partition functions are defined by,5

∑
n,m

PNS(n,m)znwm =
∞∏

k=1

(1 + zk−1/2w)(1 + zk−1/2w−1)

(1− zk)2
(3.6a)

∑
n,m

P̃NS(n,m; k)znwm = [1 + z|k|wsgn(k)]−1
∑
n,m

PNS(n,m)znwm (3.6b)

Equation (3.4) implies that whenever there is a vanishing of fNS
r,s , there exists a unique hwv at

level rs/2 with the same charge as the initial one, (relative charge zero). When gNS
k = 0, there

is a hwv at level |k| and relative charge sgn(k).

Consider the representation of dimension hj,k = (4jk − 1)/4m and charge q = (j − k)/m .
We will first search for null hwv’s at relative charge zero. fNS

r,s vanishes for,

r = nm± (j + k) , s = 2n n = 1, 2, .... (3.7)

Thus there are null vectors at relative charge zero, embedded in the family (hj,k, q) their
dimensions being hj,k +n2±n(j +k). We can show that the above hwv’s exhaust all null hwv’s
at relative charge zero. In fact if we order them in order of increasing dimension,

h2n−1 = hj,k + n2m− n(j + k) n = 1, 2, .... (3.8)

h2n = hj,k + n2m + n(j + k) n = 0, 1, 2, ....

we can show by analyzing the Kač determinant for hi, that (still at relative charge zero), the
families hj j > i (and only these) are embedded in hi.

5The derivation of the partition functions can be found in App. A.

8



Figure 3: Embedding diagram for NS0 degenerate reps, c̃ = 1− 2
m

Next we have to look for null vectors of non-zero relative charge. For hj,k gNS
l vanishes for

l = k and l = −j . This implies the existence of a hwv of dimension hj,k + k and charge q + 1
as well as a hwv of dimension hj,k + j and charge q − 1 embedded in [hj,k].

Looking now at the Kač determinant (relative charge zero), of the hwv h′1 = hj,k + k ,
q′1 = q + 1, we can establish that it vanishes for,

r = (n + 1)m + (j + k) , s = 2n n = 1, 2, .... (3.9)

r = nm− (j + k) , s = 2(n + 1) n = 1, 2, ....

implying the existence of another series of null hwv’s with dimensions,

h′2n−1 = hj,k + n(n + 1)m− (n + 1)j − nk n = 1, 2, .... (3.10)

h′2n = hj,k + n(n + 1)m + nj + (n + 1)k n = 1, 2, ....

and charge q + 1.

This scenario continues so that by using induction we can establish the existence of an
embedding pattern shown in fig. 3 . All embedding diagrams are commutative.
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The maps between sectors of different charge form exact sequences due to the fermionic
nature of the generating operators. There is unique hwv at each level and charge since the Kač
determinant has a simple zero corresponding to that hwv. The dimensions and charges of the
various families depicted on it are,

hl
2n+l = hj,k + n(n + l)m + n(j + k) + lk , l ≥ 0 , n ≥ 0 (3.11a)

hl
2n+l−1 = hj,k + n(n + l)m− (n + l)(j + k) + lk , l ≥ 0 , n ≥ 1

h−l
2n+l = hj,k + n(n + l)m + n(j + k) + lj , l ≥ 0 , n ≥ 0 (3.11b)

h−l
2n+l−1 = hj,k + n(n + l)m− (n + l)(j + k) + lj , l ≥ 0 , n ≥ 1

ql
n = q + l , l ∈ Z

It is obvious from (3.11) that all dimensions in a given charge sector are different so that the
corresponding representations are distinct.

We define the character of the irreducible representation generated by the hwv of dimension
hj,k = 4jk−1

4m
and charge q = j−k

m
(m ≥ 2, 0 < j, k, j + k ≤ m− 1, j, k ∈ Z + 1

2
) by :

ch(hj,k, c̃, z, w) ≡ Tr[zL0wJ0 ] (3.12)

The trace over all the descendants of a hwv, (h, q), is given by6

χ(h, q, z, w) = F̄NS(z, w)zhwq (3.13)

F̄NS(z, w) =
∞∏

k=1

(1 + zk−1/2w)(1 + zk−1/2w−1)

(1− zk)2
(3.14)

Our task now is to compute the trace by excluding all superconformal families that are
embedded in hj,k . The procedure is qualitatively the same as in the N=1 case. It is obvious
from the embedding pattern pictured in fig. 3 that,

[h0
i ] ∩ [h1

i ] = [h0
i+1] + [h1

i+1] , [h0
i ] ∩ [h−1

i ] = [h0
i+1] + [h−1

i+1] (3.15)

[h1
i ] ∩ [h−1

i ] = [h0
i+1] , [h0

i ] ∩ [h1
i ] ∩ [h−1

i ] = [h0
i+1] (3.15′)

The largest proper submodule of h0
0 is [h0

1] + [h1
1] + [h−1

1 ]. The largest proper submodule of
[h0

1]+[h1
1]+[h−1

1 ] is given by:

[h0
1] ∩ [h1

1] + [h0
1] ∩ [h−1

1 ] + [h1
1] ∩ [h−1

1 ]− 2[h0
1] ∩ [h1

1] ∩ [h−1
1 ]

which is equal to [h0
2]+[h1

2]+[h−1
2 ]. Inductively, the largest proper submodule of [h0

i ]+[h1
i ]+[h−1

i ]
is [h0

i+1] + [h1
i+1] + [h−1

i+1]. Consequently the character for the irreducible representation [h0
0] is

given by:

ch[h0
0] = χ([h0

0]) +
∞∑

i=1

(−1)iχ([h0
i + h1

i + h−1
i ]) (3.16)

6See App. B.
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where χ denotes the unrestricted trace defined by (3.13).

In order to write down an explicit formula for the character we need also the partition
functions for single charged fermions7

Substituting in (3.16) we get,

ch(hj,k, z, w) = F̄NS(z, w)zhj,kwq [1 + f1(z, w)− f2(z, w)] (3.17)

f1(z, w) =
∞∑

n=1

[
zn2m+n(j+k) +

zn(n+1)m−(n+1)(j+k)+kw

1 + znm−jw
+

zn(n+1)m−(n+1)(j+k)+jw−1

1 + znm−kw−1

]

f2(z, w) =
∞∑

n=0

[
z(n+1)2m−(n+1)(j+k) +

zn(n+1)m+n(j+k)+kw

1 + znm+kw
+

zn(n+1)m+n(j+k)+jw−1

1 + znm+jw−1

]

Let’s now consider the R-sector of the algebra. The zero modes are L0 , J0 , Gi
0. Hwv’s

are labeled by their dimension, h, charge, q ± 1/2, and chirality, +,−. They satisfy also the
additional condition, (G1

0 ± iG2
0)|h, q ± 1/2 >±= 0. The representations of different chirality

are isomorphic to each other under charge conjugation. We are focusing again on c̃ < 1. As it
was shown in [1], unitary representations occur only when,

c̃ = 1− 2

m
, m = 2, 3, 4, ... (3.18)

with dimensions and charges given by,

h =
c̃

8
+

jk

m
, q = ±j − k

m
, j, k ∈ Z , 0 ≤ j − 1, k, j + k ≤ m− 1 (3.19)

From now on we restrict to + chirality since the two representations are isomorphic. The Kač
determinant in this case is,

detMR
n,m(c̃, h, q) =

s even∏

1≤rs≤n

[fR
r,s]

PR(n−rs/2,m) × ∏

k∈Z

[gR
k ]P̃R(n−|k|,m−sgn(k);k) (3.20)

fR
r,s(c̃, h, q) = 2(c̃− 1)(h− c̃

8
)− q2 +

1

4
[(c̃− 1)r + s]2 , r ∈ Z+ , s ∈ 2Z+ (3.21)

gR
k = 2h− 2kq + (c̃− 1)(k2 − 1

4
)− 1

4
, k ∈ Z (3.22)

and the Ramond partition functions are defined by,8

∑
n,m

PR(n,m)znwm = (w1/2 + w−1/2)
∞∏

k=1

(1 + zkw)(1 + zkw−1)

(1− zk)2
(3.23a)

∑
n,m

P̃R(n,m; k)znwm = [1 + z|k|wsgn(k)]−1
∑
n,m

PR(n,m)znwm (3.23b)

7For a derivation see app. A
8See App. B
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Sgn(k) = 1 if k > 0, −1 if k < 0 and sgn(0) = 1 for the chirality + algebra, −1 for the chirality
− algebra.

A vanishing of fR
r,s signals the existence of a hwv embedded in the family (h, q) at level

rs/2 and relative charge -1/2, which means that it has the same J0 eigenvalue as the initial
hwv. When gR

k = 0, there is a hwv at level |k| and relative charge −1/2sgn(0) + sgn(k). The
embedding structure for the R algebra is the same as in the NS algebra (fig. 3).

Taking the trace of zL0wJ0 over the whole set of secondaries of the primary field (h, q) we
obtain 9

Tr[zL0wJ0 ] = zhwqF̄R(z, w) (3.24)

F̄R(z, w) = [w1/2 + w−1/2]
∞∏

k=1

(1 + zkw)(1 + zkw−1)

(1− zk)2
(3.25)

The character in the Ramond sector is the same as in the NS sector modulo the trivial
substitution F̄NS → F̄R.

For the Twisted algebra the zero modes are L0 and G1
0. Their eigenvalues characterize

hwv’s. Each level contains two equal subspaces of fermion number (−1)F = ±1. The Kač
determinant for the T-algebra is the following [1],

detMT
+,0 = 1 , detMT

−,0 = h− c̃

8

detMT
±,n(c̃, h) = [h− c̃

8
]PT (n)/2

s odd∏

1≤rs≤2n

[fT
r,s]

PT (n−rs/2) (3.26)

fT
r,s = 2(c̃− 1)(h− c̃

8
) +

1

4
[(c̃− 1)r + s]2 , s = 1, 3, 5, ... (3.27)

∑
n

PT (n)zn =
∞∏

k=1

(1 + zk)(1 + zk−1/2)

(1− zk)(1− zk−1/2)
≡ F̄T (z) (3.38)

The unitary representations of the T-algebra with c̃ < 1 are given by,

c̃ = 1− 2

m
, h =

c̃

8
+

(m− 2r)2

16m
, m = 2, 3, ... , r ∈ Z , 1 ≤ r ≤ m

2
(3.29)

Only even m allows the state h = c̃
8
, the presence of which implies that supersymmetry is

unbroken.

The vanishing of fT
r,s signals the existence of two hwv’s at level rs/2 and fermion parity ±1.

At level zero there is only one vanishing whereas for each of the higher levels there are two
vanishings corresponding to states of opposite parity. Analyzing the vanishings of fT

r,s, we can
easily show that the embedding pattern is the one shown in fig. 1 with,

h0 =
c̃

8
+

(m− 2r)2

16m
9See App. B
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hk =
c̃

8
+

[(2k − 1)m + 2r]2

16m
, h′k =

c̃

8
+

[(2k + 1)m− 2r]2

16m
(3.30)

The character formula in this case is written down in the same way as in the N=1 case.

chT
m,r(z) = FT (z)z

c̃
8


 ∑

k∈2Z

(−1)k/2z
[(k+1)m−2r]2

16m


 (3.31)

When h = c̃
8
, one of the two states of different chirality is degenerate at the zeroth level and

decouples as it can be easily seen from the formula for the Kač determinant. Then supersym-
metry is unbroken due to the non-vanishing of the Witten index.

The above complete the derivation of the character formulae for the degenerate representa-
tions of the N=2 superconformal algebras with c̃ < 1.

A construction of these representations using free fermions has been given, [2], proving their
unitarity through an explicit unitary construction of their Hilbert space.

4 N=2 Superconformal Algebras, c̃ ≥ 1.

The NS and R± algebras contain another class of degenerate representations with c̃ ≥ 1. We
will focus first on the NS sector. There we have two distinct sets of degenerate representations.

NS2 representations.(the subscript indicates the dimension of their moduli space). A rep-
resentation in this class is unitary and degenerate if gNS

n0
= 0 for some n0 ∈ Z+ 1

2
, gNS

n0+sgn(n0) < 0

and fNS
1,2 ≥ 0. According to (3.5b) the first condition implies that,

2h = 2n0q − (c̃− 1)(n2
0 −

1

4
) (4.1)

We will suppose for the moment that n0 > 0. Then the second condition implies that,

q > (n0 +
1

2
)(c̃− 1) (4.2)

whereas the third condition implies,

−(c̃ + 1)

2
+ n0(c̃− 1) ≤ q ≤ (c̃ + 1)

2
+ n0(c̃− 1) (4.3)

Collecting everything together, the three conditions boil down to (4.1) and

(n0 +
1

2
)(c̃− 1) < q ≤ (n0 +

1

2
)(c̃− 1) + 1 (4.4)

and it is obvious that both h and q are positive. If n0 < 0 then (4.4) is replaced by :

(n0 − 1

2
)(c̃− 1)− 1 ≤ q < (n0 − 1

2
)(c̃− 1) (4.5)

13



Figure 4: Embedding diagram for NS2 degenerate reps, c̃ > 1, irrational, q = n
2
(c̃ − 1) − m,

m,n ∈ Z

which in particular implies h > 0 , q < 0 in this case. In the following we will discuss the
n0 > 0 case and we will point out in the end the appropriate changes for n0 < 0.

As it turns out to be, the embedding structure of these representations depends crucially
on the values of c̃ and q, (constrained already by (4.4)). We have to distinguish the following
cases:

• (A). c̃ > 1, c̃ irrational. We will analyze first the interior of the interval (4.4).

• (i) The U(1) charge q has the form, q = 1
2
n(c̃−1)−m, n ∈ Z , m ∈ Z+

0 with n constrained
from (4.4) :

2n0 + 1 +
2m

c̃− 1
< n ≤ 2n01 +

2(m + 1)

c̃− 1
(4.6)

14



Figure 5: Embedding diagram for NS2 degenerate representations, c̃ > 1 irrational q =(
n0 + 1

2

)
(c̃− 1) + 1.

Then it is easy to show that the embedding pattern is the one shown in fig. 4 with,

hk = h0 + kn0 , h′m+k = h0 + k(n− n0) , qk = q′k = q + k (4.7)

It is obvious that in a given charge sector the various dimensions are distinct and thus
the corresponding representations different. Also the maps from one charged sector to
another generate exact sequences due to the fermionic nature of the operators generating
the relevant hwv’s. Another remark is in order here concerning the embedding diagrams:
embedding maps that are factorizable have been omitted from the figures. For example
in fig. 4 the family hm contains also a degenerate vector generating h′m+1. Thus the
embedding map f : hm → h′m+1 is the composition of the maps g1 : hm → hm+1 and g2

: hm+1 → h′m+1, that is f(x) = g2(g1(x)). Similar remarks are true for the rest of the
embedding diagrams.

The trace over all the descendants of the primary state |h, q > is given10

Tr[zL0wJ0 ] = F̄NS(z, w)zhwq (4.8a)

whereas the trace, for example, over all the descendants of the family (h1, q1) is given by,

Trh1 [z
L0wJ0 ] =

F̄NS(z, w)

1 + zn0w
(4.8b)

To compute the character in this case we have to subtract the contribution from the
family (h1, q1) so that,

ch(h, q, z, w) = F̄NS(z, w)zhwq
[
1− zn0w

1 + zn0w

]
= F̄NS(z, w)

zhwq

1 + zn0w
(4.9)

10See Appendix B.
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• (ii) q has any other allowable value except the ones mentioned in (i). In this case the
embedding pattern is shown in fig. 2. The relevant dimensions are,

hk = h + kn0 , qk = q + k (4.10)

so that the character is given again by (4.9).

Let’s now consider the representation which lies on the vanishing surface fNS
1,2 = 0, whose

charge is given by q = (c̃− 1)(n0 + 1
2
) + 1. In this case there is also a null hwv at relative

charge zero embedded in the initial representation at the first level. The relevant diagram
is given in fig. 5. The corresponding dimensions are,

hk = h + kn0 , h′k = h + k(n0 + 1) + 1 , qk = q′k = q + k (4.11)

To evaluate the character in this case we subtract first the family h1 so that we factor
out everything else except the irreducible family h′0. This is given by subtracting h′1 off
h′0. Consequently,

ch(z, w) = χ([h0]− [h1]− [h′0] + [h′1]) = F̄NS(z, w)
zhwq(1− z)

(1 + zn0w)(1 + zn0+1w)
(4.12)

• (B) c̃ > 1, c̃ rational. Then there is a unique way to write c̃ as,

c̃ = 1 +
2r2

r1

, r1, r2 ∈ Z , r1 ≥ 1, r2 ≥ 1 (4.13)

and with r2 being the least positive integer such that (4.13) is true. For r2 = 1 this
corresponds to the special class of representations found in [1], which are identified by
triple intersections of vanishing surfaces.

We will focus first on representations which are contained in the interior of the interval
(4.4).

• (i) If q = 1
2
n(c̃ − 1) −m, n ∈ Z , m ∈ Z+

0 with the integer n constrained by (4.6), then
there are three possible embedding patterns corresponding to the following situations.

• (ia) r2 > 1. The corresponding diagram in this case is displayed in fig. 6. The pattern
repeats itself with “period” r2, and the relevant dimensions are,

hk = h + kn0 , h′m+k = h + k(n− n0) , qk = q′k = q + k

h′′k+m+r2
= h + (r2 − k)n0 + k(n + r1) , q′′k = q + k , k ≤ r2 (4.14)

h′′′k+m+r2
= h + r2(n− n0) + k(n0 + r1) , q′′′k = q + k , k ≤ r2

At each relative charge level all the dimensions are different and correspond to different
hwv’s.
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Figure 6: Embedding diagram for NS2 degenerate representations, c̃ = 1 + 2 r2

r1
> 1, q =

n
2
(c̃− 1)−m,m, n ∈ Z
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Figure 7: Embedding diagram for NS2 degenerate reps, c̃ = 1 + 2 r2

r1
, r2 = 1, n 6= 2n0 + r1,

q = n
2
(c̃− 1)−m
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Figure 8: Embedding diagram for NS2 degenerate reps, c̃ = 1 + 2 r2

r1
, r2 = 1, n = 2n0 + r1,

q = n
2
(c̃− 1)−m, m ∈ Z
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• (ib) r2 = 1, n 6= 2n0 + r1. Then the diagram of fig. 6 simplifies to the one shown in fig.
7. The dimensions and charges are given by,

h2l−1
m+k = h + (k − l + 1)[n + (l − 1)r1] + (m + 2l − k − 2)n0 , 1 ≤ l ≤ [k +

1

2
]

h2l
m+k = h + l[n + (k − l)r1] + (m + k − 2l)n0 , 1 ≤ l ≤ [

k

2
] (4.15)

h0
k = h + kn0 , k ≥ 0 , ql

k = q + k

• (ic) r2 = 1, n = 2n0 + r1. In this case the diagram on fig. 7 collapses even further to the
diagram shown in fig. 8, the relevant dimensions being,

hl
m+k = h + l(k − l + 1)n + [2(l − k)(l − 1) + m− k]n0 , ql

k = q + k (4.16)

• (ii) The charge q is not of the form (i). Then the embedding diagram is very simple and
it is shown in fig. 2.

In all the cases discussed above the character can be computed by subtracting the con-
tribution of the first embedded family. Consequently the character is given by (4.9).

Let’s now consider the representation that lies on the fNS
1,2 = 0 surface with q = (n0 +

1
2
)(c̃− 1) + 1.

• (a) For r1 > 1, r2 > 1 the embedding pattern is shown in fig. 9, the relevant dimensions
being,

hk = h + kn0 , h′k = h + kn0 + k + 1 , qk = q′k = q + k (4.17)

h′′k+r2
= h + (r2 + k)n0 + (k + 1)r1 + r2 , h′′′k+r2

= h + (r2 + k)n0 + (k + 1)(r1 + 1)

• (b) r2 = 1, r1 > 1. The corresponding diagram is shown in figure 10 with the following
dimensions and charges,

h2l−1
k = h + kn0 + (k − l − 2)[(l − 1)r1 + 1] , k ≥ 0 , l ≥ 1

h2l
k = h + kn0 + l[(k − l + 1)r1 + 1] , k ≥ 0 , l ≥ 0 (4.18)

ql
k = q + k

• (c) r1 = 1, r2 > 1 . In this case the embedding diagram becomes the one shown in fig.
11 where the periodicity of the pattern is again set by r2. The corresponding dimensions
are,

hk = h + kn0 , h′k = h + kn0 + k + 1 , qk = q′k = q + k (4.19)

• (d) r1 = r2 = 1, c̃ = 3. Then the previous diagram collapses to the one shown in fig. 12,

hk
l = h + ln0 + k(l − k + 2) , qk

l = q + k , k ≥ 2l − 2 (4.20)

In all of the above cases the character can be computed in the same way as in the respective
case where c̃ was irrational. Consequently the character is given by (4.12).

The only case left to consider for the NS2 representations is c̃ = 1 which is not included
in (B).
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Figure 9: Embedding diagram for NS2 degenerate reps, c̃ = 1 + 2 r2

r1
, r1 > 1, r2 > 1, q =

(n0 + 1
2
)(c̃− 1) + 1

Figure 10: Embedding diagram for NS2 degenerate reps, c̃ = 1 + 2 r2

r1
, r2 = 1, r1 > 1 , q =

(n0 + 1
2
)(c̃− 1) + 1
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Figure 11: Embedding diagram for NS2 degenerate reps, c̃ = 1 + 2 r2

r1
, r1 = 1, r2 > 1, q =

(n0 + 1
2
)(c̃− 1) + 1
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Figure 12: Embedding diagram for NS2 degenerate reps, c̃ = 3, q = 2n0 + 2

• (C) c̃ = 1.

• (i) 0 < q < 1. In this case the embedding diagram becomes fairly simple and it is shown
in fig. 2,

hk = (q + k)n0 , qk = q + k (4.21)

and the character is given by (4.9).

• (ii) q = 1. The Kač determinant simplifies enormously, its factors becoming,

fNS
r,s = −q2 +

s2

4
, gNS

k = h− qk

This gives rise to the pattern pictured in fig. 13 with

hk,l = k[n0 + l − 1] qk,l = k , k, l ≥ 1 (4.22)

The character is given again by (4.12).

We will now focus on the degenerate representations of NS3. They are characterized by
the following conditions,

c̃ ≥ 1 , gNS
n ≥ 0 ∀n ∈ Z +

1

2
(4.23)

For a fixed c̃ this is a convex region in the (h,q) plane bounded by pieces of the gNS
n = 0

lines. The degenerate representations lie on the boundary of the region above and can
be labeled by n0 such that gNS

n0
= 0 and their charge. This implies that their dimensions

and charges are given by,

(c̃− 1)(n0 − 1

2
) < q ≤ (c̃− 1)(n0 +

1

2
) (4.24)
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Figure 13: Embedding diagram for NS2 degenerate reps, c̃ = 1, q = 1

h = n0q − (c̃− 1)

2
(n2

0 −
1

4
)

We will focus again on n0 > 0.

• (A’) c̃ > 1 rational.

• (i) q = (n0 + 1
2
)(c̃− 1). In this case the embedding diagram is shown in fig. 15 with,

hk = h + kn0 , h′k = h + k(n0 + 1) , qk = q′k = q + k (4.25)

For the other allowed values of q we have to distinguish the following two cases

• (ii) q = n
2
(c̃− 1)−m with n ∈ Z , m ∈ Z+

0 . The embedding diagram in this case is shown
in fig.14 with,

hk = h + kn0 , h′m+k+r2
= h + (r2 + k)n0 + kr1 , qk = q′k = q + k (4.26)

• (iii) q has any other allowed valued except the ones mentioned in (i), (ii). Then the
embedding structure is the one shown in fig. 2.

• (B’) c̃ > 1 irrational.

• (i’) q = (n0 + 1
2
)(c̃− 1). Then the embedding diagram is the one shown in fig. 16 with,

hk = h + kn0 , h′k = h + k(n0 + 1) , qk = q′k = q + k (4.27)

• (ii’) For all the other allowed values of q the embedding pattern is the one of fig. 2.

The above exhaust all possible degenerate representations belonging to NS3. In the c̃ = 1
case the only degenerate representation is given by the unit operator. From the structure of
the representations of NS3 we can conclude that their characters are given by (4.9).
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Figure 14: Embedding diagram for NS3 degenerate reps, c̃ = 1+2 r2

r1
, q = n

2
(c̃−1)−m, m,n ∈ Z

Figure 15: Embedding diagram for NS3 degenerate reps, c̃ = 1 + 2 r2

r1
, q = (n0 + 1

2
)(c̃− 1)
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Figure 16: Embedding diagram for NS3 degenerate reps, c̃ > 1, irrational, q = (n0 + 1
2
)(c̃− 1)

Thus we can distinguish representations for c̃ ≥ 1 in those that have only degeneracies
related to gn with their corresponding characters given by (4.9) and in those that have additional
degeneracies related to f1,2 whose characters are given by (4.12).

The same results apply in the case n0 < 0 with the following substitutions in the relevant
formulae : n0 → |n0| , w → w−1 , wq → wq.

The null hwv’s which correspond to the representations studied above degenerate at relative
charge ±1 do not generate full Verma modules. There exist lowering operators which annihilate
them.11

The R± algebra has analogous degenerate representations for c̃ > 1. The structure of these
representations is exactly the same as in the NS sector and the character formulae apply there
as well with the obvious substitution F̄NS → F̄R.

The special values of c̃ mentioned in [1], namely c̃ = 1 + 2
n
, n = 1, 2, 3, ... also contain

the interesting case of c̃ = 3(2) arising in the string theory compactification on a compact
six(four) dimensional Ricci flat manifold. In particular the (anti-)holomorphic ε-tensor realizes
the representations of the NS2 algebra, (since it is a spacetime boson), with q = ±c̃ and h = c̃

2

corresponding to our notation to r1 = 1(2), r2 = 1, n0 = ±1/2, n = ±3(±4), m = 0. The
embedding structure of their Verma module is depicted in fig. 12. The covariantly constant
spinors on the internal manifold correspond to degenerate representations of the R±

2 , (spacetime
fermions), which are degenerate at level n0 = 0 with h = c̃

8
and q = sgn(0) c̃+1

2
(lying on the

11For explicit examples see App. A.
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intersection of gR
0 = 0 and fR

1,2 = 0). These representations are important in the construction of
the four generators of the four-dimensional N=1 supersymmetry. The dimensions and charges
of these operators should not be renormalized even non-perturbatively since the spectrum for
this class of representations is discrete. Their partition functions can be read-off immediately
from (4.12), and they provide the means to study questions of modular invariance in the
corresponding σ-model.

5 Characters and the exact partition function of critical

statistical systems

Characters are essential for the evaluation of the exact partition function of 2-d critical sta-
tistical systems, [16]. For a 2-d system defined on a flat torus , that is a parallelogram with
sides l, l′, and periodic boundary conditions, at the limit l, l′ → ∞ with l/l′ = δ fixed, the
Hamiltonian operator is

H =
2π

l
(L0 + L̄0) (5.1)

while the momentum operator is,

P =
2π

l
(L0 − L̄0) (5.2)

Thus the partition function can be written as

Z(l, l′) = e−fll′+πcReδ
6

∑
n

e−En Rel′−iPn Iml′ (5.3)

where we allowed l, l′ to be complex twisting in that way the torus (or tilting the parallelogram).
The complex parameter δ determines the conformal structure of the torus the system is defined
on. Equation (5.3) can be written in a more suggestive form:

Z(δ) = e−fA+πcReδ
6 Tr[zL0 z̄L̄0 Λ] (5.4)

where z = e−2πδ, z̄ = e−2πδ∗ and Λ is a suitable projection operator in order to have a local
theory.12 Let chh(z) be the character of the conformal family generated by a hwv of dimension
h. Then,

Z(δ) = e−fA+πcReδ
6

∑

(h,h̄)

N(h, h̄)chh(δ)chh̄(δ
∗) (5.5)

where N(h, h̄) is the number of times the irreducible representation (h, h̄) appears in the theory.
The modular group is generated by the transformations, δ → δ + i and δ → 1

δ
.

J. Cardy in [16] analyzed the constraints imposed by the requirement of invariance of the
partition function under the modular group of the torus, on the spectrum of the theory. Invari-
ance under the first transformation constraints the states to have integer spin, h − h̄. Under

12There are two ways to obtain a local theory in the N=1 superconformal case, [15]. The choice of Λ is also
crucial for questions of modular invariance of the theory.
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the second transformation the characters transform non-trivially providing a representation of
the modular group of the torus. For c > 1 the only information that can be gained13 is that the
spectrum has to be infinite. For c < 1, that is the ”minimal” theories, modular invariance im-
plies a set of linear algebraic equations among the numbers N(h, h̄). The most general solution
to these equations is known for the N=0, N=1, N=2 minimal models, [16,17].

There exist examples of N=1 and N=2 critical systems. As it was shown in [15] the tricritical
Ising model, (Ising model with vacancies), is a concrete example of a N=1 superconformal theory
with ĉ = 7/15. Some special points in the gaussian model exhibit N = 2 superconformal
invariance, with an anomaly c̃ = 1/3, [4]. The c̃ = 1/3 theory constitutes a subsector of the
ĉ = 2/3 N=1 superconformal theory.14 It is the only member of the c̃ < 1 N=2 series which has
the same anomaly with a member of the ĉ < 1 N=1 series. For example the N=2 unit operator,
(0)2, decomposes into the unit operator of the N=1 theory, (0)1, (containing the unit operator
and one of the N=2 supercharges), and a dimension-one operator, (1)1, (containing the U(1)
current of dimension one and the second N=2 supercharge). The representation of the NS sector
with h = 1

6
, q = ±1

3
decomposes into (1

6
)1 of the N=1 NS sector. The operator (3

8
)2 belonging

to the Ramond sector, decomposes as (3
8
)2 → (3

8
)1 whereas the two ( 1

24
)2 representations of

the R± sector decompose as ( 1
24

)2 → ( 1
24

)1 in the R sector of the N=1 theory. Finally in the
twisted sector of the c̃ = 1/3, N=2 system the representation of dimension h = 1

16
decomposes

into ( 1
16

)1 in the NS sector of the N=1 system. These decompositions can be easily justified
by checking the validity of the equalities between the appropriate characters:

chNS
1 (h = 0, z) + chNS

1 (h = 1, z) = chNS
2 (h = 0, q = 0, z, w = 1) (5.6a)

chNS
1 (h =

1

6
, z) = chNS

2 (h =
1

6
, q = ±1

3
, z, w = 1) (5.6b)

chR
1 (h =

3

8
, z) = chR

2 (h =
3

8
, q = 0, z, w = 1) (5.6c)

chR
1 (h =

1

24
, z) = chR

2 (h =
1

24
, q = ±1

3
, z, w = 1) = chR

2 (h =
1

24
, q = ±2

3
, z, w = 1) (5.6d)

chNS
1 (h =

1

16
, z) = chT

2 (h =
1

16
, z) (5.6e)

It is worth pursuing the search for such systems since they seem to have a very rich and
interesting structure.

6 Conclusions and prospects

In this paper we analyzed the structure of the unitary irreducible degenerate representations
of the N=1 and N=2 superconformal algebras. We derived the characters of all the degenerate

13Using the Virasoro characters only.
14The full ĉ = 2/3 N=1 superconformal system has been constructed and shown to describe a particular

critical point of the X-Y model, [18].
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representations including the new class of degenerate representations of the N=2 algebras with
c̃ ≥ 1 and we explored their connection to the exact partition functions of 2-d critical statistical
systems. The characters are essential in the analysis of modular invariance of these systems
and they imply constraints in the representation content of the relevant theories.

There are a lot of remaining problems to be addressed. An explicit unitary construction of
the degenerate representations of the N=2 algebras with c̃ ≥ 1 is still lacking. Consequences for
string compactification, spacetime supersymmetry and modular invariance must be elaborated.
Some realistic and calculable superstring model-building seems feasible.

I would like to thank J. Preskill for constant encouragement and M. Douglas for several
illuminating discussions. I would like also to thank D. Kastor and A. Kent for informing me
that they were doing some related work and for pointing out some errors in the previous version
of this paper.

7 Note Added

The evaluation of characters of the N=2 superconformal algebras has been done independently
in [19] and [20] (for the discrete series).
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Appendix A

In this appendix we give explicit examples of null hwv’s of the N=2 algebras which , we
think, are helpful to visualize several properties that we stated in the main body of the paper.
Their explicit form is also very useful in deriving superdifferential equations for the correlation
functions of the degenerate primary fields. We remind the reader that a null hwv is a secondary
state, |χ >, in a Verma module which has also the properties of a hwv, namely,

Ln|χ >= Jn|χ >= Gr|χ >= Ḡr|χ >= 0 , n, r > 0 (A.1)

It is easy to deduce that such states have zero norm and the Verma module they generate is
orthogonal to all other states contained in the initial Verma module. So they can consistently
set to zero and this condition implies superdifferential equations for correlation functions of
the initial hwv with other operators. These equations provide us with the means to solve the
theory exactly. Such a theory must contain only degenerate representations.

• (i) NS algebra, relative charge zero. An example of a null vector belonging to the
superconformal family generated by |h, q > at the first level and relative charge zero is
given by:

|χ >= [(q − 1)L−1 − (2h + 1)J−1 + G−1/2Ḡ−1/2]|h, q > (A.2)

when 2h(c̃− 1) = q2− c̃. The only non-trivial hwv condition that one has to check is the
action of L−1, J−1, G−1/2 , Ḡ−1/2. The others are trivially satisfied.

• NS algebra relative charge ±1.

Let’s first consider a state which is degenerate at the n0 = 1/2 level. Then, gNS
1/2 = 2h− q

so that a state with h = q/2 is an example of a primary state that generates such a
representation. The null state in this representation is given by,

|χ+
1/2 >= G1/2|h, q > (A.3)

which is obviously annihilated by any of Ln, Jn, Gn, Ḡn for n ≥ 1. The only non-
trivial condition is Ḡ1/2|χ+

1/2 >= (2h − q)|χ+
1/2 >= 0 due to the previously mentioned

relation between his dimension and charge. It is obvious that this null vector does not
generate a full Verma module since it is annihilated by G−1/2. For n0 = −1/2 the
corresponding null state is |χ−1/2 >= Ḡ−1/2|h, q >. At higher levels the degenerate states
involve also generators of the Virasoro or the U(1) algebra. For example at n0 = ±3/2
the corresponding states are,

|χ+
3/2 >= [(h− q

2
+ 1)G−3/2 + G−1/2(J−1 − L−1)]|h, q > (A.4a)

|χ−3/2 >= [(h +
q

2
+ 1)Ḡ−3/2 − Ḡ−1/2(J−1 + L−1)]|h, q > (A.4b)

Again these null hwv’s do not generate full Verma modules. There exist lowering operators
that annihilate them.

[(h− q

2
+ 1)G−3/2 + (J−1 − L−1)G−1/2]|χ+

3/2 >= 0 (A.5a)
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[(h +
q

2
+ 1)Ḡ−3/2 − (J−1 + L−1)Ḡ−1/2]|χ−3/2 >= 0 (A.5b)

Finally at level 5/2 and relative charge one, when 2h− 5q + 6(c̃− 1) = 0, the null hwv is,

|χ+
5/2 >= [(2h− q + 4)(q + 3− 2c̃)G−5/2 + (2h− q + 4)G−3/2Λ̂−1 + G−1/2Λ̂−2]|h, q >

Λ̂−1 = (2J−1 − L−1) (A.6)

Λ̂−2 = [(q + 3− 2c̃)(3J−2 − 2L−2)− 4J−2 + 2(L−1)
2 + 4(J−1)

2 − 6J−1L−1 + G−3/2Ḡ−1/2]

• (ii) R± algebra, null states with the same charge as the initial hwv.

An example of a null hwv of the representation of the R± algebra generated by |h, q ±
1/2 >± at the first level is given by :

|χ+ >= [(q + 1)(2h− c̃

4
)L−1 − (2h +

3

4
)(2h− c̃

4
)J−1 − (2h− q

2
+

1

4
)Ḡ−1G0]|h, q− 1/2 >+

(A.7a)

|χ− >= [(q − 1)(2h− c̃

4
)L−1 − (2h +

3

4
)(2h− c̃

4
)J−1 + (2h +

q

2
+

1

4
)G−1Ḡ0]|h, q + 1/2 >−

(A.7b)

satisfying all the hwv conditions provided h = c̃
8

+ q2−(c̃+1)2/4
2(c̃−1)

.

• R± algebra, null states having charges differing by ±1 from the initial charge.

In the R+ algebra the null state at n0 = 0 and relative charge +1/2 is,

|χ+
0 >= G0|h, q − 1/2 >+ (A.8)

which is annihilated by G0 provided h = c̃
8
. At level one and relative charge +1/2 and

-3/2, (n0 = ±1), the null states are :

|χ+
1 >= [(2h + 2− c̃

4
)G−1 + G0(J−1 − 2L−1)]|h, q − 1/2 >+ (A.9a)

|χ−1 >= Ḡ−1|h, q − 1/2 >+ (A.9b)

The state |χ+
1 > is annihilated by the operator (2h+2− c̃

4
)G−1 +(J−1−2L−1)G0, whereas

|χ−1 > is annihilated by Ḡ−1. At level two and relative charge +1/2, (n0 = 2), the null
state is,

|χ+
2 >= [2(q − c̃ + 2)(2q − 3c̃ + 5)G−2 + 2(q − c̃ + 2)G−1Λ̄−1 + G0Λ̄−2]|h, q − 1/2 >+

Λ̄−1 = (3J−1 − 2L−1) (A.10)

Λ̄−2 = [(2q − 3c̃ + 5)(J−2 − L−2)− 3J−2 + 2(L−1)
2 +

3

2
(J−1)

2 − 4J−1L−1 + G−1Ḡ−1]
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At n0 = −2 the null hwv of relative charge -3/2 is,

|χ−2 >= [(2q + 3c̃− 5)Ḡ−2 + Ḡ−1(2L−1 + 3J−1)]|h, q − 1/2 >+ (A.11)

The corresponding null state of the R− algebra at level zero is,

|χ−0 >= Ḡ0|h, q + 1/2 >− (A.12)

annihilated by Ḡ0, whereas at level one, (n0 = ±1), they are,

|χ+
1 >= [(2h + 2− c̃

4
)Ḡ−1 − Ḡ0(2L−1 + J−1)]|h, q + 1/2 >− (A.13a)

|χ−1 >= G−1|h, q + 1/2 >− (A.13b)

annihilated by [(2h + 2− c̃
4
)Ḡ−1 − (2L−1 + J−1)Ḡ0] and G−1 respectively.

• (iii) T algebra. When h = c̃
8
, one of the two states of opposite parity is degenerate at

level zero and decouples from the spectrum. The explicit form of the null hwv is,

|χ−0 >= G1
0|h > (A.14)

which has negative parity.(We define the parity or fermion number operator, (−1)F , so
that it commutes with L−n, J−n and anticommutes with G1

−n, G2
−n. It is obvious that it

counts the number of fermionic operators modulo two.) The existence of the state with
h = c̃

8
implies the non-vanishing of the Witten index and thus that supersymmetry is

unbroken on the cylinder.

At level 1/2 there are two null hwv’s of opposite parity when hc̃ = h− c̃
8
,

|χ−1/2 >= [2iJ−1/2G
1
0 + c̃G2

−1/2]|h > (A.15a)

|χ+
1/2 >= [2ihJ−1/2 + G2

−1/2G
1
0]|h > (A.15b)

At level one there are again two null hwv’s provided 2h = −3c̃2−3c̃+1
4(c̃−1)

,

|χ+
1 >= [(2c̃− 1)(2(c̃− 1)L−1 + (J−1/2)

2) + (c̃− 1)(8iJ−1/2G
2
−1/2G

1
0 − 4c̃G1

−1G
1
0)]|h >

(A.16a)

|χ−1 >= [4(c̃− 1)L−1G
1
0 − 2i(2c̃− 1)J−1/2G

2
−1/2 + 2(J−1/2)

2G1
0 + c̃(2c̃− 1)G1

−1]|h >

(A.16b)

The examples presented above are also very important in the derivation of the super-differential
equations satisfied by the correlation functions of the corresponding degenerate hwv’s.
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Appendix B

In this appendix we will evaluate the partition functions for the N=2 superconformal alge-
bras.

For the NS and R± algebras the partition functions are defined as:

F (z, w) = z−hw−qTr[zL0wJ0 ] (B.1)

whereas for the T-algebra :
F (z) = z−hTr[zL0 ] (B.2)

where the trace is taken over all the secondary states of a non-degenerate representation of
dimension h and charge q.

• (i) NS algebra. A basis of states is given by,

|(n), (m), (k), (r) > = L(n)J(m)G(k)Ḡ(r)|h, q > (B.3)

where the respective operators are defined as,

L(n) ≡ (L−1)
n1(L−2)

n2 .... ni ∈ N0 (B.4a)

J(m) ≡ (J−1)
m1(J−2)

m2 .... mi ∈ N0 (B.4b)

G(k) ≡ (G−1/2)
k1(G−3/2)

k2 .... ki ∈ (0, 1) (B.4c)

Ḡ(r) ≡ (Ḡ−1/2)
r1(Ḡ−3/2)

r2 .... ri ∈ (0, 1) (B.4d)

Gr ≡ 1√
2
(G1

r + iG2
r) , Ḡr ≡ 1√

2
(G1

r − iG2
r)

Any other permutation in (B.4) can be expressed, using the commutation relations of the
algebra, as a linear combination of the above. The range of the exponents in (B.4c,d) is
such because the squares of Gr and Ḡr are zero due to the anti-commutation relations.

The next step is to evaluate the expectation value,

F [(n), (m), (k), (r)) ≡< (n), (m), (k), (r)|zL0wJ0|(n), (m), (k), (r) > (B.5)

where the basis states are assumed to be normalized. J0 commutes with L−n , J−n for
every n ∈ Z and

[J0, G−r] = G−r , [J0, Ḡ−r] = −Ḡ−r

To evaluate the commutators of wJ0 with the supercharge operators we have to consider:

f(δ) ≡ eδJ0(G−r)
k e−δJ0

df

dδ
= rf(δ) (B.6)
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Solving the differential equation and setting w = eδ, we obtain:

wJ0(G−r)
k = (G−r)

kwJ0+k , k ∈ (0, 1) (B.7a)

wJ0(Ḡ−r)
k = (Ḡ−r)

kwJ0−k , k ∈ (0, 1) (B.7b)

The same procedure for the zL0 factor gives

zL0(L−n)k = (L−n)kzL0+nk , zL0(J−n)k = (J−n)kzL0+nk (B.8a)

zL0(G−n)k = (G−n)kzL0+nk , zL0(Ḡ−n)k = (Ḡ−n)kzL0+nk (B.8b)

Taking into account all the above we obtain :

F [(n), (m), (k), (r)] = zhwq


z

∑∞
j=1

(jnj+jmj)(z
1
2 w)k1(z

3
2 w)k2 ...(

z
1
2

w
)r1(

z
3
2

w
)r2 ...




(B.9)

It remains to sum over all the permissible sets of integers (n), (m), (k), (r).

∑

(ni)

z
∑∞

j=1
jnj =

∑
(ni)

∞∏

j=1

zjnj =
∞∏

j=1

∑

(ni)

zjnj =
∞∏

j=1

1

(1− zj)
(B.10a)

∑

ki=0,1

(z
2i−1

2 w)ki = (1 + z
2i−1

2 w) (B.10b)

so that finally,

F̄NS(z, w) =
∞∏

n=1

(1 + zn−1/2w)(1 + zn−1/2w−1)

(1− zn)2
(B.11)

For the R+ algebra the modding of the supercharges is integral. The derivation goes
along the same lines with the following minor modifications. There is the additional
contribution of G0, (Ḡ0 annihilates the primary state |h, q−1/2 >+), which amounts to a
factor (1+w),there is another factor of w−1/2 coming from the incomplete cancellation of
wq−1/2 and since we have integer modding, n−1/2 in (B.11) is replaced by n. Consequently
the partition function for the R+ algebra is,

F̄R(z, w) = (w1/2 + w−1/2)
∞∏

n=1

(1 + znw)(1 + znw−1)

(1− zn)2
(B.12)

In the R− algebra we have to replace G0 with Ḡ0 and q− 1/2 with q +1/2. The partition
function is identical to (B.12).

We have also to discuss the partition functions of single charged fermions. Some particular
examples in this case are the incomplete Verma modules generated by the null vectors
of the degenerate representations of the NS and R± algebras with c̃ ≥ 1. To motivate
the discussion, let’s look at the simplest example of such a module generated by the null
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hwv at level 1/2, (n0 = 1/2), of the NS algebra, given explicitly by (A.3). This state, as
it was mentioned before is annihilated by G−1/2. So, in our previous computation of the
partition functions, basis states with a G−1/2 operator in them do not contribute. This in
turn means that a factor (1 + z1/2w) is absent from the corresponding partition function.
The first non-trivial example comes at level 3/2, (n0 = 3/2), the null hwv given explicitly
by (A.4a). Instead of choosing the G−3/2 , G−1/2J−1 , G−1/2L−1 as basis operators, we can
choose the annihilating operator, (2h− q/2 + 1)G−3/2 + (J−1 − L−1)G−1/2, giving a zero
contribution, and the remaining G−1/2J−1, G−1/2L−1. Thus, effectively, the contribution
of G−3/2 is absent, causing a loss of a factor (1 + z3/2w) from the corresponding partition
function. For the null hwv at n0 = −3/2 , given by (A.4b), following the previous
argument, the contribution of Ḡ−3/2 is again effectively missing, and consequently a factor
(1 + z3/2w−1) is absent from the partition function.

Now the general situation is evident. For a null hwv at some level |n0|, (n0 being an
integer or half-integer, corresponding to R± or NS respectively), the partition function
lacks the contribution of G−n0 , sgn(n0) > 0 or Ḡ−n0 , sgn(n0) < 0. Thus the partition
function is given by :

F̃X(z, w; n0) = [1 + z|n0|wsgn(n0)]−1F̄X(z, w) (B.13)

where X stands for either R or NS.

In the T-algebra the situation is now clear. There is no wJ0 factor . The contribution from
the Virasoro and U(1) operators is

∏∞
n=1(1−zn)−1(1−zn−1/2)−1 (the U(1) generators have

half-integer modding). The contribution from the G1
−r operators, (integer modding), is∏∞

n=1(1+zn) , whereas for the G2
−r operators, (half-integer modding), it is

∏∞
n=1(1+zn−1/2)

. Collecting everything :

F̄T (z, w) =
∞∏

n=1

(1 + zn)(1 + zn−1/2)

(1− zn)(1− zn−1/2)
(B.14)

This concludes the derivation of the partition functions of the N=2 superconformal algebras.
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