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As it was �rst realized by Witten [1℄, an SU(2), (or Sp(n)) theory in four dimensions witha left doublet of fermions has a global gauge anomaly in the sense that the e�e
tive a
tion
hanges sign under gauge transformations g : S4 ! SU(2), belonging in the non-trivial 
lass of�4(SU(2)) � Z2. The theory is then in
onsistent be
ause no global de�nition of the sign of thefermioni
 determinant is possible, rendering the theory ill-de�ned; otherwise, stated the pathintegral vanishes identi
ally.The authors of Ref. [2℄, among others, proposed a beautiful way of 
al
ulating the globalgauge anomaly, making use of the perturbative one.Known examples of global gauge anomalies o

ur only in 4k dimensions and are alwaysof the Z2 type, that is the global ambiguity in the de�nition of the Weyl determinant is asign. Re
ently in Ref. [3℄, global gauge anomalies in higher dimensions were re-examined andan algorithm to 
onstru
t 
onvenient perturbative anomaly-free representations of SU(n) in2n-dimensions 
oming from the redu
tion of 
omplex representations of SU(n+1) was given.In this letter, examples are presented of Z3 global gauge anomalies as well as global anomalieso

urring in 4k+2 dimensions. We start by reviewing brie
y the main fa
ts about the relationbetween global and perturbative gauge anomalies.Consider a gauge theory with gauge group H in 2n-dimensions. If �2n (H) is non-trivial thenthe theory has a potential global gauge anomaly2. Imagine now embedding H in a group G� H,su
h that G has an irredu
ible perturbative anomaly, (i.e. �2n+1 (G) = Z) and with �2n (G)being trivial. Then if we 
onsider a gauge transformation whi
h belongs to a non-trivial 
lassof �2n (H), we 
an 
onne
t it 
ontinuously to a trivial one es
aping out of H into G. Extendingthe H gauge �eld trivially to a G gauge �eld, the 
hange in the e�e
tive a
tion of the fermionsunder this gauge transformation is given by the Wess-Zumino term of the group G.The Wess-Zumino term 
an be written as an integral over a (2n+1)-dis
 D with �D = S2n:�(g;A; F ) = 2� ZD 
(g;A; F ) ; (1)where 
 is a 
losed but not exa
t (2n + 1)-form (an element of H2n+1 (G, Z)). Consisten
y inthe 
hoi
e of D requires that: ZS2n+1 
(g;A; F ) = m; m 2 Z (2)Considering now an H gauge transformation h : S2n ! H, we 
an extend it to a G transfor-mation, g: D! G su
h that the restri
tion of g on � D is h. The issue of global gauge anomaliesis of interest only when the perturbative anomalies 
an
el. By 
hoosing the H representationfree of possible perturbative H anomalies, the Wess-Zumino term e�e
tively de�nes a mappingin G/H rather than G. Then � D is mapped to a point in G/H so that :ZD 
(g;A; F ) = ZS2n+1 
(g;A; F ) ; (3)2For all Lie groups, �2n (H) is either trivial or torsion.2



and the fermioni
 measure transforms as:D�(g ) = D�( ) exp�2�i ZS2n+1 
(g;A; F )� (4)The last integral in (3) is a homotopy invariant sin
e d
 = 0, providing a map from �2n+1(G/H) ! Z.In the 
ase of the SU(2) anomaly in four dimensions, we 
hoose G = SU(3), H = SU(2). Wewill try to evaluate (4) using the homotopy theory of �bre bundles. From the exa
t sequen
eof the �bration: H i�! G p�! G/H we have,: : :! �5[SU(3)℄ p��! �5[SU(3)=SU(2)℄ ��! �4[SU(2)℄ i��! �4[SU(3)℄ : : : (5)or 0 ! Z p��! Z ��! Z2 s i��! 0 : (6)The map p� is indu
ed by the proje
tion p of the bundle, so that given a homotopy 
lass ofmaps f : Sn ! G, p� gives the homotopy 
lass 
orresponding to the maps p Æ f . Similarly i� isindu
ed by the inje
tion i of the bundle. The sequen
e (5) di
tates that Im� = Z2, Ker � = 2Z= Im p�. This means that � maps odd elements of �5 [SU(3)/SU(2)℄ to the trivial element in�4 [SU(2)℄, and even elements to the non-trivial element in �4 [SU(2)℄. Sin
e Imp� = Z, p�maps an element of �5 [SU(3)℄ with winding number k to the 
orresponding element of �5[SU(3)/SU(2)℄ with winding number 2k. In parti
ular 1! 2. So that if g1 is the generator of�5 [SU(3)℄ and ĝ the generator of �5 [SU(3)/SU(2)℄, then g1 = ĝ2. This means that by doingthe ĝ a
tion twi
e we obtain the a
tion of the element g1. For the generator g1 of �5 [SU(3)℄we normalize: RS5 
(g1; A; F ) = 1. Let ĥ be the generator of �4 [SU(2)℄. We 
an extend it to ĝin SU(3) su
h that ĝ = ĥ on �D = S4, ĝ being a map : S5 ! SU(3)/SU(2). If we 
hoose ĝ to
orrespond to the generator of �5 [SU(3)/SU(2)℄, sin
e from (6) ĝ2 = g1 then :1 = Z 
(g1) = Z 
(ĝ2) = 2 Z 
(ĝ) = (2=2�)Q(ĝ)! Q(ĝ) = � : (7)Q is the global anomaly and we 
an 
on
lude that D�(ĥ ) = D�( ) exp[iQ(ĝ)℄ = �D�( ).The situation 
an be easily generalized to arbitrary G,H satisfying: �2n (H) 6= 0; �2n+1 (G)= Z; �2n (G) = 0, �2n+1 (G/H) Z. From the exa
t sequen
e:: : :! �2n+1(G) p��! �2n+1(G=H) ��! �2n(H) i��! �2n(G) ! : : : (8)we 
on
lude that the global gauge anomaly under a transformation by the generator of �2n(H)is given by exp(iQ), Q = 2� Z 
(ĝ; A; F )R = 2�AR=N ; (9)where R is the G-fermion representation, AR is de�ned by :Tr[F n+1℄R = AR tr[F n+1℄f + lower tra
es : (10)3



f is the fundamental representation of G and the lower tra
es 
orrespond to lo
ally exa
t forms,not 
ontributing to the anomaly when they are integrated over the sphere. Finally N is de�nedby ker � = Im p� = NZ, the group of integer multiples of N, whi
h means that ĝN = g1 whereg1 is the generator of �2n+1 [G℄ while ĝ is the generator of �2n+1 [G/H℄.This pro
edure is straightforwardly extended to the 
ase where �2n+1 (G/H) 
ontains torsiontoo3.We now pro
eed to analyze the previously mentioned examples.The �rst one deals with a G2 gauge theory in six dimensions. G2 has a redu
ible perturbativeanomaly in six dimensions. As is well known [4℄, in 4k+2 dimensions the anomaly 
an
ellationworks only among L-R fermion representations. The �rst step is to 
onstru
t G2 representationsfree of perturbative anomalies. For a representation R of G2 we know that, (see [5℄,[6℄),TrR[F 4℄ = D(R) trf [F 2℄ trf [F 2℄ ; (11)D(R) = 116 d(R)I2(R)[3I2(R)� 8℄ : (12)d(R) is the dimension of R, f denotes the fundamental representation, I2(R) is the se
ondCasimir invariant of G2 and D(R) is normalized su
h that the fundamental representation(0,1), has D(0; 1) = 7, D(R) being always an integer. G2 is the maximal subgroup of Spin(7)and Spin(7) 
an be embedded in SU(7). So, 
hoosing G = SU(7), H = G2 we have the followingexa
t homotopy sequen
e:: : :! �7[SU(7)℄ p��! �7[SU(7)=G2℄ ��! �6[G2℄ i��! �6[SU(7)℄! : : : (13)or 0! Z p��! �7[SU(7)=G2℄ ��! Z3 ! 0 : (14)Using some known fa
ts about the 
oset spa
e Spin(7)/G2 = S7 [7℄, it 
an be shown that Imp� = 3Z. Consequently, under a gauge transformation generated by the generator g of �6 [G2℄,the fermioni
 measure transforms as:D�(g )R = D�( )R exp(2� iAR̂=3) (15)where AR̂ is the leading anomaly 
oeÆ
ient of the SU(7) representation R̂ whi
h redu
es tothe anomaly free G2 representation R through the embedding: G2 � Spin(7) � SU(7). Wewill analyze G2 representations Rk, having a Dynkin index (0; k), k � 1. The representationF k � 7RkL +D(Rk)R1R is free from perturbative G2 anomalies for every k 2 Z+. If we denoteby [k℄ the k-index symmetri
 tensor representation of SU(7), then:SU(7) 3 [2℄L ! R2L 2 G2 ; (16a)SU(7) 3 [3℄L + [1℄R ! R3L 2 G2 ; (16b)3It is trivial to show, assuming �2n (G) =0, �2n+1 (G) = Z, that �2n+1 (G/H) not only 
ontains Z but alsothat � is mapping it non-trivially into �2n (H). 4



SU(7) 3 [k℄L + [k � 2℄R ! RkL 2 G2 (16
)modulo L-R symmetri
 representations whi
h do not 
ontribute to the global anomaly. Takinginto a

ount the following fa
ts :A([k℄) = 1 (mod 3) for k = 9n+ 1; n 2 Z+0 (17)D(Rk) = 1 (mod 3) for k = 9n + 1 ; n 2 Z+0 (18)D(Rk) = 2 (mod 3) for k = 9n + 3 ; n 2 Z+0 (19)and both zero otherwise, we 
an 
on
lude that all representations free of the perturbativeanomaly are also free of the global anomaly. There is also an independent argument towardsthis fa
t. Sin
e the produ
t of G2 representations (1; 0)
 (0; 1) in
ludes the identity the globalanomaly 
an be at most Z2. Sin
e Z2 is not a subgroup of Z3 the anomaly vanishes4.Let us now 
onsider an SU(2) gauge theory and 
hoose G = SU(4).The exa
t homotopy sequen
e in this 
ase is:0! Z p��! �7[SU(4)=SU(2)℄ ��! Z12 ! 0 (20)�7 [SU(4)/SU(2)℄ = �7 [U(4)/U(2)℄, and U(4)/U(2) is isomorphi
 to S5� S7 so �7 [SU(4)/SU(2)℄= Z + Z2 and it 
an be inferred that Im p� = 12Z . Consequently, the phase 
hange in thefermioni
 measure is exp(2�iAR=12) in this 
ase. The perturbative anomaly in six dimensionsof an SU(2) representation [k℄ is related to the anomaly of the fundamental f by, [5℄Trk[X4℄ = D2(k) trf [X2℄trf [X2℄ ; (21)D2(k) = 130 k(k + 1)(k + 2)(3k2 + 6k � 4) ; (22)where [k℄ denotes the k-index symmetri
 tensor representation, and the leading SU(4) anomalyis given by [5℄ A(k) = 1840k(k + 1)(k + 2)(k + 3)(k + 4)(k2 + 4k + 2) : (23)Sin
e [k℄L +D2(k)[1℄R is a representation free of perturbative SU(2) anomalies, we 
an embedit in SU(4):SU(4) 3 [k℄L + [k � 1℄R + [k � 2℄L +D2(k)[1℄R ! [k℄L +D2(k)[1℄R 2 SU(2) (24)modulo L-R symmetri
 representations. We 
an easily now verify that for k = 8n + 2; 8n + 4;n 2 Z+ only, we end up with a phase whi
h is ei� = �1 and it is zero for any other k. Theanomaly here is a Z2 anomaly.A similar analysis in a SU(3) gauge theory in six dimensions, whi
h has a potential Z6global anomaly, reveals that any SU(3) representation free of perturbative anomalies is alsofree of global anomalies.4I would like to thank A. Poly
hronakos for providing this independent argument.5



Looking now in eight dimensions we 
an easily �nd, using the pro
edure above, that anSU(2) theory has a Z2 anomaly only for the [8n+1℄ representations (the theory is perturbativeanomaly free), and an SU(3) theory has no global anomaly at all.For an SU(4) theory in eight dimensions, we 
an dedu
e that [k℄L +D(k) [1℄R with [5℄D(k) = 12520k(k + 1)(k + 2)2(k + 3)(k + 4)(3k2 + 12k � 8) (25)whi
h is free of perturbative anomalies, has a Z2 global anomaly for k = 8n+2; n 2 Z+0 , andit is anomaly free otherwise. This fa
t was realised for the �rst few of them in [2℄.For a G2 theory in eight dimensions, (whi
h is perturbative anomaly free), and 
onsideringrepresentations of the form (0; k), we 
an dedu
e that only representations (0; 8n+1); (0; 8n+2)have a global Z2 anomaly, the others being anomaly free.Finally an SU(2) theory in ten dimensions, despite the fa
t that it 
an have a potential Z15global anomaly, is anomaly free for any representation free of perturbative anomalies.We 
an 
on
lude that non-trivial global anomalies also exist in (4k + 2) dimensions.I would like to thank J. Preskill for helpful advi
e and 
onstant en
ouragement, M. Andersonfor mathemati
al help and M. Bastrin for enlightening me about the homotopy theory of 
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