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ABSTRACT

Global gauge anomalies in higher dimensions are investigated. It is shown that Z; global
anomalies are absent. However there are non-trivial 7, global anomalies in (4k+ 2) dimensions.
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As it was first realized by Witten [1], an SU(2), (or Sp(n)) theory in four dimensions with
a left doublet of fermions has a global gauge anomaly in the sense that the effective action
changes sign under gauge transformations g : S* — SU(2), belonging in the non-trivial class of
74(SU(2)) &~ Z,. The theory is then inconsistent because no global definition of the sign of the
fermionic determinant is possible, rendering the theory ill-defined; otherwise, stated the path
integral vanishes identically.

The authors of Ref. [2], among others, proposed a beautiful way of calculating the global
gauge anomaly, making use of the perturbative one.

Known examples of global gauge anomalies occur only in 4k dimensions and are always
of the Z, type, that is the global ambiguity in the definition of the Weyl determinant is a
sign. Recently in Ref. [3], global gauge anomalies in higher dimensions were re-examined and
an algorithm to construct convenient perturbative anomaly-free representations of SU(n) in
2n-dimensions coming from the reduction of complex representations of SU(n+1) was given.

In this letter, examples are presented of Z5 global gauge anomalies as well as global anomalies
occurring in 4k + 2 dimensions. We start by reviewing briefly the main facts about the relation
between global and perturbative gauge anomalies.

Consider a gauge theory with gauge group H in 2n-dimensions. If 7y, (H) is non-trivial then
the theory has a potential global gauge anomaly?. Imagine now embedding H in a group GD H,
such that G has an irreducible perturbative anomaly, (i.e. 79,41 (G) = Z) and with 7, (G)
being trivial. Then if we consider a gauge transformation which belongs to a non-trivial class
of 79, (H), we can connect it continuously to a trivial one escaping out of H into G. Extending
the H gauge field trivially to a G gauge field, the change in the effective action of the fermions
under this gauge transformation is given by the Wess-Zumino term of the group G.

The Wess-Zumino term can be written as an integral over a (2n + 1)-disc D with 0D = S2n.

F(gvAvF):%T/D’V(gvAvF)v (1)

where 7 is a closed but not exact (2n 4 1)-form (an element of H*"*! (G, Z)). Consistency in
the choice of D requires that:

/S2n+1 g, A, F)=m, meZ (2)

Considering now an H gauge transformation h : S** — H, we can extend it to a G transfor-
mation, g: D — G such that the restriction of g on d D is h. The issue of global gauge anomalies
is of interest only when the perturbative anomalies cancel. By choosing the H representation
free of possible perturbative H anomalies, the Wess-Zumino term effectively defines a mapping
in G/H rather than G. Then 9 D is mapped to a point in G/H so that :

[ Agam = AgAr), 3)

2For all Lie groups, w2, (H) is either trivial or torsion.




and the fermionic measure transforms as:

Dufgib) = Dp(¢) exp <2m' /S+ (9, A, F)) (4)
The last integral in (3) is a homotopy invariant since dy = 0, providing a map from 7y,41
(G/H) — Z.

In the case of the SU(2) anomaly in four dimensions, we choose G = SU(3), H = SU(2). We
will try to evaluate (4) using the homotopy theory of fibre bundles. From the exact sequence

of the fibration: H — G 2 G/H we have,

o mSUE) E mlsue)su@)] L misue) L rsue) (5)
0_>Zp—*»Z—a~Zzsﬁo. (6)

The map p* is induced by the projection p of the bundle, so that given a homotopy class of
maps f: 5" — G, p* gives the homotopy class corresponding to the maps po f. Similarly ¢* is
induced by the injection i of the bundle. The sequence (5) dictates that Imd = Z* Ker d = 2Z
= Im p*. This means that d maps odd elements of 75 [SU(3)/SU(2)] to the trivial element in

4 [SU(2)], and even elements to the non-trivial element in 7, [SU(2)]. Since Imp* = Z, p*
maps an element of 7° [SU(3)] with winding number k to the corresponding element of 75
[SU(3)/SU(2)] with winding number 2k. In particular 1 — 2. So that if ¢; is the generator of

5 [SU(3)] and ¢ the generator of #° [SU(3)/SU(2)], then ¢, = g*. This means that by doing
the ¢ action twice we obtain the action of the element ¢;. For the generator ¢; of 75 [SU(3)]
we normalize: [¢ v(g1, A, F') = 1. Let h be the generator of 74 [SU(2)]. We can extend it to ¢
in SU(3) such that § = hon 0D = §%, § being a map : S® — SU(3)/SU(2). If we choose § to
correspond to the generator of 75 [SU(3)/SU(2)], since from (6) §* = ¢; then :

1= [a0) = [+ =2 [15) = (2/27)Q(9) - Q) =7 . (7)

() is the global anomaly and we can conclude that D,u(iw/)) = Du() exp[tQ(g)] = —Dpu(e).

The situation can be easily generalized to arbitrary G,H satisfying: 7y, (H) # 0, 72,41 (G)
=Z,79, (G) =0, map41 (G/H) Z. From the exact sequence:

() (G ) 2L (i) = () (8)

we conclude that the global gauge anomaly under a transformation by the generator of 74, (H)
is given by exp(i@Q)),
Q=27 [ (3, A, F)r = 27 An/N . (9)

where R is the G-fermion representation, Ap is defined by :

Tr[F™ g = Ag tr[F"T']; + lower traces . (10)
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fis the fundamental representation of G and the lower traces correspond to locally exact forms,
not contributing to the anomaly when they are integrated over the sphere. Finally N is defined
by ker & = Im p* = NZ, the group of integer multiples of N, which means that §" = ¢, where
g1 1s the generator of 79,41 [G] while ¢ is the generator of 73,41 [G/H].

This procedure is straightforwardly extended to the case where 7,41 (G/H) contains torsion

too>.

We now proceed to analyze the previously mentioned examples.

The first one deals with a G, gauge theory in six dimensions. G, has a reducible perturbative
anomaly in six dimensions. Asis well known [4], in 4%k + 2 dimensions the anomaly cancellation
works only among L-R fermion representations. The first step is to construct G, representations
free of perturbative anomalies. For a representation R of Gy we know that, (see [5],[6]),

Tep[FY) = D(R) try[F?) to,[F?) (11)

1
D(R) = m d(R)I2(R)[312(R) — 8] . (12)
d(R) is the dimension of R, f denotes the fundamental representation, I5(R) is the second
Casimir invariant of G, and D(R) is normalized such that the fundamental representation
(0,1), has D(0,1) = 7, D(R) being always an integer. Gy is the maximal subgroup of Spin(7)
and Spin(7) can be embedded in SU(7). So, choosing G = SU(7), H = G, we have the following

exact homotopy sequence:

or p* P
0— 74 — 7T7[SU(7)/G2] - Z3 — 0. (14)

Using some known facts about the coset space Spin(7)/Gy = S” [7], it can be shown that Im
p* = 3Z. Consequently, under a gauge transformation generated by the generator g of 7¢ [Go],
the fermionic measure transforms as:

Dulg)r = Du(p)rexp(2m 1Ap/3) (15)

where Ay is the leading anomaly coefficient of the SU(7) representation R which reduces to
the anomaly free G, representation R through the embedding: G, C Spin(7) C SU(T). We
will analyze Gy representations RF, having a Dynkin index (0, %), £ > 1. The representation
F* = 7TRE + D(RF)RY, is free from perturbative G? anomalies for every k € ZT. If we denote
by [k] the k-index symmetric tensor representation of SU(7), then:

SU(T) > 2] — R: € Gy, (16a)

SU(T) 2 Blr+[1]r — B € Gy, (16b)

31t is trivial to show, assuming 72, (G) =0, 72,41 (G) = Z, that 72,41 (G/H) not only contains Z but also
that J is mapping it non-trivially into w3, (H).



SU(T) > [K]p +[k—2lr — R € Gy (16¢)

modulo L-R symmetric representations which do not contribute to the global anomaly. Taking
into account the following facts :

A(k])) =1 (mod 3) for k=9n+1, ne Z7 (17)
D(Rk) =1 (mod3) for k=9n+1,ne€ ZE')' (18)
D(Rk) =2 (mod 3) for k=9n+3, ne€ ZE')' (19)

and both zero otherwise, we can conclude that all representations free of the perturbative
anomaly are also free of the global anomaly. There is also an independent argument towards
this fact. Since the product of (i3 representations (1,0) @ (0,1) includes the identity the global
anomaly can be at most Z,. Since Z, is not a subgroup of Z3 the anomaly vanishes?.

Let us now consider an SU(2) gauge theory and choose G = SU(4).

The exact homotopy sequence in this case is:

*

0=z 2 misv@sue] 2z, = o (20)

77 [SU(4)/SU(2)] = 77 [U(4)/U(2)], and U(4)/U(2) is isomorphic to S*x S7 so 77 [SU(4)/SU(2)]
= Z + Z, and it can be inferred that Im p* = 12Z. Consequently, the phase change in the
fermionic measure is exp(27¢Ar/12) in this case. The perturbative anomaly in six dimensions
of an SU(2) representation [k] is related to the anomaly of the fundamental f by, [5]

Tre[X] = Dy(k) tr,[X2Jtr,[X7] , (21)
Da(k) = % k(k + 1)(k + 2)(3K2 + 6k — 4) | (22)

where [k] denotes the k-index symmetric tensor representation, and the leading SU(4) anomaly
is given by [5]

A(k) = &k(m 1)(k +2)(k + 3)(k + 4)(k? + 4k 1 2) . (23)

Since [k]r, + D2(k)[1]r is a representation free of perturbative SU(2) anomalies, we can embed

it in SU(4):
SU(4) > [K]p + [k = 1r + [k — 2]p + D2(k)[1]r — [k]r + D2(k)[1]r € SU(2) (24)

modulo L-R symmetric representations. We can easily now verify that for £ = 8n + 2,8n + 4,
n € Z% only, we end up with a phase which is ¢ = —1 and it is zero for any other k. The
anomaly here is a Z5 anomaly.

A similar analysis in a SU(3) gauge theory in six dimensions, which has a potential Zg
global anomaly, reveals that any SU(3) representation free of perturbative anomalies is also
free of global anomalies.

*I would like to thank A. Polychronakos for providing this independent argument.
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Looking now in eight dimensions we can easily find, using the procedure above, that an
SU(2) theory has a Z5 anomaly only for the [8n + 1] representations (the theory is perturbative
anomaly free), and an SU(3) theory has no global anomaly at all.

For an SU(4) theory in eight dimensions, we can deduce that [k]; + D(k) [1]g with [5]

D(k) = ﬁk(k F 1)k 4 2)2(k + 3)(k + 4)(3k% + 12k — 8) (25)

which is free of perturbative anomalies, has a Z, global anomaly for k = 8n+2, n € Z, and
it is anomaly free otherwise. This fact was realised for the first few of them in [2].

For a G, theory in eight dimensions, (which is perturbative anomaly free), and considering
representations of the form (0, k), we can deduce that only representations (0,8n+1), (0,8n+2)
have a global Z, anomaly, the others being anomaly free.

Finally an SU(2) theory in ten dimensions, despite the fact that it can have a potential Z5
global anomaly, is anomaly free for any representation free of perturbative anomalies.

We can conclude that non-trivial global anomalies also exist in (4k + 2) dimensions.

I would like to thank J. Preskill for helpful advice and constant encouragement, M. Anderson
for mathematical help and M. Bastrin for enlightening me about the homotopy theory of coset
spaces.
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