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1 Introdu
tionRe
ently, M. Berry found that the usual form of the Quantum Adiabati
 theorem was notexa
tly 
orre
t [1℄. He showed that when the Hamiltonian depends on several parameters that
hange adiabati
ally with time and the topology of the manifold spanned by the parametersis non-trivial (usually indu
ed by a

idental degenera
ies), there is another 
ontribution tothe phase a
quired by the wave-fun
tion of the system (under adiabati
 transport). This istopologi
al in nature and it is related to the �rst Chern 
lass of the natural hermitian (abelian)
onne
tion in the Hilbert bundle over the parameter manifold [2℄.Later, Wil
zek and Zee [3℄, generalized the notion of the adiabati
 phase to the non-abelian
ase 
orresponding to adiabati
ally transporting an n-fold degenerate state over the entireparameter manifold.This dis
overy turned out to be very fruitful in a lot of situations, in
luding appli
ations todiatoms [4℄, modi�
ations of the Bohr-Sommerfeld semi
lassi
al quantization in some spe
ial
ases [5℄, the explanation of the quantum Hall e�e
t [13℄,[14℄, and an appealing interpretationof gauge anomalies (in the Hamiltonian pi
ture) [6℄,[7℄ ,as well as the su

essful 
al
ulation ofanomalous 
ommutators in 
hiral gauge theories [8℄,[9℄.The motivation for the present work is the following: sin
e gauge stru
tures appear asa result of adiabati
 transport over various parameter spa
es, we 
an 
lassify the non-trivialQuantum Adiabati
 Phases by topologi
ally 
lassifying the respe
tive gauge bundles.It turns out that in the most interesting 
ases the 
lassi�
ation of the Berry phase is equiv-alent to 
lassifying gauge bundles over spheres. The topology of the sphere is indu
ed in theparameter spa
e by degenera
ies (level 
rossings). The pi
ture involving level 
rossings givesan appealing intuitive way to understand the global obstru
tions responsible for the adiabati
phase. There are situations though (outside the stable range, in most 
ases) where not everynon-trivial gauge bundle 
an appear as a result of adiabati
 transport. Some examples aredis
ussed in the main body of this paper. These non-trivial gauge bundles are 
hara
terizedby their Chern 
lasses, built out of the 
urvature 2-form F , whi
h generates the \QuantumHolonomy" . The Chern 
lasses above when integrated over the parameter manifold give inte-gers asso
iated with the winding number of the map (indu
ed by the Hamiltonian), from theparameter spa
e to the appropriate spa
e of wave fun
tions.The stru
ture of this paper is as follows. In Se
tion 2 we review the 
orre
t form of theQuantum Adiabati
 Theorem following [1℄,[2℄. In Se
tion 3 we identify the global obstru
tionsto smoothly de�ning the phase of the wave-fun
tion on the parameter manifold and presenta theorem that 
lassi�es 
ompletely the existen
e of a topologi
ally unremovable phase overa 
ompa
t manifold. In Se
tion 4 we dis
uss the situation of transporting degenerate levels(non-abelian stru
ture relevant here) and in Se
tion 5 we identify the obstru
tions to the globalde�nition of the phase as non-trivial Chern 
lasses of the parameter manifold generated bythe gauge 
onne
tion of the appropriate Hilbert bundle. In Se
tion 6 gauge anomalies in thehamiltonian pi
ture are revisited as obstru
tions to de�ning the phase of a gauge invariant1



va
uum state over the manifold of gauge transformations. In Se
tion 7 we present a proof ofthe Nielsen-Ninomiya theorem, [12℄, inspired from the notion of the Quantum Adiabati
 Phase.Finally Se
tion 8 
ontains the 
on
lusions.In Appendix A some pertinent results on the homotopy theory of �bre bundles and obstru
-tion theory are presented. In Appendix B we prove the theorem used in Se
tion 3 to 
lassifythe obstru
tions that lead to an irremovable adiabati
 phase. In appendix C we examine someexamples illustrating how to tra
e the possible existen
e of a non-trivial phase.2 Review of the quantum adiabati
 theoremSuppose that we have a hermitian Hamiltonian H(t) whi
h depends on time through someparameters �i(t) i = 1; 2; :::; n that parametrize some manifold M .We will work in the adiabati
 approximation, whi
h means that the 
hange of these param-eters with time is slow enough so that if the the system was originally in some eigenstate ofthe Hamiltonian, it will 
ontinue to remain in that state.The S
hr�odinger equation is: i ��t = Ĥ(~�(t))  (2.1)at any instant, whi
h means that at ea
h point of M we 
an 
hoose an orthonormal basis thatdiagonalizes the hamiltonian.̂H(~�) j n(~�) > = En(~�) j n(~�) > : (2.2)The adiabati
 approximation states that if j (0) >= jn(~�(0)) >, then j (t) >= jn(~�(t)) >up to a phase. To �nd the phase a
quired by the wave-fun
tion under adiabati
 transport wewill separate the dynami
al phase from anything \else":j (t) >= exp��i Z t0 dt0En(~�(t0))� ei
n(t)jn(~�(t)) > : (2.3)Substituting this form in (2.1) we �nd an equation for 
n(t):ddt 
n(t) = i < n(~�(t))j~r~� jn(~�(t)) > � d~�dt : (2.4)Suppose we tra
e a 
losed 
ontour C in M . Then solving (2.4) we get:
n = i ZC < n(~�)j~r~� jn(~�) > � d~� : (2.5)whi
h is the additional 
ontribution to the adiabati
 phase.De�ning: ~A = < n(~�)j ~r~� j n(~�) > ; (2.6)2



it is easy to realize that ~A is a 
onne
tion in the n-th level Hilbert subbundle and for this
onne
tion the S
hr�odinger equation is the equation of parallel transport. In this sense this
onne
tion is natural.Using the language of forms we 
an write:A =< n(~�)jdn(~�) > ; F = dA ; 
n = ZS F ; (2.7)where S is a surfa
e that has C as boundary. In the above form the extra phase is given as anintegral of the �rst Chern 
lass of the 
onne
tion and thus is of a topologi
al origin [2℄.Berry [1℄ also pointed out the importan
e of a

idental degenera
ies onM whi
h are essentialfor the existen
e of a nontrivial topologi
al phase. Thus, the adiabati
 phase is due to the non-trivial topology of the parameter manifold, indu
ed by degenera
ies, whi
h obstru
t the smoothde�nition of the phase of the transported wave-fun
tion.In the following we will renormalize the Hamiltonians so that the adiabati
ally transportedstate has zero energy over M , assuring in this way that there is no dynami
al phase.There is a simple example whi
h shows all the important features of the adiabati
 phaseand also gives hints for a general topologi
al 
lassi�
ation of parameter manifolds that will
ause su
h a phase to appear. We will 
onsider a two level system des
ribed by a two-by-two hermitian hamiltonian matrix depending on three parameters assembled in a 3D ve
tor ~x.Suppose that at ~x0 the two eigenvalues are degenerate, but if we depart from ~x0 in any dire
tionthe degenera
y disappears. Near the degenera
y point we 
an write to �rst-order in ~x� ~x0:Ĥ(~x) = Ĥ(~x0) + �i Cij (~x� ~x0)j + ~B � (~x� ~x0) + 0(j~x� ~x0j2) ; (2.8)where �i are the standard Pauli matri
es and Cij is a non-singular matrix. Renormalizing theenergy su
h that Ĥ(~x0) = 0 and shifting 
oordinates su
h that ~x0 = ~0:Ĥ(~x) = Bixi + Cijxi�j + 0(~x2) : (2.9)Now it is easy to 
al
ulate the adiabati
 phase in this 
ase: 
hanging 
oordinates, pi = Cijxj,and using (2.6) we 
an 
ompute the \magneti
 �eld " 
orresponding to ~A:~B� = � sign (det C) ~p2p3 ; (2.10)where � labels the two levels.
� = � sign (det C) ZS dS2p2 = �12 sign (det C) 
s ; (2.11)where 
s is the solid angle subtend by the 
ontour C as seen from the degenera
y point, ~x = ~0.In parti
ular for the 
ontour shown in Fig. 1:
� = � sign (det C)� ;3



Figure 1:and both wave-fun
tions pi
k up a minus sign after 
oming ba
k to the initial point of theparameter manifold (whi
h has the topology of a two-sphere due to the degenera
y point at~x = ~0).Consider a sphere of unit radius surrounding the degenera
y. The eigenstates of the Hamil-tonian 
an be written in spheri
al 
oordinates:u+ = � 
os �2 e�i�sin �2 � ; (2:12a)u� = �� sin �2 e�i�
os �2 � : (2:12b)It is obvious that the phase of u+ is ill-de�ned at the North-pole (respe
tively at the South-polefor u�), or that the mapping from the two-sphere to C2 is 1-1 but not well de�ned at the North(South)-pole. The U(1) gauge potentials are:~A+ = 12 
ot �2 ê� ; (2.13)~A� = 12 tan �2 ê� ; (2.14)and they have a string singularity going through the North (+) or the South (-) pole. Multiply-ing the wave-fun
tions with a phase indu
es a U(1) gauge transformation on ~A, thus moving thesingularity around the sphere. The above gauge 
onne
tion is the same as that of a magneti
monopole of strength one-half situated at the origin.The 
urvature form F though (the magneti
 �eld), is well de�ned everywhere (with theex
eption of the origin). In this 
ase it is apparent that 
ohomology plays an important role;we have a 
losed (dF = 0) but not exa
t two-form (due to the singular nature of the gaugepotential). As we will see in the sequel this feature persists in the more general 
ase.The adiabati
 phase in this 
ase arises due to the impossibility of de�ning smoothly andglobally the phase of the adiabati
ally transported wave-fun
tions of the hamiltonian over theparameter manifold (whi
h is a two-sphere). 4



The above results are generalized in the 
ase where a state is n-fold degenerate over theentire parameter manifold M [3℄. Then an adiabati
 transport around a 
losed 
urve in M 
anindu
e a U(n) rotation of the n degenerate levels.3 Topologi
al 
lassi�
ation of the adiabati
 phaseIn this se
tion we will formulate the problem in mathemati
al terms using the formalism of�bre bundles and obstru
tion theory.We are interested in topologi
ally irremovable adiabati
 phases be
ause in the opposite 
asewe 
an rede�ne them away by rede�ning the Hamiltonian and the states in the Hilbert spa
e.Let us 
onsider the simplest example of a two-level Hamiltonian, to give a feeling aboutthe general situation. The wave-fun
tions in this 
ase are two-dimensional 
omplex ve
tors.As in the previous se
tion the Hamiltonian depends on 
ertain parameters that parametrizea 
ompa
t manifold M . The adiabati
 transport of an eigenstate of the Hamiltonian de�nesa mapping from a submanifold of M to the spa
e of two-dimensional 
omplex ve
tors of unitmodulus, up to a phase (� CP1). The spa
e of two-dimensional 
omplex ve
tors of unitmodulus is topologi
ally equivalent to S3. We will suppose for the time being that the state inquestion is not degenerate with any other state over the entire parameter manifold (but theremay be a

idental degenera
ies).In this 
ase the Hamiltonian de�nes a mapping f : M ! CP1. If a global de�nition ofthe phase of the wave-fun
tion is impossible over M then adiabati
 transport will give a Berryphase. So the question of appearan
e of a non-trivial adiabati
 phase is equivalent in this 
aseto the possibility (or not) of lifting f : M ! CP1 to ~f : M ! S3. Then, sin
e S3 is adeformation retra
tion of C2, the global de�nition of the phase is possible if and only if su
h alifting ~f exists.There is a relevant �bration in this 
ase (Hopf �bration), whi
h is 
ru
ial in de
iding aboutthe possibility of lifting f . U (1) i�! S3 p�! CP 1 : (3.1)An example of a mapping that 
annot be lifted when M = S2 is one belonging to a non-trivial
lass of �2 (CP1) = Z. If su
h a mapping 
ould be lifted, then sin
e �2 (S3) = 0, there wouldbe a homotopy h su
h that h(0) = ~f , h(1) = ~f0 the trivial map. Then p Æ 0h is a homotopy
onne
ting f to the trivial map p Æ 0 ~f0: S2 ! CP1, whi
h is false by assumption.In the general 
ase of adiabati
 transport of a single non-degenerate level of an N � Nhermitian Hamiltonian, the wave-fun
tions are ve
tors in CN and the Hamiltonian indu
esmaps f : M ! CPN�1, so that the relevant question in this 
ase is the possibility of lifting fto ~f , p Æ ~f = f .To 
lassify the possible obstru
tions we will make use of the following theorem (the proofis given in Appendix B). 5



Consider a general prin
ipal �ber bundle B � (B,A,F) where B is the base spa
e, A isthe bundle spa
e, F is the �bre and at the same time the stru
ture group of the bundle and amanifold M along with a mapping f :M ! B.M f�!B p �A i �F : (3.2)We will try to �nd the 
ondition for the existen
e of the lifting ~f of f , (pÆ ~f = f) ~f :M !A.The proje
tion p indu
es a mapping p1 : [M , A℄ ! [M , B℄ ([M , B℄ is the set of homotopy
lasses of mappings from M to B. In all of our appli
ations it will have the stru
ture of anabelian group).Theorem: f 
an be lifted if and only if it belongs to a 
lass in Im p�, the image of [M , A℄under p� 2.The information 
on
erning Im p� 
an in general be found by analyzing the exa
t homotopysequen
e of the respe
tive �bration.A 
omment is in pla
e here. The possibility to lift a map f : M ! B to ~f = M ! A isequivalent to the ability of �nding a global 
ross-se
tion in the 
o�bration overM indu
ed by thepullba
k of f . If su
h a lifting exists, the pullba
k bundle is a trivial one. So, the 
lassi�
ationof mappings that 
annot be lifted is equivalent to 
lassifying all non-trivial bundles over Mwhi
h are the pullba
ks of B. These obviously are a subset of all possible non-trivial bundlesover M (having the same �bre as B).Let us now analyze our �rst 
ase pertinent to a single non-degenerate level. The stru
turein this 
ase is: M f! CPN�1 p S2N�1 i U (1) ; (3.3)whereM= Sn for some n >= 1. Using the exa
t sequen
e of the bundle (�n(U (1)) � 0 for n = 0or n >= 2, �1(U (1)) � Z)0 i�! �n(S2N�1) p�! �n(CPN�1) �! 0 for n >= 3 ; (3.4)whi
h means that p� is onto and 
onsequently there is no obstru
tion in the global de�nitionof phase over parameter manifolds Sn with n >= 3. For n = 2 and N > 1: �1 (S2N�1) � 0 and�1 (CN�1) � 0 whereas �2 (S2N�1) � 0 and �2 (CPN�1) � Z. So there is no obstru
tion on S1but for M = S2 if the indu
ed mapping belongs to a non-trivial 
lass of �2 (CPN�1) then anadiabati
 phase will appear. This 
orresponds exa
tly to the situation of the example dis
ussedin Se
tion 2. The phase in this 
ase is due to the non-triviality of �2(CPN�1). (This remarkhelps in providing an easy alternative proof of the Nielsen-Ninomiya theorem, see Se
tion 7.)The situation above is alternatively understood as follows: the �rst Chern 
lass F , whi
hafter integration over a surfa
e gives the adiabati
 phase, is the winding number density of�2(CPN�1). In parti
ular the integral of F over S2 gives 2�� (the winding number of the2For a proof see Appendix B. 6



Figure 2:map) jn >: S2 ! (CPN�1). This also shows that to 
al
ulate the phase pi
ked-up afteradiabati
 transport around a 
losed 
ontour C we 
an 
hoose either S1 or S2 (see Fig. 2):2� n = ZS2 dA = ZS1 dA+ ZS2 dA! ZS1 dA = � ZS2 dA+ 2� n ; (3.5)so both equations for the phase:
 = ZC A = ZS1 dA or � ZS2 dA (3.6)give the same result for ei
. In parti
ular for the 
ase of the two-level degenera
y it is easy toshow that the possible �2 (CPN�1) winding numbers are �1 so that RS2 = �2�.These global obstru
tions 
an be viewed physi
ally in terms of level 
rossings (two levelsbe
oming degenerate somewhere on the parameter spa
e). Two-level degenera
ies o

ur aspoints generi
ally in spa
es of dimension 3, so that by surrounding the degenera
ies by two-spheres we en
ounter the obstru
tion on S2's.When the Hamiltonian is real (system symmetri
 under time reversal), the Hilbert spa
e hasa real stru
ture and the non-degenerate wave-fun
tions are de�ned up to a sign. In parti
ulara two-level real Hamiltonian de�nes a mapping (under adiabati
 transport), f : M ! RP1,(RP1 is a real proje
tive spa
e, the spa
e of real two-ve
tors of unit norm, up to a sign). Theability of globally de�ning the sign of the wave-fun
tion is equivalent to the ability of lifting fto ~f :M ! S1, S1 being the spa
e of real two-ve
tors of unit norm.From the exa
t sequen
e of the following bundle:Z2 � O(1) i! S1 p! RP 1 ; (3.7)we learn that: �i(RP 1) � 0 for i > 10! �1(S1) p�! �1(RP 1) �! �0(O1)! 0 ; (3.8)and sin
e �1 (S1) � Z, �1 (RP1) � Z, �0 (O(1)) � Z2 we �nd that Im p� � 2 Z.So a non-trivial phase exists only on S1, generated by maps that have an odd windingnumber in �1 (RP1). In this 
ase the phase is a Z2 phase (a � sign), and the gauge 
onne
tiona Z2 
onne
tion. 7



4 The non-abelian 
aseAs it was mentioned in a previous se
tion, when a state is n-fold degenerate over the entireparameter manifold, then adiabati
 transport may 
ause in general a U(n) rotation among then degenerate levels.In this 
ase we have n degenerate states ji >�, � spe
ifying the point in the parameter spa
eM . De�ning the U(n) 
onne
tion one-form:Aij �< jj ��t ji > dt =< jjd�ji > ;it is easy to show that after tra
ing a loop C in M , the n degenerate states will be rotated bya U(n) matrix given by the Wilson loop [3℄ :UC = P exp �ZC A� :Suppose that the Hamiltonian is an N�N Hermitian matrix. At ea
h point of the parameterspa
e we 
an always make the wave-fun
tions of the n degenerate states orthonormal.Thequestion is: is it possible to have a smooth global system of orthonormal eigenstates over theentire parameter manifold?The Hamiltonian in this 
ase (in analogy with the Abelian 
ase in Se
tion 3) de�nes amapping, from the parameter manifold into the Grassmann manifold G(N;n) � U (N)U (N�n)U (n)whi
h is the set of n planes in CN . Then ability to globally de�ne the the orthonormal systemsis equivalent to the ability of lifting the map f :M ! G(N;n) to ~f :M ! V(N;n) � U (N)U (N�n) ,the set of n-frames in CN . Intuitively it 
an be understood as follows. Starting from a �xedn-frame we 
an generate any other possible n-frame by U(N) rotations of the initial frame. Butrotations in the orthogonal 
omplement do not 
hange the n-frame so we must divide U(N)by U(N � n). The Hamiltonian also does not distinguish between two n-frames di�ering by aU(N) rotation so that the Hamiltonian really de�nes a mapping in U (N)U (N�n)U (n) . The Abelian
ase dis
ussed in the previous se
tion is a spe
ial 
ase of the above for n = 1. Then U (N)U (N�n) =S2N+1 , U (N)U (N�1)U(1) � CPN�1.We have the following prin
ipal �bration in this 
ase :U(n) i! V (N;n) p!G(N;n)and the theorem used in Se
tion 3 applies here, giving the 
onditions for the ability to lift f to~f . Again the obstru
tion 
an be viewed as due to level 
rossings. These introdu
e non-trivialtopology in the parameter spa
e and twist the Hilbert bundles.8



For example, 
onsider the transport of an n-fold degenerate level of a 
omplex Hamiltonianand suppose that it be
omes degenerate with another non-degenerate state at some point in theparameter spa
e. The relevant part in the Hamiltonian near the degenera
y is the (n+1)�(n+1)sub-matrix des
ribing the 
rossing levels. This sub-Hamiltonian is generi
ally parametrized by2n parameters lying in U(n+1)U(n) U (1) � CP n. This means that su
h 
rossings o

ur generi
ally atpoints in a (2n+1)-dimensional spa
e. So we have to look what happens on parameter manifoldsbeing Sm, 1 <= m <= 2n, whi
h en
ir
le the degenera
y points. As is shown in Appendix C, theonly obstru
tion arises on two-spheres in this 
ase.For an n-fold degenerate state, (n > 2), 
rossing a two-fold degenerate state we have to lookon spheres Sm, 1 <= m <= 4n. It is also shown in Appendix C that non-trivial holonomy ariseson two-spheres but also on four-spheres (and possibly also on higher spheres).If the Hamiltonian is real then the Hilbert spa
e has a real stru
ture, so that we have to
onsider the real Stie�el and Grassmann manifolds instead:O(n) i! RV (N;n) p! RG(N;n)RV (N;n) � O(N)O(N�n) RG(N;n) � O(N)O(N�n) O(n)The 
onne
tion in this 
ase is an O(n) 
onne
tion.As an illustration, for the real 
ase,
onsider the example given in [3℄, where an n-fold de-generate state of a real Hamiltonian is be
oming degenerate at some point of the parameterspa
e with another non-degenerate level. The relevant (n + 1) � (n + 1) part of the Hamilto-nian depends in general on n parameters lying in O(n+1)O(n)O(1) � RP n. We have to look then onM = Sm; 1 <= m <= n: As we show in Appendix C a non-trivial phase3 appears only form = n and for n 6= 7(mod 8). For n = 7(mod 8) no phase appears.For a detailed dis
ussion of some interesting spe
ial 
ases see appendix C.5 The relation to 
ohomologyOur dis
ussion of the representative paradigm of a non-trivial adiabati
 phase in Se
tion 2 hintsthe possible 
onne
tion to 
ohomology.We have a 
onne
tion 1-form, whi
h has a string singularity somewhere on the sphere andwhi
h we 
annot remove by a gauge transformation, but we 
an just move it around the sphere.The 
urvature 2-form is well-de�ned globally. Integrated over the S2 gives an integer whi
h isthe winding number of �2(CPN�1): 12� ZS2 F = n :3By \phase" here, a U (n) rotation of the degenerate subspa
e is meant.9



We would expe
t these features to persist in the non-abelian 
ase, too.Our setting of the existen
e of a non-trivial adiabati
 phase in terms of the impossibility ofliftings of maps, gives the hint for an answer. This 
an be a
hieved using Obstru
tion Theorywhi
h is formulated in terms of Cohomology.We will state the mathemati
al result, pertinent in our 
ase.Consider the following �bration and a map f from a manifold M to the base spa
e of thebundle. M f! B p A i F :We will suppose that M is an Sm.The obstru
tion to lift the map f to ~f : M ! A is represented by the non-vanishing ofthe obstru
tion 
o
hain 
(f), whi
h is an element of Hn+1(M; �n[F ℄), (the 
oeÆ
ient bundlein our 
ase is trivial). In the 
omplex 
ase, n = 1 sin
e �1[U(N)℄ = Z whereas in the real 
ase,n = 0 sin
e �0[O(N)℄ = Z2.Using the results of Appendix A on obstru
tion theory we 
an 
on
lude that in the 
omplex
ase, the primary obstru
tion is in general non-vanishing only on S2 
orresponding to the �rstChern 
lass of the 
omplex Hilbert bundle over S2 while in the real 
ase the primary obstru
tionis generi
ally non-vanishing on S1 
orresponding to the �rst Stie�el-Whitney 
lass of the realHilbert bundle over S1.The forms that 
an represent the obstru
tion 
o
hain 
(f) in the non-abelian 
ase are thepullba
ks under f� of the 
orresponding 
ohomology generators of the Grassmann manifold,whi
h integrated over Sm will give integers (when they 
an be represented by di�erential forms).To understand better the higher obstru
tions, let us 
onsider the 
ase where the primaryobstru
tion vanishes, Tr(F ) = 0. In this 
ase our U(n) bundle is equivalent to an SU(n) bundle.Sin
e SU(n) is 3-
ontra
table the obstru
tion in this 
ase is represented by the se
ond Chern
lass, Tr(F 2), whi
h is a 4-form and arises on S4. The generalization to higher obstru
tions isthus obvious. When the 
ohomology 
oeÆ
ients are torsion no interpretation using di�erentialforms is available.These non-trivial Chern 
lasses, in the stable range, 
orrespond to instanton-like 
on�gura-tions 
hara
teristi
 of non-trivial gauge bundles. Upon integrating them overM we get integerswhi
h 
lassify the respe
tive U(n) bundles.The same reasoning applies to the real 
ase. The 
orresponding obstru
tion 
o
hains arethe Stie�el-Whitney 
lasses of the real Hilbert bundle.It is just a routine 
he
k in order to verify that the 
ohomologi
al pi
ture gives the sameresults as the homotopy pi
ture developed in Se
tions 3 and 4. The advantage of the 
ohomologyapproa
h is that it displays expli
itly the role of the 
urvature 2-form, F , the homotopy pi
turebeing easier to do 
omputations with.To 
on
lude,whenever the obstru
tion 
o
hain belongs to a 
ohomology group with integer10




oeÆ
ients, we 
an represent it with a di�erential form built out from the 
urvature form,F , 
orresponding to instanton-like 
on�gurations and whi
h integrated over the parametermanifold will give integers related to the winding numbers of the map it obstru
ts.When the obstru
tion is torsion, more 
lever te
hniques are needed to tra
e it. As waspointed out to me by L. Alvarez-Gaum�e, the possible answer is using \generalized" �-invariants,
apable of \seeing" torsion. Prototypes of su
h te
hniques where used by E. Witten in tra
ingthe SU(2) anomaly [17℄ and global gravitational anomalies in ten dimensions [18℄.6 Another look at anomaliesAs dis
ussed already by [6℄,[7℄, the quantum adiabati
 phase gives an elegant way of interpretinganomalies in the Hamiltonian pi
ture.The situation 
an be set as follows: Consider a 
hiral gauge theory with 3-dimensionalspa
e 
ompa
ti�ed to a sphere (or a produ
t of spheres). The spe
trum is dis
rete and weare working in the temporal gauge. Our aim is to 
onstru
t a physi
al Hilbert spa
e that isgauge invariant. The residual gauge transformations that respe
t the temporal gauge are timeindependent gauge transformations whi
h are mappings from spa
e (S3) to the gauge group Gof the theory. We will 
onsider Gs3 � fmaps : S3 ! Gg and A3, (the spa
e of stati
 gaugepotentials in the A0 = 0 gauge), as our parameter spa
e.By adiabati
ally transporting around the parameter spa
eG3 the va
uum state of the theoryj0 > we had better not a
quire a phase be
ause that will indi
ate loss of gauge invarian
e.Otherwise stated the phase of the va
uum state should be globally de�ned over G3.Let us suppose that the va
uum state is non-degenerate overG3 (with the possible ex
eptionof some submanifold), and is an element of CP1. From the analysis of Se
tion 3 we know thatin this 
ase a non-trivial adiabati
 phase arises due to the impossibility of global de�nition ofphase over only the S2. There are non-
ontra
table 2-spheres in G3, if �2[G3℄ is non-trivial(if a sphere is 
ontra
table then it obviously 
reates no obstru
tion). Sin
e �2[G3℄ = �5[G℄under suitable boundary 
onditions for the gauge transformations, theories with �5(G) beingnon-trivial have a potential danger of having anomalies. To establish their existen
e thoughwe have to show that either the map indu
ed by the Hamiltonian of the theory belongs toa non-trivial 
lass of �2(CP1) or to show that there is an a

idental degenera
y somewherethat triggers a non-trivial adiabati
 phase and thus a loss of gauge invarian
e in the theory.The existen
e of su
h a degenera
y in 
hiral gauge theories was established through an indextheorem by [15℄.If the va
uum state turns out to be gauge invariant, then the full Hilbert spa
e 
an be
onstru
ted to be gauge invariant [6℄.The U(1) anomaly 
an be viewed in the same spirit,by looking for non-
ontra
table toriin G3. We already know that [S1 � S1;CP1)℄ � Z and under suitable boundary 
onditions[S1 � S1; G3℄ � [S1 � S4; U(1)℄ � Z. The non-triviality of the later homotopy group shows11



that there are non-
ontra
table tori in G3 while the non-triviality of the former shows that anadiabati
 phase is possible. The existen
e of a degenera
y that makes the phase to appear ina 
hiral U(1) theory was shown by [16℄.In the 
ase of the non-perturbative SU(2) anomaly the Hilbert spa
e has a real stru
ture andthe va
uum state is an element of RP1 whi
h is again an Eileberg-M
 Lane spa
e: RP1 =K(Z2; 1) so that the only 
ase we have to worry about is that of S1. Sin
e �1(G3) � �4(G) if�4(G) is non-trivial then there exist non-
ontra
table S1's in G3 and thus there is a possibilityof a non-trivial adiabati
 phase to exist.That this is true was shown by [17℄ by establishing the degenera
y giving rise to the non-trivial adiabati
 phase in this 
ase. Now the phase is a Z2 phase, it 
annot be represented bydi�erential forms, and it is \non-perturbative", be
ause there are no in�nitesimal 
losed pathson S1.A 
omment is in order here. We supposed that the va
uum state is not degenerate over A3.If the va
uum state is a
tually degenerate, then from our previous analysis we 
an 
on
ludethat there may be obstru
tions on higher spheres, in de�ning a gauge invariant Hilbert spa
e.Toassert that su
h 
ases are realizable requires some further analysis whi
h we will 
arry out in asubsequent publi
ation.7 The N-N theorem and the quantum adiabati
 phaseIn this se
tion we use the notion of the adiabati
 phase and the underlying gauge stru
ture togive an alternative easy proof of the N �N theorem [12℄.The theorem states that a latti
e theory of 
hiral fermions in 3+1 dimensions is impossible(due to spe
ies doubling), under the following assumptions:(i) Lo
ality of the Hamiltonian.(ii) Translation invarian
e.(iii) Hermiti
ity of the Hamiltonian.(iv) Exa
t 
onservation of 
hiral 
harges.(v) The fermion �elds are 
omplex.(vi) The 
harges are bilinear in the fermion �elds, lo
ally de�ned and quantized.Lo
ality ensures the 
ontinuity of the fermion wave-fun
tions in the Brillouin zone. Trans-lation invarian
e makes the surfa
e of the Brillouin zone a 2-torus, whi
h is essential in theproof as 
an be seen below. Requirement (iv) means that energy-momentum eigenstates arealso 
harge eigenstates. This along with lo
al de�nition and quantization of 
harges are im-portant for the identi�
ation of 2-level degenera
ies in the Brillouin zone as RH and LH Weylex
itations in the 
ontinuum limit. The fermion wave-fun
tion being 
omplex implies that the12



gauge �eld indu
ed by adiabati
 transport is non-zero. (Remember that in the real 
ase theadiabati
 phase on S1 is torsion and the 
onne
tion form vanishes.)The strategy of proving the 
laim above is, going to momentum spa
e (Brillouin zone) and
ounting topologi
ally the number of LH and RH fermion spe
ies whi
h are asso
iated withtwo-level degenera
ies.To see this, let us analyze the situation near a two-level degenera
y point, ~p = ~pdeg, (theseare the only generi
 degenera
ies that o

ur in a 3-dimensional spa
e). Near ~p = ~pdeg, we 
anrestri
t to the relevant 2� 2 part of the Hamiltonian.H(2)(~p)u+(~p) = !+(~p)u+(~p) ; (7:1a)H(2)(~p)u�(~p) = !�(~p)u�(~p) ; (7:1b)where u�(~p) are the fermion wave-fun
tions 
orresponding to the upper (+) or lower (-) level.Expanding to �rst order in ~p� ~pdeg:H(2)(~p) = !deg(~pdeg) + (~p � ~pdeg)���C�� + ~p � ~pdeg) � ~� �D[(~p � ~pdeg)℄ ; (7.2)so that (7.1a,b) be
omes:(~p� ~pdeg)���C�� u�(~p) = [!�(~p)� !deg(~pdeg)� (~p � ~pdeg) � ~�℄ u�(~p) : (7.3)Rede�ning: !(~p) = !(~p)� !deg(~pdeg) ; (7:4a)~p = ~p� ~pdeg ; (7:4b)and introdu
ing a new 
oordinate system:P0 = ! � ~� � ~p ; (7:5a)P� = p�C�� ; (7:5b)(7.3) be
omes the Weyl equation: ~� � ~P u(~p) = P0 u(~p) : (7.6)It is easy to see that if detC > 0 (< 0) the ~P 
oordinate system is RH (LH). So that for P0 > 0,(+ level), ~� � ~p > 0 and if the ~P system is RH, then ~� � ~P > 0 (positive heli
ity), otherwise~� � ~P < 0 (negative heli
ity).In 
on
lusion :detC > 0 the degenera
y represents a LH fermion spe
ies;(+ level) and its anti� parti
le (� level) ;detC < 0 the degenera
y represents a RH fermion spe
ies;(+ level) and its anti� parti
le (� level) :13



Figure 3:At ea
h two-level degenera
y (a

ording to Se
tion 2), we have a monopole \magneti
 �eld"whi
h upon integration gives the adiabati
 phase:�+ = �12 sign (det C)
 � ZD d~S � ~B+ ; (7:7a)�� = 12 sign (det C)
 � ZD d~S � ~B� ; (7:7b)where �D = C is the 
losed 
ontour around whi
h we adiabati
ally transport, + and � refer tothe upper and lower level, and 
 is the solid angle subtend by C as seen from the degenera
y.If we now surround the point degenera
ies in the Brillouin zone by small 2-spheres we have\magneti
 
ux" 
oming out:�+ = �12 sign (det C) 4� � ZS2 d~S � ~B+ ; (7:8a)�� = �12 sign (det C) 4� � ZS2 d~S � ~B� : (7:8b)Let us now 
on
entrate on these 
uxes. Consider the \magneti
 �eld generated by adiabati
transport of the n-th level. It is a sum of monopole �elds over the various degenera
ies that then-th level parti
ipates in, as it moves around adiabati
ally. As an example, for the situationdepi
ted in Fig. 4 the magneti
 �eld is:~Bn = ~B+1 + ~B+2 + ~B�3 + ~B�4 ; (7.9)where the lower index on the right hand side labels the degenera
ies. Then, applying Gauss'theorem: ZSB d~S � ~Bn �Xi ZS2i d~S � ~Bn = ZV dV ~r � ~Bn = 0 ; (7.10)where SB is the surfa
e of the Brillouin zone, S2i is the 2-sphere surrounding the i-th degenera
y,the sum is over all degenera
ies that the n-th level meets in its way around, and V is thevolume of the Brillouin zone minus the volumes of the small spheres surrounding the respe
tivedegenera
ies. The last volume integral is zero be
ause the ~Bn �eld is divergen
eless outside thesmall 2-spheres, (
orresponding to dF = 0). 14



Figure 4:Denote sign (det C) at the i-th degenera
y by �i. From (7.10) and (7.8a,b) we have:Xi 2��+i +Xj 2���j = ZSB d~S � ~Bn =X fa
es Z d~S � ~Bn = Xfa
es ZCj d~̀ � ~An ; (7.11)where we sum over the re
tangular fa
es of the Brillouin zone, Cj is the 
ontour around the j-thfa
e, ~An is the respe
tive gauge potential and the sums in the left hand side are over degenera
ieswhere the n-th level meets the (n � 1)-th, (+), or the (n + 1)-th level, (-) respe
tively. Now
onsider, for example, the integral RABCD d~̀ � ~An (see Fig. 3). This is zero be
ause due to theperiodi
ity of the Brillouin zone it is like retra
ing ba
k and forth the two prin
ipal 
ir
les of a2-torus. This is true obviously for every fa
e so:Xi �+i �Xj ��j = 0 ; (7.12)whi
h states that (using the aforementioned identi�
ation of LH and RH fermion spe
ies, thatis, �i > 0! LH spe
ies, �i < 0! RH spe
ies):NL(n; n+ 1) �NR(n; n+ 1) = NL(n; n� 1)�NR(n; n� 1) ; (7.13)whereNL;R(n; n+1) is the number of LH, (RH), degenera
ies between the n-th and the (n+1)-thlevel. From this then and the fa
t that NL(1; 0) = NR(1; 0) = 0 trivially (be
ause the spe
trumbegins from the �rst level), we obtain:NL(n; n+ 1) = NR(n; n+ 1) (7.14)by indu
tion. This is the �nal result of the N-N theorem implying equal numbers of LH andRH fermion spe
ies in a latti
e theory.8 Con
lusionsWe have taken advantage of the topologi
al nature of the quantum adiabati
 phase to state arigorous theorem on its appearan
e over 
ompa
t parameter manifolds with non-trivial topology.15



The existen
e of the phase is asso
iated to the impossibility of global de�nition of phase of thethe adiabati
ally transported wave-fun
tion or equivalently to the impossibility of lifting themapping indu
ed by adiabati
 transport from the spa
e of normalized wave-ve
tors, (CPN orG(N;n)) to CN or V (N;n) respe
tively.The question of topologi
ally 
lassifying the adiabati
 phase redu
es to 
lassifying the gaugebundles on spheres whi
h are the pullba
k of the respe
tive prin
ipal bundles over Grassmannmanifolds.Level 
rossings during adiabati
 transport are responsible for this ri
h topologi
al stru
-ture.Their presen
e twists the Hilbert bundles over the parameter spa
e obstru
ting in thisway the global de�nition of the phase of the wave fun
tion (or the internal orientation of then-degenerate levels).Using obstru
tion theory we 
an link the existen
e of a non-trivial Berry phase to the non-trivial 
ohomology of the parameter manifold generated by the gauge 
onne
tion of the Hilbertbundle. In parti
ular, in the non-abelian 
ase we have instanton-like 
on�gurations, indu
ed bylevel 
rossings, paralleling the appearan
e of monopole bundles in the 2-level 
ase [1℄,[2℄. Thewhole set-up redu
es to the results of [6℄,[7℄ when applied to gauge theories with perturbativeand non-perturbative anomalies.I would like to thank A. Poly
hronakos and H. Sonoda for a lot of illuminating dis
ussionson the subje
t, J. Preskill for pointing to me a lot of the expe
ted features of the adiabati
phase and for 
onstant en
ouragement, L. Alvarez-Gaum�e for explaining to me how one 
ouldsee phases that are torsion and M. Anderson for patiently explaining to me parts of the math-emati
al ma
hinery used.Appendix AIn this appendix we give some pertinent mathemati
al results useful for Se
tions 3, 4, 5. Moredetails 
an be found in [10℄,[11℄.1st Covering Homotopy Theorem. Consider two �bre bundles B and B0 having the same�ber and group. Let the base spa
e X of B be a C� spa
e (normal, lo
ally 
ompa
t and su
hthat any 
overing of X by open sets is redu
ible to a 
ountable 
overing). Let h0: B ! B0 be abundle map and �h : X � I ! X 0 be a homotopy of the indu
ed map �h0 : X ! X 0 . Then thereexists a homotopy h : B � I ! B0 whose indu
ed homotopy is �h and h is stationary with �h.2nd Covering Homotopy Theorem. Let B0 be a bundle over X 0, let X be a C� spa
e andf0 : X ! B0 a map, �f : X � I ! X 0 a homotopy of �f0 = p0 Æ f0. Then there exists a homotopyf : X � I ! B0 
overing �f (i.e. �f = p0 Æ f) and f is stationary with �f .The exa
t homotopy sequen
e of a prin
ipal �bration. Let B � (X;B;F; p) be a prin
ipal�bre bundle with base spa
e X bundle spa
e B �bre and group F and proje
tion p.F i! B p! X : (A.1)16



Then the following sequen
e is exa
t:: : : �! �i(F ) i�! �i(B) p�! �i(X) �! �i�1(F )! : : : ; (A.2)terminating at: : : : p�! �1(X) �! �0(F ) i�! �0(B) : (A.3)Below we give some results on obstru
tion theory in �bre spa
es [11℄.Let F i! B p! X be a �bration, K a CW 
omplex, and a map f : K ! X. Suppose we wereable to lift the map f to ~fn�1 : Kn�1�! B, where Kn�1 is the (n� 1)-th skeleton of K. Theobstru
tion of lifting the map to ~fn : Kn ! B (that is extending the map to the next n-
ell) isrepresented by the obstru
tion 
o
hain �
n(f) 2 �n[K; f��n�1(F )℄: We have assumed that the�bre is (n � 1)-simple so that �n�1(B) is a system of lo
al 
oeÆ
ients in B and f��n�1(F ) isa system of lo
al 
oeÆ
ients in K.The main theorem is as follows: Consider a �bration, F i! A p! B, and a map f :M ! B.Let the �ber be (n � 1)-
onne
ted (that is, the �rst non-trivial homotopy group is �n[F ℄). IfHq+1(M;�q[F ℄) � 0 for n+1 <= q <dim M , then the map f 
an be lifted to a map ~f :M ! A,p Æ ~f = f , if and only if the primary obstru
tion 
o
hain vanishes:Hn+1(M;�n[F ℄) �
n+1(f) = 0 : (A.4)Higher obstru
tion 
o
hains be
ome meaningful only when the primary obstru
tion vanishes.Appendix BIn this Appendix the theorem used in Se
tion 3 is proved.Consider a general prin
ipal �ber bundle B � (B;A; F ) where B is the base spa
e, A isthe bundle spa
e, F is the �bre and at the same time the stru
ture group of the bundle and amanifold M along with a mapping f :M ! B.M f! B p A i F : (B.1)We will try to �nd the 
ondition for the existen
e of the lifting ~f of f , (pÆ ~f = f) ~f :M ! A.The proje
tion p indu
es a mapping p� : [M;A℄! [M;B℄ ([M;B℄ is the set of homotopy 
lassesof mappings from M to B. In all of our appli
ations it will have the stru
ture of an abeliangroup).Theorem f 
an be lifted if and only if it belongs to a 
lass in Im p�.Proof Suppose that f belongs to a 
lass [f ℄ 2 Im p�. Then there is a map g 2 [f ℄ whi
h 
an belifted to ~g, (if there is not su
h a map then [f ℄ does not belong to Im p�). Under p�[~g℄ is mapped17



to [f ℄. By assumption we 
an 
onne
t f and g with a homotopy h su
h that h(0) = f; h(1) = g.Then by the se
ond homotopy 
overing theorem (see Appendix A) there is a homotopy ~h su
hthat ~h(0) = ~f ; ~h(1) = ~g and obviously ~f is the lifting of f sin
e p Æ ~h = h.Suppose now that f does not belong to Im p�. If f 
ould be lifted to a map ~f :M ! A; pÆ~f = f , then ~f belongs to some 
lass in [M;A℄ and there is a homotopy ~h 
onne
ting ~f to someother map ~g 2 [ ~f ℄. The proje
tion of ~h is a homotopy 
onne
ting f to g � p Æ ~g whi
h in turnmeans that [f ℄ 2 Im p�, false by assumption. Q.E.D.Corollary 1 If [M;A℄ � 0 and [M;B℄ is non-trivial then any map belonging to a non-trivial
lass in [M;B℄ 
annot be lifted.Corollary 2 If [M;B℄ � 0 any map 
an be lifted.Corollary 3 If M = Sn and �n(F ) � 0 then p� is 1-1.Proof From the exa
t homotopy sequen
e of a �bre bundle:: : : �! �n(F ) i�! �n(A) p�! �n(B) �! �n�1(F )! : : : (B.2)we get: Im i� � 0 so Ker p� � 0.Corollary 4 If M = Sn and �n�1(F ) � 0 then p� is onto.Proof From the same exa
t sequen
e above, Im � � 0; Ker � � Im p� � �n(B), p� is onto.Appendix CIn this Appendix we work some examples showing when a non-trivial adiabati
 phase arises in
ertain 
ases.Consider �rst the 
ase of a real Hamiltonian , whi
h is (n+ 1)� (n+ 1) dimensional, withn levels degenerate over the parameter manifold. It des
ribes the system near a degenera
ywhere the n degenerate levels 
ross a single non-degenerate level (this is the example dis
ussedin [3℄). As it was pointed out in Se
tion 4 we have to look on parameter manifolds beingspheres, Sm; 1 <= m <= n. The relevant �bre bundle pi
ture is:O(n) i! RV (n+ 1; n) p! RG(n+ 1; n) ; (C.1)where RV (n + 1; n) � O(n+1)O(1) � SO(n + 1) and RG(n + 1; n) � O(n+1)O(n)O(1) � Sn=Z2 so that�i[RG(n+ 1; n)℄ � �i(Sn) for i >= 1 and �0[RG(n+ 1; n)℄ � Z2.On the sphere, M = Sm, m < n sin
e �m[RG(n + 1; n)℄ is trivial, there is no phase, forevery mapping f : Sm ! RG(n+1; n). But forM = Sn the situation is di�erent. The relevantexa
t homotopy sequen
e of the �bration is:: : : �! �n[SO(n)℄ i�! �n[SO(n+ 1)℄ p�! �n(Sn) �! �n�1[SO(n)℄i�! �n�1[SO(n+ 1)℄! 0 : (C.2)18



(i) For n = 0; 4 (mod 8), �n�1[SO(n + 1)℄ � Z; �n�1[SO(n)℄ � Z +Z and (C.2) be
omes:: : :! �n[SO(n+ 1)℄ p�! Z ! Z +Z ! Z ! 0 ;whi
h shows that p� is the zero map, so every map being homotopi
ally non-trivial will give anon-trivial phase.(ii) For n = 1; 2 (mod 8), �n�1[SO(n+ 1)℄ � Z2, and (B.2) be
omes:: : :! �n[SO(n + 1)℄ p�! Z �! �n�1[SO(n)℄ i�! Z2! 0 :There are three possibilities for �n�1[SO(n)℄:(a) �n�1[SO(n)℄ � Z. Then Im i� = Z2, Ker i� � 2Z � Im � so that Ker � � 0 � Im p�.Every non-trivial map gives a phase.(b) �n�1[SO(n)℄ � Z + Z2 then Ker i� � Z2 or 2Z � Im � so that Ker � � Im p� � 0 andthe situation is the same as in (a).(
) �n�1[SO(n)℄ � Z2 +Z2 then Ker i� � Z2 � Im � so that Ker � � Im p� � 2Z and everymap with an odd winding number gives a non-trivial phase.(iii) For n = 3; 5; 6 (mod 8) �n�1[SO(n+ 1)℄ � 0 and from (C.2):: : :! �n[SO(n+ 1)℄ p�! Z �! �n�1[SO(n)℄! 0 ;and sin
e in this 
ase �n�1[SO(n)℄ is always non-trivial there are mapping in this 
ase too, thatgive a phase.(iv) For n = 7 (mod 8) �n�1[SO(n)℄ � 0 so there is no phase in this 
ase.For the 
ase of a real Hamiltonian, where a doubly degenerate state 
rosses with anotherdoubly degenerate state we 
an easily see using the pro
edure above, that the only non-trivialobstru
tion exists on S1.As a se
ond example 
onsider a 
omplex Hamiltonian with n degenerate levels, 
rossingat some point another non-degenerate level. As mentioned in Se
tion 4, su
h 
rossings o

urgeneri
ally at isolated points in parameter spa
es of dimension 2n+ 1. Consequently, we haveto investigate parameter manifolds being spheres Sm; 1 <= m <= 2n. V (n+1; n) � U (n+1)U (1) with:�i[V (n+ 1; n)℄ � 0 i = 0; 1; 2 ;�i[V (n + 1; n)℄ � �i[U(n+ 1)℄ i >= 3 :G(n+ 1; n) � U (n+1)U (n)U (1) � CP n�i(CP n) � �i(S2n+1) i >= 3 ;�2(CP n) � Z ; �1(CP n) � 0 :19



Sin
e �i(S2n+1) � 0 for 3 <= i <= 2n, the only obstru
tion exists on 2-spheres, where anynon-trivial map in �2(CP n) 
annot be lifted.In the 
ase where an n�degenerate level 
rosses a doubly-degenerate level, the general(n + 2) � (n + 2) relevant part of the Hamiltonian is parametrized in U (n+2)U (n)U (2) whi
h hasdimension 4n, so that su
h degenera
ies o

ur generi
ally at points in parameter spa
es ofdimension 4n + 1. So we must look on spheres, Sm; 1 <= m <= 4n. Using the exa
t sequen
eof the bundle: U (2) i! U (n+ 2) p! V (n + 2; n) ; (C.3)we 
an get the following information on homotopy groups:�i[V (n+ 2; n)℄ � 0 for 0 <= i <= 4 :We will distinguish two 
ases.(i) n = 2. Then, V (4; 2) � U (4)U (2) and there is a spe
ial �bration in this 
ase,S5 i! V (4; 2) p! S7 ; (C.4)whi
h has a global se
tion. Using the information above we 
an read the relevant homotopygroups: �5[V (4; 2)℄ � Z ; �6[V (4; 2)℄ � Z2 ;�7[V (4; 2)℄ � Z +Z2 ; �8[V (4; 2)℄ � Z2 +Z24 :Using now the �bration, U (2) i! Z(4; 2) p! G(4; 2) ;and the fa
t that (C.4) is a trivial bundle we 
an infer that p� : �n[V (4; 2)℄! �n[G(4; 2)℄ is amap su
h that �n[G(4; 2)℄ � Im p�+�n�1[S1�S3℄. Non-triviality of �n�1[S1�S3℄ then signalsthe existen
e of a topologi
ally non-trivial adiabati
 phase on the n-sphere. Consequently wehave no phase on S1;S3, a Z phase on S2 and S4, a Z2 phase on S5;S6;S8 and a Z12 phaseon S7. The above list exhausts the possibilities of a non-trivial phase when a 2-degenerate level
rosses another 2-degenerate level.(ii) n > 2. We 
an read some relevant homotopy groups from (B.2),�5[V (n+ 2; 2)℄ � Z ; �6[V (n + 2; 2)℄ � Z2 ;�7[V (n+ 2; 2)℄ � Z +Z2 ; �8[V (n + 2; 2)℄ � Z2 +Z2 : (C:5)Using the exa
t sequen
e of the bundle:U(n) i! V (n + 2; n) p!G(n+ 2; n)we 
an get some partial information.For n = 3, we have non-trivial phases on S2;S4 and trivial ones on S1;S3;S5.20



For n > 3, we have non-trivial phases on S2;S4 and trivial ones on S1;S3;S5;S6. Dueto in
omplete knowledge of higher homotopy groups we 
annot say anything for phases on anm-sphere with 6 < m < 4n.It is obvious now that in the general situation when an n-fold degenerate level 
rosses anm-fold degenerate level (n >= m), we ought to look on parameter manifolds M = Sr, where1 <= r <= 2mn. Considerable information is obtained from some known homotopy groups:�i[V (m+ n; n)℄ � 0 for i <= 2m and �2m+1[V (m+ n; n)℄ � Z�i[G(n+m;n)℄ � �i�1[U(n)℄ for i <= 2m :We 
an assert that non-trivial holonomy appears on S2r, 1 <= r <= m. For n > m no obstru
tionappears on S2m+1. For n = m, �2n[U(n)℄ � Zn! and by looking at:: : :! �2n+1[U (n)℄ i�! �2n+1[V (2n; n)℄ p�! �2n+1[G(2n; n)℄ �! Zn! ! 0 ;we 
an see that any map whi
h has a winding number not a multiple of n! gives a non-trivialphase in this 
ase.Pro
eeding in this way we 
an get information potentially for every 
ase.Let us 
onsider as a �nal example the 
ase of an in�nite dimensional Hamiltonian (N !1, with a 
ountable number of eigenstates). In the real 
ase we know that RV (1; n) is a
ontra
table spa
e so that all its homotopy groups are trivial. Sin
e �i[RG(1; n)℄ � �i�1[O(n)℄whenever this homotopy group is non-trivial we get a phase for any homotopi
ally non-trivialmapping.In the 
omplex 
ase, V (1; n) is again 
ontra
table and �i[G(1; n)℄ � �i�1[U (n)℄, thesituation is the same as in the real one.In parti
ular for n = 1 there is a Z2 phase only on S1 in the real 
ase and a Z phase onlyon S2 in the 
omplex 
ase.
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