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Experimental Tests of Relativistic Gravity
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The confrontation between Einstein’s gravitation theory and experimental results, notably binary pulsar data,
is summarized and its significance discussed. Experiment and theory agree at the 10−3 level or better. All
the basic structures of Einstein’s theory (coupling of gravity to matter; propagation and self-interaction of the
gravitational field, including in strong-field conditions) have been verified. However, the theoretical possibility
that scalar couplings be naturally driven toward zero by the cosmological expansion suggests that the present
agreement between Einstein’s theory and experiment might be compatible with the existence of a long-range
scalar contribution to gravity (such as the dilaton field, or a moduli field, of string theory). This provides a new
theoretical paradigm, and new motivations for improving the experimental tests of gravity.

1. Introduction

Einstein’s gravitation theory can be thought
of as defined by two postulates. One postulate
states that the action functional describing the
propagation and self-interaction of the gravita-
tional field is

Sgravitation =
c4

16π G

∫

d4x

c

√
g R(g). (1)

A second postulate states that the action
functional describing the coupling of all the
fields describing matter and its electro-weak
and strong interactions (leptons and quarks,
gauge and Higgs bosons) is a (minimal) defor-
mation of the special relativistic action func-
tional used by particle physicists (the so called
“Standard Model”), obtained by replacing ev-
erywhere the flat Minkowski metric ηµν =
diag(−1,+1,+1,+1) by gµν(xλ) and the partial
derivatives ∂µ ≡ ∂/∂xµ by g-covariant derivatives
∇µ. Schematically, one has

Smatter =

∫

d4x

c

√
g Lmatter [ψ,Aµ, H ; gµν ]. (2)

Einstein’s theory of gravitation is then de-
fined by extremizing the total action func-
tional, Stot [g, ψ,A,H ] = Sgravitation [g] +
Smatter [ψ,A,H, g].

Although, seen from a wider perspective, the
two postulates (1) and (2) follow from the unique

requirement that the gravitational interaction be
mediated only by massless spin-2 excitations [1],
the decomposition in two postulates is convenient
for discussing the theoretical significance of var-
ious tests of General Relativity. Let us discuss
in turn the experimental tests of the coupling of
matter to gravity (postulate (2)), and the experi-
mental tests of the dynamics of the gravitational
field (postulate (1)). For more details and refer-
ences we refer the reader to [2] or [3].

2. Experimental tests of the coupling be-

tween matter and gravity

The fact that the matter Lagrangian depends
only on a symmetric tensor gµν(x) and its first
derivatives (i.e. the postulate of a universal
“metric coupling” between matter and gravity)
is a strong assumption (often referred to as the
“equivalence principle”) which has many observ-
able consequences for the behaviour of localized
test systems embedded in given, external gravi-
tational fields. In particular, it predicts the con-
stancy of the “constants” (the outcome of lo-
cal non-gravitational experiments, referred to lo-
cal standards, depends only on the values of the
coupling constants and mass scales entering the
Standard Model) and the universality of free fall
(two test bodies dropped at the same location
and with the same velocity in an external gravi-
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tational field fall in the same way, independently
of their masses and compositions).

Many sorts of data (from spectral lines in dis-
tant galaxies to a natural fission reactor phe-
nomenon which took place at Oklo, Gabon, two
billion years ago) have been used to set limits
on a possible time variation of the basic coupling
constants of the Standard Model. The best re-
sults concern the electromagnetic coupling, i.e.
the fine-structure constant αem. A recent reanal-
ysis of the Oklo phenomenon gives a conservative
upper bound [4]

−6.7×10−17 yr−1 <
α̇em

αem

< 5.0×10−17 yr−1, (3)

which is much smaller than the cosmological time
scale ∼ 10−10 yr−1. It would be interesting
to confirm and/or improve the limit (3) by di-
rect laboratory measurements comparing clocks
based on atomic transitions having different de-
pendences on αem. [Current atomic clock tests of
the constancy of αem give the limit |α̇em/αem| <
3.7 × 10−14 yr−1 [5].]

The universality of free fall has been verified at
the 10−12 level both for laboratory bodies [6], e.g.
(from the last reference in [6])
(

∆a

a

)

Be Cu

= (−1.9 ± 2.5) × 10−12 , (4)

and for the gravitational accelerations of the
Moon and the Earth toward the Sun [7],
(

∆a

a

)

MoonEarth

= (−3.2 ± 4.6) × 10−13 . (5)

In conclusion, the main observable conse-
quences of the Einsteinian postulate (2) con-
cerning the coupling between matter and grav-
ity (“equivalence principle”) have been verified
with high precision by all experiments to date
(see Refs. [2], [3] for discussions of other tests
of the equivalence principle). The traditional
paradigm (first put forward by Fierz [8]) is that
the extremely high precision of free fall exper-
iments (10−12 level) strongly suggests that the
coupling between matter and gravity is exactly
of the “metric” form (2), but leaves open possi-
bilities more general than eq. (1) for the spin-
content and dynamics of the fields mediating the

gravitational interaction. We shall provisionally
adopt this paradigm to discuss the tests of the
other Einsteinian postulate, eq. (1). However,
we shall emphasize at the end that recent theo-
retical findings suggest a new paradigm.

3. Tests of the dynamics of the gravita-

tional field in the weak field regime

Let us now consider the experimental tests of
the dynamics of the gravitational field, defined
in General Relativity by the action functional
(1). Following first the traditional paradigm, it is
convenient to enlarge our framework by embed-
ding General Relativity within the class of the
most natural relativistic theories of gravitation
which satisfy exactly the matter-coupling tests
discussed above while differing in the descrip-
tion of the degrees of freedom of the gravitational
field. This class of theories are the metrically-
coupled tensor-scalar theories, first introduced by
Fierz [8] in a work where he noticed that the
class of non-metrically-coupled tensor-scalar the-
ories previously introduced by Jordan [9] would
generically entail unacceptably large violations of
the equivalence principle. The metrically-coupled
(or equivalence-principle respecting) tensor-scalar
theories are defined by keeping the postulate (2),
but replacing the postulate (1) by demanding
that the “physical” metric gµν (coupled to ordi-
nary matter) be a composite object of the form

gµν = A2(ϕ) g∗µν , (6)

where the dynamics of the “Einstein” metric g∗µν

is defined by the action functional (1) (written
with the replacement gµν → g∗µν) and where ϕ
is a massless scalar field. [More generally, one
can consider several massless scalar fields, with
an action functional of the form of a general non-
linear σ model [10]]. In other words, the action
functional describing the dynamics of the spin 2
and spin 0 degrees of freedom contained in this
generalized theory of gravitation reads

Sgravitational [g
∗

µν , ϕ]=
c4

16πG∗

∫

d4x

c

√
g∗

× [R(g∗) − 2gµν
∗
∂µ ϕ∂ν ϕ]. (7)
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Here, G∗ denotes some bare gravitational cou-
pling constant. This class of theories contains
an arbitrary function, the “coupling function”
A(ϕ). When A(ϕ) = const., the scalar field is
not coupled to matter and one falls back (with
suitable boundary conditions) on Einstein’s the-
ory. The simple, one-parameter subclass A(ϕ) =
exp(α0 ϕ) with α0 ∈ R is the Jordan-Fierz-
Brans-Dicke theory [8], [11], [12]. In the general
case, one can define the (field-dependent) cou-
pling strength of ϕ to matter by

α(ϕ) ≡ ∂ lnA(ϕ)

∂ϕ
. (8)

It is possible to work out in detail the observable
consequences of tensor-scalar theories and to con-
trast them with the general relativistic case (see,
e.g., ref. [10]).

Let us now consider the experimental tests of
the dynamics of the gravitational field that can
be performed in the solar system. Because the
planets move with slow velocities (v/c ∼ 10−4)
in a very weak gravitational potential (U/c2 ∼
(v/c)2 ∼ 10−8), solar system tests allow us only
to probe the quasi-static, weak-field regime of
relativistic gravity (technically described by the
so-called “post-Newtonian” expansion). In the
limit where one keeps only the first relativis-
tic corrections to Newton’s gravity (first post-
Newtonian approximation), all solar-system grav-
itational experiments, interpreted within tensor-
scalar theories, differ from Einstein’s predic-
tions only through the appearance of two “post-
Einstein” parameters γ and β (related to the usu-
ally considered Eddington parameters γ and β
through γ ≡ γ−1, β ≡ β−1). The parameters γ
and β vanish in General Relativity, and are given
in tensor-scalar theories by

γ = −2
α2

0

1 + α2
0

, (9)

β = +
1

2

β0 α
2
0

(1 + α2
0)

2
, (10)

where α0 ≡ α(ϕ0), β0 ≡ ∂α(ϕ0)/∂ϕ0; ϕ0 de-
noting the cosmologically-determined value of the
scalar field far away from the solar system. Es-
sentially, the parameter γ depends only on the

linearized structure of the gravitational theory
(and is a direct measure of its field content, i.e.
whether it is pure spin 2 or contains an admixture
of spin 0), while the parameter β parametrizes
some of the quadratic nonlinearities in the field
equations (cubic vertex of the gravitational field).

All currently performed gravitational experi-
ments in the solar system, including perihelion
advances of planetary orbits, the bending and
delay of electromagnetic signals passing near the
Sun, and very accurate range data to the Moon
obtained by laser echoes, are compatible with the
general relativistic predictions γ = 0 = β and give
upper bounds on both |γ| and

∣

∣β
∣

∣(i.e. on possible
fractional deviations from General Relativity).
The best current limits come from: (i) VLBI mea-
surements of the deflection of radio waves by the
Sun, giving [13]: −3.8 × 10−4 < γ < 2.6 × 10−4,
and (ii) Lunar Laser Ranging measurements of a
possible polarization of the orbit of the Moon to-
ward the Sun (“Nordtvedt effect” [14]) giving [7]:
4β − γ = −0.0007± 0.0010.

The corresponding bounds on the scalar cou-
pling parameters α0 and β0 are: α2

0 < 1.9×10−4,
−8.5 × 10−4 < (1 + β0)α

2
0 < 1.5 × 10−4. Note

that if one were working in the more general (and
more plausible; see below) framework of theo-
ries where the scalar couplings violate the equiva-
lence principle one would get much stronger con-
straints on the basic coupling parameter α0 of
order α2

0
<∼ 10−7 [15].

The parametrization of the weak-field devia-
tions between generic tensor-scalar theories and
Einstein’s theory has been extended to the sec-
ond post-Newtonian order [16]. Only two post-
post-Einstein parameters, ε and ζ, representing a
deeper layer of structure of the gravitational in-
teraction, show up. These parameters have been
shown to be already significantly constrained by
binary-pulsar data: |ε| < 7×10−2, |ζ| < 6×10−3.

4. Tests of the dynamics of the gravita-

tional field in the strong field regime

In spite of the diversity, number and often high
precision of solar system tests, they have an im-
portant qualitative weakness : they probe neither
the radiation properties nor the strong-field as-
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pects of relativistic gravity. Fortunately, the dis-
covery [17] and continuous observational study of
pulsars in gravitationally bound binary orbits has
opened up an entirely new testing ground for rela-
tivistic gravity, giving us an experimental handle
on the regime of strong and/or radiative gravita-
tional fields.

The fact that binary pulsar data allow one to
probe the propagation properties of the gravita-
tional field is well known. This comes directly
from the fact that the finite velocity of propaga-
tion of the gravitational interaction between the
pulsar and its companion generates damping-like
terms in the equations of motion, i.e. terms which
are directed against the velocities. [This can be
understood heuristically by considering that the
finite velocity of propagation must cause the grav-
itational force on the pulsar to make an angle with
the instantaneous position of the companion [18],
and was verified by a careful derivation of the
general relativistic equations of motion of binary
systems of compact objects [19]]. These damping
forces cause the binary orbit to shrink and its or-
bital period Pb to decrease. The measurement, in
some binary pulsar systems, of the secular orbital
period decay Ṗb ≡ dPb/dt [20] thereby gives us a
direct experimental probe of the damping terms
present in the equations of motion.

The fact that binary pulsar data allow one to
probe strong-field aspects of relativistic gravity
is less well known. The a priori reason for say-
ing that they should is that the surface gravita-
tional potential of a neutron star Gm/c2R ' 0.2
is a mere factor 2.5 below the black hole limit
(and a factor ∼ 108 above the surface potential
of the Earth). Due to the peculiar “effacement”
properties of strong-field effects taking place in
General Relativity [19], the fact that pulsar data
probe the strong-gravitational-field regime can
only be seen when contrasting Einstein’s theory
with more general theories. In particular, it has
been found in tensor-scalar theories [21] that a
self-gravity as strong as that of a neutron star
can naturally (i.e. without fine tuning of param-
eters) induce order-unity deviations from general
relativistic predictions in the orbital dynamics of
a binary pulsar thanks to the existence of non-
perturbative strong-field effects. [The adjective

“nonperturbative” refers here to the fact that
this phenomenon is nonanalytic in the coupling
strength of the scalar field, eq. (8), which can
be as small as wished in the weak-field limit]. As
far as we know, this is the first example where
large deviations from General Relativity, induced
by strong self-gravity effects, occur in a theory
which contains only positive energy excitations
and whose post-Newtonian limit can be arbitrar-
ily close to that of General Relativity.

A comprehensive account of the use of bi-
nary pulsars as laboratories for testing strong-
field gravity will be found in ref. [22]. Two
complementary approaches can be pursued :
a phenomenological one (“Parametrized Post-
Keplerian” formalism), or a theory-dependent
one [10], [22], [23].

The phenomenological analysis of binary pul-
sar timing data consists in fitting the observed
sequence of pulse arrival times to the generic
DD timing formula [24] whose functional form
has been shown to be common to the whole
class of tensor-multi-scalar theories. The least-
squares fit between the timing data and the
parameter-dependent DD timing formula allows
one to measure, besides some “Keplerian” param-
eters (“orbital period” Pb, “eccentricity” e,. . .),
a maximum of eight “post-Keplerian” parame-
ters: k, γ, Ṗb, r, s, δθ, ė and ẋ. Here, k ≡ ω̇Pb/2π
is the fractional periastron advance per orbit, γ
a time dilation parameter (not to be confused
with its post-Newtonian namesake), Ṗb the or-
bital period derivative mentioned above, and r
and s the “range” and “shape” parameters of
the gravitational (“Shapiro”) time delay caused
by the companion. The important point is that
the post-Keplerian parameters can be measured
without assuming any specific theory of grav-
ity. Now, each specific relativistic theory of grav-
ity predicts that, for instance, k, γ, Ṗb, r and s
(to quote parameters that have been success-
fully measured from some binary pulsar data)
are some theory-dependent functions of the (un-
known) masses m1,m2 of the pulsar and its com-
panion. Therefore, in our example, the five si-
multaneous phenomenological measurements of
k, γ, Ṗb, r and s determine, for each given the-
ory, five corresponding theory-dependent curves
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in the m1 − m2 plane (through the 5 equations
kmeasured = ktheory(m1,m2), etc. . .). This yields
three (3 = 5 − 2) tests of the specified theory,
according to whether the five curves meet at one
point in the mass plane, as they should. [In the
most general (and optimistic) case, discussed in
[22], one can phenomenologically analyze both
timing data and pulse-structure data (pulse shape
and polarization) to extract up to nineteen post-
Keplerian parameters.] The theoretical signifi-
cance of these tests depends upon the physics
lying behind the post-Keplerian parameters in-
volved in the tests. For instance, as we said above,
a test involving Ṗb probes the propagation (and
helicity) properties of the gravitational interac-
tion. But a test involving, say, k, γ, r or s probes
(as shown by combining the results of [10] and
[21]) strong self-gravity effects independently of
radiative effects.

Besides the phenomenological analysis of bi-
nary pulsar data, one can also adopt a theory-
dependent methodology [10], [22], [23]. The
idea here is to work from the start within a
certain finite-dimensional “space of theories”,
i.e. within a specific class of gravitational theo-
ries labelled by some theory parameters. Then
by fitting the raw pulsar data to the predic-
tions of the considered class of theories, one
can determine which regions of theory-space are
compatible (at say the 90% confidence level)
with the available experimental data. This
method can be viewed as a strong-field genera-
lization of the parametrized post-Newtonian for-
malism [2] used to analyze solar-system exper-
iments. When non-perturbative strong-field ef-
fects are absent one can parametrize strong-
gravity effects in neutron stars by using an ex-
pansion in powers of the “compactness” cA ≡
−2 ∂ ln mA/∂ ln G ∼ G mA/c

2 RA. Ref. [10]
has then shown that the observable predictions
of generic tensor-multi-scalar theories could be
parametrized by a sequence of “theory param-
eters”, γ , β , β2 , β′ , β′′ , β3 , (ββ′) . . .
representing deeper and deeper layers of struc-
ture of the relativistic gravitational interac-
tion beyond the first-order post-Newtonian level
parametrized by γ and β. When non-perturbative
strong-field effects develop, one cannot use the

multi-parameter approach just mentioned. A
useful alternative approach is then to work
within specific, low-dimensional “mini-spaces of
theories”. Of particular interest is the two-
dimensional mini-space of tensor-scalar theo-
ries defined by the coupling function A(ϕ) =
exp

(

α0 ϕ+ 1
2
β0 ϕ

2
)

. The predictions of this fam-
ily of theories (parametrized by α0 and β0) are an-
alytically described, in weak-field contexts, by the
post-Einstein parameter (9), and can be studied
in strong-field contexts by combining analytical
and numerical methods [23].

Let us now briefly summarize the current ex-
perimental situation. Concerning the first discov-
ered binary pulsar PSR1913+16 [17], it has been
possible to measure with accuracy the three post-
Keplerian parameters k, γ and Ṗb. From what
was said above, these three simultaneous mea-
surements yield one test of gravitation theories.
After subtracting a small (∼ 10−14 level in Ṗb !),
but significant, perturbing effect caused by the
Galaxy [25], one finds that General Relativity
passes this (k − γ − Ṗb)1913+16 test with com-
plete success at the 10−3 level. More precisely,
one finds [26], [20]
[

Ṗ obs
b − Ṗ galactic

b

ṖGR
b [kobs, γobs]

]

1913+16

= 1.0032± 0.0023(obs)

± 0.0026(galactic)

= 1.0032± 0.0035 , (11)

where ṖGR
b [kobs, γobs] is the GR prediction for the

orbital period decay computed from the observed
values of the other two post-Keplerian parameters
k and γ.

This beautiful confirmation of General Rel-
ativity is an embarrassment of riches in that
it probes, at the same time, the propagation
and strong-field properties of relativistic grav-
ity ! If the timing accuracy of PSR1913 + 16
could improve by a significant factor two more
post-Keplerian parameters (r and s) would be-
come measurable and would allow one to probe
separately the propagation and strong-field as-
pects [26]. Fortunately, the discovery of the bi-
nary pulsar PSR1534 + 12 [27] (which is signifi-
cantly stronger than PSR1913+16 and has a more
favourably oriented orbit) has opened a new test-
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ing ground, in which it has been possible to probe
strong-field gravity independently of radiative ef-
fects. A phenomenological analysis of the timing
data of PSR1534 + 12 has allowed one to mea-
sure the four post-Keplerian parameters k, γ, r
and s [26]. From what was said above, these
four simultaneous measurements yield two tests
of strong-field gravity, without mixing of radia-
tive effects. General Relativity is found to pass
these tests with complete success within the mea-
surement accuracy [26], [20]. The most precise of
these new, pure strong-field tests is the one ob-
tained by combining the measurements of k, γ
and s. Using the most recent data [28] one finds
agreement at the 1% level:
[

sobs

sGR[kobs, γobs]

]

1534+12

= 1.007± 0.008 . (12)

Recently, it has been possible to extract also the
“radiative” parameter Ṗb from the timing data of
PSR1534+12. Again, General Relativity is found
to be fully consistent (at the ∼ 15% level) with
the additional test provided by the Ṗb measure-
ment [28]. Note that this gives our second direct
experimental confirmation that the gravitational
interaction propagates as predicted by Einstein’s
theory.

More recently, measurements of the pulse shape
of PSR 1913 + 16 [29], [30] have detected a time
variation of the pulse shape compatible with the
prediction [31], [32] that the general relativistic
spin-orbit coupling should cause a secular change
in the orientation of the pulsar beam with respect
to the line of sight (“geodetic precession”). As en-
visaged long ago [31] this precession will cause the
pulsar to disappear (around 2035) and to remain
invisible for hundreds of years [29], [30].

A theory-dependent analysis of the published
pulsar data on PSRs 1913 + 16, 1534 + 12 and
0655 + 64 (a dissymetric system constraining
the existence of dipolar radiation [33]) has been
recently performed within the (α0, β0)-space of
tensor-scalar theories introduced above [23]. This
analysis proves that binary-pulsar data exclude
large regions of theory-space which are compati-
ble with solar-system experiments. This is illus-
trated in Fig. 9 of Ref. [23] which shows that β0

must be larger than about −5, while any value of

β0 is compatible with weak-field tests as long as
α0 is small enough.

5. Was Einstein 100% right ?

Summarizing the experimental evidence dis-
cussed above, we can say that Einstein’s postu-
late of a pure metric coupling between matter
and gravity (“equivalence principle”) appears to
be, at least, 99.999 999 999 9% right (because of
universality-of-free-fall experiments), while Ein-
stein’s postulate (1) for the field content and dy-
namics of the gravitational field appears to be, at
least, 99.9% correct both in the quasi-static-weak-
field limit appropriate to solar-system experi-
ments, and in the radiative-strong-field regime
explored by binary pulsar experiments. Should
one apply Occam’s razor and decide that Einstein
must have been 100% right, and then stop testing
General Relativity ? My answer is definitely, no !

First, one should continue testing a basic phys-
ical theory such as General Relativity to the ut-
most precision available simply because it is one
of the essential pillars of the framework of physics.
This is the fundamental justification of an exper-
iment such as Gravity Probe B (the Stanford gy-
roscope experiment), which will advance by one
order of magnitude our experimental knowledge
of post-Newtonian gravity.

Second, some very crucial qualitative features
of General Relativity have not yet been verified :
in particular the existence of black holes, and the
direct detection on Earth of gravitational waves.
Hopefully, the LIGO/VIRGO network of interfer-
ometric detectors will observe gravitational waves
early in the next century.

Last, some theoretical findings suggest that the
current level of precision of the experimental tests
of gravity might be naturally (i.e. without fine
tuning of parameters) compatible with Einstein
being actually only 50% right ! By this we mean
that the correct theory of gravity could involve,
on the same fundamental level as the Einsteinian
tensor field g∗µν , a massless scalar field ϕ.

Let us first question the traditional paradigm
[8], [2] according to which special attention should
be given to tensor-scalar theories respecting the
equivalence principle. This class of theories was,
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in fact, introduced in a purely ad hoc way so as
to prevent too violent a contradiction with ex-
periment. However, it is important to notice that
the scalar couplings which arise naturally in the-
ories unifying gravity with the other interactions
systematically violate the equivalence principle.
This is true both in Kaluza-Klein theories (which
were the starting point of Jordan’s theory) and in
string theories. In particular, it is striking that
(as first noted by Scherk and Schwarz [34]) the
dilaton field Φ, which plays an essential role in
string theory, appears as a necessary partner of
the graviton field gµν in all string models. Let
us recall that gs = eΦ is the basic string cou-
pling constant (measuring the weight of succes-
sive string loop contributions) which determines,
together with other scalar fields (the moduli), the
values of all the coupling constants of the low-
energy world. This means, for instance, that
the fine-structure constant αem is a function of
Φ (and possibly of other moduli fields). In intu-
itive terms, while Einstein proposed a framework
where geometry and gravitation were united as a
dynamical field gµν(x), i.e. a soft structure in-
fluenced by the presence of matter, string the-
ory extends this idea by proposing a framework
where geometry, gravitation, gauge couplings and
gravitational couplings all become soft structures
described by interrelated dynamical fields. Sym-
bolically, one has gµν(x) ∼ g2(x) ∼ G(x). This
spatiotemporal variability of coupling constants
entails a clear violation of the equivalence prin-
ciple. In particular, αem would be expected to
vary on the Hubble time scale (in contradiction
with the limit (3) above), and materials of differ-
ent compositions would be expected to fall with
different accelerations (in contradiction with the
limits (4), (5) above).

The most popular idea for reconciling gravita-
tional experiments with the existence, at a funda-
mental level, of scalar partners of gµν is to assume
that all these scalar fields (which are massless be-
fore supersymmetry breaking) will acquire a mass
after supersymmetry breaking. Typically one ex-
pects this mass m to be in the TeV range [35].
This would ensure that scalar exchange brings
only negligible, exponentially small corrections
∝ exp(−mr/h̄c) to the general relativistic pre-

dictions concerning low-energy gravitational ef-
fects. However, the interesting possibility exists
that the mass m be in the milli eV range, cor-
responding to observable deviations from usual
gravity below one millimeter [36], [37], [38].

But, the idea of endowing the scalar partners
of gµν with a non zero mass is fraught with many
cosmological difficulties [39], [40], [41]. Though
these cosmological difficulties might be solved by
a combination of ad hoc solutions (e.g. intro-
ducing a secondary stage of inflation to dilute
previously produced dilatons [42], [43]), a more
radical solution to the problem of reconciling the
existence of the dilaton (or any moduli field)
with experimental tests and cosmological data
has been proposed [44] (see also [45] which con-
sidered an equivalence-principle-respecting scalar
field). The main idea of Ref. [44] is that string-
loop effects (i.e. corrections depending upon
gs = eΦ induced by worldsheets of arbitrary genus
in intermediate string states) may modify the
low-energy, Kaluza-Klein type matter couplings
(∝ e−2Φ Fµν F

µν) of the dilaton (or moduli) in
such a manner that the VEV of Φ be cosmolog-
ically driven toward a finite value Φm where it
decouples from matter. For such a “least cou-
pling principle” to hold, the loop-modified cou-
pling functions of the dilaton, Bi(Φ) = e−2Φ +
c0 + c1 e

2Φ + · · ·+ (nonperturbative terms), must
exhibit extrema for finite values of Φ, and these
extrema must have certain universality proper-
ties. A natural way in which the required condi-
tions could be satisfied is through the existence
of a discrete symmetry in scalar space. [For in-
stance, a symmetry under Φ → −Φ would guar-
antee that all the scalar coupling functions reach
an extremum at the self-dual point Φm = 0].

A study of the efficiency of this mechanism of
cosmological attraction of ϕ towards ϕm (ϕ de-
noting the canonically normalized scalar field in
the Einstein frame, see Eq. (7)) estimates that
the present vacuum expectation value ϕ0 of the
scalar field would differ (in a rms sense) from ϕm

by

ϕ0 − ϕm ∼ 2.75 × 10−9 × κ−3 Ω−3/4
m ∆ϕ . (13)

Here κ denotes the curvature of the gauge cou-
pling function ln BF (ϕ) around the maximum
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ϕm, Ωm denotes the present cosmological matter
density in units of 10−29 g cm−3, and ∆ϕ the de-
viation ϕ−ϕm at the beginning of the (classical)
radiation era. Equation (13) predicts (when ∆ϕ
is of order unity1) the existence, at the present
cosmological epoch, of many small, but not un-
measurably small, deviations from General Rela-
tivity proportional to the square of ϕ0−ϕm. This
provides a new incentive for trying to improve by
several orders of magnitude the various experi-
mental tests of Einstein’s equivalence principle.
The most sensitive way to look for a small resid-
ual violation of the equivalence principle is to per-
form improved tests of the universality of free fall.
The mechanism of Ref. [44] suggests a specific
composition-dependence of the residual differen-
tial acceleration of free fall and estimates that a
non-zero signal could exist at the very small level

(

∆a

a

)max

rms

∼ 1.36 × 10−18 κ−4 Ω−3/2
m (∆ϕ)2, (14)

where κ is expected to be of order unity (or
smaller, leading to a larger signal, in the case
where ϕ is a modulus rather than the dilaton).

Let us emphasize that the strength of the cos-
mological scenario considered here as counterar-
gument to applying Occam’s razor lies in the fact
that the very small number on the right-hand
side of eq. (14) has been derived without any
fine tuning or use of small parameters, and turns
out to be naturally smaller than the 10−12 level
presently tested by equivalence-principle experi-
ments (see equations (4), (5)). The estimate (14)
gives added significance to the project of a Satel-
lite Test of the Equivalence Principle (nicknamed
STEP, and currently studied by NASA, ESA and
CNES) which aims at probing the universality of
free fall of pairs of test masses orbiting the Earth
at the 10−18 level [47].
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