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We present a temperature and magnetic field dependence study of the spin Drude weight and of magnetother-
mal corrections to the thermal conductivity of the spin S = 1/2 integrable Heisenberg chain, extending an
earlier analysis using the Bethe ansatz method. We critically discuss the low temperature, weak magnetic field
behavior, the effect of magnetothermal corrections in the vicinity of the critical fields and in particular their role
in recent thermal conductivity experiments of 1D quantum magnets.
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Thermal transport by magnetic excitations is a research do-
main of actual interest where theoretical concepts are con-
fronted and converge with state of the art experiments. The
synthesis of high quality quasi-one dimensional quantum
magnets allows the study of magnetic thermal conduction in
spin liquids states, gapped and exotic topological excitation
systems [1]. It is also amusing that prototype models used
in the description of these systems, as the spin 1/2 Heisen-
berg model, turn out to be totally unconventional, exhibiting
ballistic transport at all temperatures due to the underlying in-
tegrability of the model [2].

So far most thermal conductivity experiments are done on
cuprates compounds, e.g. Sr2CuO3, SrCuO2 or the ladder
Sr14Cu24O41 materials, where the magnetic exchange con-
stant J is of the order of 2’000 K and thus a magnetic field,
is not expected to play a significant role. Only a few experi-
ments in low J (of the order of 10K) compounds exist [3–5]
that pose the problem of magnetothermal corrections in ther-
mal transport.

Several intriguing phenomena in which the interplay of spin
and heat play a crucial role have been suggested [6, 8, 9]. In
analogy to the thermoelectric Seebeck effect in electronic con-
ductors the thermomagnetic Seebeck effect should arise in the
presence of a temperature gradient and a magnetic field in
electronic insulators. In spin systems a current of magnetic
moments should flow in the presence of magnetic field H and
a temperature gradient ∇T along the chain. Theoretically the
problem in the Heisenberg spin - 1/2 chain has been adressed
by mean-field methods plus relaxation time approximation[7]
and a combination of numerical exact diagonalization as well
as Bethe ansatz techniques[8, 9].

Within linear response theory the spin and energy current
operators are defined from the continuity equation for the den-
sity of the conserved local spin component Szn and local en-
ergy correspondingly. For the Heisenberg chain,

H =

N∑
n=1

J(SxnS
x
n+1 +SynS

y
n+1 + ∆ SznS

z
n+2) +H Szn , (1)

where Sαi =
σαi
2 are the Pauli spin operators with com-

ponents α = {x, y, z}. The continuity equations lead to

the spin Js = J
∑
n(SxnS

y
n+1 − SynS

x
n+1), energy JE =

J2
∑
n Sn · (Sn−1 × S′n+1) (S′n = (Sxn, S

y
n,∆S

z
n)) and heat

JQ = JE + HJs current operators[2, 10]. JQ and JS are
related to the gradients of magnetic field∇H and temperature
∇T by the transport coefficients Cij [10] :(

JQ
Js

)
=

(
CQQ CQs
CsQ Css

)(
−∇T
∇H

)
, (2)

where CQQ = κQQ (Css = σss) is the heat (spin) con-
ductivity. The coefficients Cij correspond to time–dependent
current–current correlation functions and it is straightforward
to see that due to Onsager’s relations [10], CsQ = βCQs. The
real part of Cij(ω) can be decomposed into a δ function at
ω = 0 and a regular part:

Re(Cij(ω)) = 2πDijδ(ω) + C reg
ij (ω) . (3)

Unconventional ballistic behaviour in the sense of non de-
caying currents is signalled by a finite Drude weightDth,s im-
plying a divergent conductivity. The integrability of a model
characterized by the existence of nontrivial local conservation
laws is directly related to the existence of finite Drude weights
at all temperatures [2]. To start with, it is well established that
the energy current operator JE of the S = 1/2 XXZ model
coincides with the first nontrivial conserved quantity [11], the
currents do not decay and the long time asymptotic of the en-
ergy current–current dynamic correlations is finite, implying a
finite Dth at any temperature which has been evaluated using
Bethe ansatz techniques [12].

Concerning the spin transport the situation is more involved
as the spin current does not commute with the Hamiltonian.
Nevertheless, it was shown [2] using an inequality proposed
by Mazur and Suzuki [13] that for several quantum integrable
systems Dss is bounded by the thermodynamic overlap of the
current operator with at least one conserved quantity. Unfor-
tunately, for the Hamiltonian of the S = 1/2 model all local
conservation laws are invariant under spin inversion, whereas
the spin current operator Js is odd giving no useful bound at
zero magnetic field. The existence of a finite Dss at finite T ,
as found by a BA approach[14, 15] has proven to be a delicate
theoretical question for the zero magnetic field case.



2

0 1 2 3 4 5 6
Magnetic Field H/J 

0

0.05

0.1

0.15

0.2

D
s

0 0.5 1 1.5 2
Magnetic Field H/J

0

0.1

0.2

0.3

0.4

D
s

∆ = cos(π/3)
∆ = cos(π/10)

T/J = 0.5 
T/J = 0 Bosonization

Bethe ansatz

∆ = cos(π/3), ... ,cos(π/9)

Figure 1. (Color online) Magnetic field dependence of Dss at
T/J = 0.5 and several values of the anisotropy parameter ∆. The
inset depicts the magnetic field dependence ofDss at T = 0 and two
values of the anisotropy parameter ∆ = cos(π/3), cos(π/10). Solid
lines correspond to results obtained from bosonization and dashed
lines from Bethe ansatz.

Not until recently was an improved Mazur bound was ob-
tained [16] using a different approach based on deriving a
whole family of almost conserved quasilocal conservation
laws for an open XXZ chain up to boundary terms. It turns out
that the quasilocal operator, with different symmetry proper-
ties than the local ones, has a finite overlap with Js provid-
ing a nonzero lower bound for the spin Drude weight. This
important result was later extended to the XXZ chain with
periodic boundary conditions, where a family of exactly con-
served quasilocal operators was constructed [17, 18].

In the scope of these recent advances in this Letter we
adress the calculation of the spin Drude weight Dss in the
presence of magnetic field. The calculation relies on a gener-
alization of the approach proposed in Ref. [14] at zero mag-
netic field. The presence of magnetic field results in some
changes to the Bethe ansatz equations [19] but the overall
analysis is essentially the same. The knowledge ofDss(T,H)
also allows for the calculation of the thermal Drude weight
Kth and intriguing magnetothermal phenomena that arise due
to the coupling of the energy and spin currents [6].

A certain simplification of the Bethe ansatz equations for
the massless regime 0 ≤ ∆ ≤ 1 is provided under the
parametrization ∆ = cos(π/ν), ν integer. The main results
of this approach are that in the gapless regime 0 ≤ ∆ ≤ 1,
Dss(T,H = 0) is nonzero with power–law behaviour at low
temperatures as:

Dss(T,H = 0) = Dss(T = 0, H = 0)− cons.Tα, (4)

α = 2
ν−1 , while in the high temperature limit β → 0 the spin

Drude weight behaves like Dss(T,H = 0) = βC(∆) [15],
where C(∆) equals:

C(∆) =
π
ν −

1
2 sin(2πν )

16πν
. (5)
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Figure 2. (Color online) Temperature dependence of Dss for ∆ =
cos(π/4) and various magnetic fields. The inset depicts the H = 0
power–law behaviour of Dss at low temperatures given by Eq.(6).
The presence of small magnetic fieldH/J = 0.01 suffices to destroy
this critical behavior.

a result coinciding with the improved bound [16] at ∆ =
cos(π/ν).

At zero temperature the calculation of the magnetic field
dependence of the spin Drude weight is feasible by con-
sidering the low–energy effective Hamiltonian of the XXZ
model using abelian bosonization. Within the Luttinger Liq-
uid description, the spin Drude weight is expressed as Dss =
u(∆, H)K(∆, H), where the Fermi velocity u(∆, H) and the
so-called Luttinger parameter K(∆, H) depend on both the
magnetic field H and anisotropy parameter ∆. For H = 0
they can be found in closed form [20], while at finite mag-
netic field, both parameters can be computed exactly from the
Bethe ansatz solution [21].

We now turn our attention to the magnetic field dependence
of Dss at finite temperature. In Fig. 1 we depict Dss as a
function of magnetic field H for T/J = 0.5 and various
values of the anisotropy ∆. The inset depicts the Dss(H)
curve at T = 0, calculated using the Luttinger Liquid de-
scription and the Bethe ansatz technique. The lines are in-
distinguishable providing a test of the Bethe ansatz calcula-
tion. We also find, as expected, that Dss(H) vanishes for
H > Hcr = J(1+cos(π/ν)), as the system enters its massive
phase.

Among the facts that become apparent from Fig. 1 are the
following: (i) At small magnetic fields the spin Drude weight
goes like Dss ' AH2, a behaviour that is significantly differ-
ent from the one at T = 0. (ii) Upon increase of the magnetic
field, Dss increases until it reaches a maximum and then it
exponentially goes to zero. In the vicinity of Hcr, Dss is a
smooth function of H that is in direct contrast with the T = 0
result. (iii) Upon increase of ∆, starting from ∆ = 1/2 and
approaching the isotropic point ∆ = 1, the spin Drude weight
seems to converge to a limiting behavior that remains unaf-
fected as one further increases ∆. Already at ∆ = cos(π/9)
and for magnetic fields H/J & 0.5, Dss has approached its
limiting behaviour. This is not true for small magnetic fields
H/J . 0.5, where such a convergence should not be ex-
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Figure 3. (Color online) Magnetic field dependence of heat Drude
weight DQQ at ∆ = cos(π/8) and several values of temperature T .
The inset depicts the magnetic field dependence ofMTC term at the
same ∆.

pected. The Dss(H = 0) value strongly depends on ∆ and
goes to zero as ∆→ 1 [14].

The temperature dependence of the spin Drude weight
is also studied for four typical magnetic fields and ∆ =
cos(π/4) and the main features are depicted in Fig. 2. At
H < Hcr the system is at its gapless phase, Dss is finite at
small temperatures and decreases like:

Dss(T ) ' Dss(0)−Ae−H/TT γ(H,∆) , (6)

provided that A is constant and the exponent γ depends on
both H and ∆. At elevated temperatures, the Dss(T ) curve
vanishes exponentially. The low T behaviour is in contrast
with the H = 0 results [14] as the power–law of Eq.(4), at-
tributed to enhanced half-filling Umklapp scattering, is atten-
uated at T < H . At H = Hcr the system enters its gapped
regime and Dss vanishes at T = 0. Nevertheless, Dss be-
comes finite upon a small increase of temperature, exhibit-
ing a

√
T critical behaviour at low T . The curve increases

with T until it reaches a maximum and then drops exponen-
tially. Finally, in the gapped H > Hcr regime we notice
that at low T Drude weight is zero, it is exponentially acti-
vated upon increase of T and vanishes after taking a maxi-
mum. This behaviour is summarized in Fig. 2. Also note that
in the high temperature limit, spin Drude weight behaves like
Dss(T ) = βC(∆), where C(∆) is given by Eq.(5).

To relate correlation functions Cij to experimentally acces-
sible quantities we note that the spin conductivity σ measured
under the condition of ∇T = 0 is equal to σ(ω) = CSS(ω)
and the thermal conductivity under the assumption of vanish-
ing spin current Js = 0, which is relevant to certain experi-
mental setups, is redefined as follows:

κ(ω) = CQQ(ω)− β
C2
Qs(ω)

Css(ω)
, (7)

where the second term is usually called the magnetothermal
correction. Such a term originates from the coupling of the
heat and spin currents in the presence of magnetic field [6–8]
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Figure 4. (Color online) Magnetic field dependence of thermal Drude
weight Kth at ∆ = cos(π/8) and several values of temperature T .

and is absent when H = 0. In the case of ballistic transport,
the thermal conductivity Kth is found by combining Eqs.(7)
and (3):

Kth = DQQ − β
D2
Qs

Dss
. (8)

The first term DQQ corresponds to the heat conductivity,
while the second term is the magnetothermal correction

MTC = β
D2
Qs

Dss
. We should stress, in view of experiments[3–

5], that this relation holds assuming the same relaxation rates
for spin and energy transport. It becomes apparent that DQQ

and Kth are the main quantities which play central role in
the study of thermal conductivity in the S = 1/2 XXZ chain.
The thermal Drude weight Kth is the result of a combination
of two competing terms, the DQQ and MTC term and for
a complete picture of the thermal transport of the model all
three terms need to be explored. One can decompose the heat
Drude weight DQQ in terms of the energy and spin contribu-
tion, which yields:

DQQ = DEE + 2βHDEs + βH2Dss . (9)

Similarly the MTC term, and consequently the Kth term,
can be decomposed in terms of DEE , DEs and Dss. The
DEE and DEs at finite temperatures have been calculated by
Sakai and Klümper [8] using a lattice path integral formula-
tion, where a quantum transfer matrix (QTM) in the imaginary
time is introduced. This method produces all relevant correla-
tions by solving two nonlinear integral equations at arbitrary
magnetic fields and temperatures.

Let us begin by considering the magnetic field dependence
of the various quantities. In Fig. 3 we depict the heat Drude
weight DQQ as a function of H for various values of T and
∆ = cos(π/8). An important fact of Fig. 3 is that DQQ(H)
exhibits a pronounced nonmonotonic behaviour as a function
of H . At small magnetic fields it decreases quadratically and
then it rises again creating a peak before it vanishes at large
magnetic fields.

Next, we consider the behaviour of the MTC term as a
function ofH as illustrated in the inset of Fig. 3 for several T ’s
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Figure 5. (Color online)Thermal Seebeck coefficient S for ∆ =
cos(π/8) and several values of T as a function of H . The inset
depicts the magnetic field Hs at which S changes sign, as a function
of T .

and ∆ = cos(π/8). As expected, the MTC term is exactly
zero at H = 0, but becomes finite at finite H , where it devel-
ops two peaks with the second being more dominant than the
first. The MTC term turns out to be significant and should
be taken into account for a complete description of thermal
transport.

The resulting behaviour of the total thermal Drude weight
Kth, as a sum of two competing terms, is summarised in
Fig. 4, where it is plotted as a function of H for different
temperatures. Fig. 4 allows for two major observations: (i)
the thermal Drude weight turns out to be a smooth function of
magnetic field with no peaks observed as a function ofH . The
inclusion of the MTC term results in an overall suppression
of Kth and the cancellation of the nonmonotonic peaked be-
haviour of DQQ. For all considered temperatures the MTC
and DQQ terms develop a peak located exactly at the same
field; the subtraction of these two terms results a Kth that
is a smooth function of H . This finding is consistent with a
numerical study of the thermal transport in the S = 1/2 XXZ
chain in the presence of a magnetic field [7] based on exact di-
agonalization of a finite chain. (ii) As in the case of DQQ(H)
and MTC the thermal Drude weight Kth(H) is approaching
a limiting behaviour in the H/J & 0.25 region as ∆ → 1. In
general the ∆ dependence of DQQ, MTC and Kth is minor
with qualitatively the same H features.

Considering magnetothermal effects using Eq.(2) the mag-
netic Seebeck coefficient S under the condition of zero spin
current Js = 0 and for ballistic transport is given by,

S =
∇H
∇T

=
CsQ
Css

=
DsQ

Dss
. (10)

Here we take advantage of Bethe ansatz technique to calculate
S as a function ofH for various temperatures in the thermody-
namic limit. In Fig.5 we depict the magnetic field dependence

of S for ∆ = cos(π/8) and several values of T . We note that
at small magnetic fields S is positive, while at a certain mag-
netic fieldHs it changes sign and remains negative. In Ref. [9]
it was suggested that the sign of S is a criterion to clarify the
types of carriers; a positive (negative) S implies that the spin
and heat are dominantly carried by carriers with up (down)
spin. Upon increase of T the structure of S changes, but at
any T there is a single Hs at which the Seebeck coefficient
changes sign (see inset in Fig. 5).
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