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The zero temperature Hall constant Ry, described by reactive (nondissipative) conductivities, is ana-
lyzed within linear response theory. It isfound that in a certain limit Ry is directly related to the density
dependence of the Drude weight, implying a ssmple picture for the change of sign of charge carriersin
the vicinity of a Mott-Hubbard transition. This novel formulation is applied to the calculation of Ry in
quasi-one-dimensional and ladder prototype interacting electron systems.

PACS numbers. 71.27.+a, 71.10.Fd, 72.15.Gd

It is now well known that in strongly correlated sys-
tems, zero temperature (T = 0), the reactive part of the
conductivity can be used as a criterion of a metallic or
insulating ground state [1]. In particular, following the
work of Kohn, the imaginary part of the conductivity,
o"(w — 0) = 2D /w, characterized by D (now called the
“Drude weight” or charge stiffness), can be related to the
ground state energy density € dependence on an applied
fictitious flux ¢ as D = (1/2)8%€°/3¢>|p—o0.

A similar question is posed by the doping of an in-
sulating state, where it would be interesting to have a
simple description of the charge carriers sign as probed
in a Hall experiment. For instance, we would like to de-
scribe the doping of a Mott-Hubbard insulator; within a
semiclassical approach it is expected that the Hall constant
Ry = +1/ed, holdlike (positive) near haf filling (6 =
1 — n, n = density), changing to Ry = —1/en, €elec-
tronlike at low densities, the turning point depending on
the interaction.

Over the recent years, ingenious ways have been pro-
posed [2,3] for characterizing this sign change and strongly
correlated electron systems, such as the ¢-J model, have
been studied. In particular, following the suggestion to
focus on the T = 0 Hall constant within linear response
theory [4], the Ry of aholein the r-J model was analyzed
and a numerical method was proposed for calculating the
Hall response in ladder systems [5]. This activity is partly
motivated by the physics of high temperature superconduc-
tors viewed as doped Mott-Hubbard insulators and related
Hall measurements showing a change of the sign of carri-
ers with doping [6].

In this Letter, we show that within a certain frequency
w, wave vector g limiting procedure, the T = 0, w —
0, thus “reactive" Hall constant, is simply related to the
density dependence of the Drude weight. Following this
point of view, we recover in a straightforward way: (i) the
semiclassical expressions for Ry at low density and near
aninsulating state, (ii) aphysical picture of the sign change
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of carriers in the vicinity of a Mott-Hubbard transition
and its dependence on interaction strength, (iii) a common
expression used to describe the Hall constant in quasi-one-
dimensional conductors described by a band picture [7],
(iv) good accord with Ry for ladder systems calculated
using the numerical method proposed in [5].

The Hamiltonian.—In the following we will consider a
generic Hamiltonian for fermions on a lattice, where for
simplicity we describe the kinetic energy term by a one-
band tight binding model; it is straightforward to extend
thisformulation to amany-band or continuum system. The
sites are labeled /(m) along the x(y) direction with peri-
odic boundary conditions in both directions:

H = (—t)Ze’.qﬁx(’)e’.A”'c;rﬂ,mcl,m + H.c.
I,m !
+ (—t/)Ze"’ﬁ?"“/l(’)c[]thrlCl,m + H.c.
I,m

+ U, l=1,...,L;m=1,....L,. (1)
Clm (c;r,m) is an annihilation (creation) operator at site
(I,m) and the spin is neglected as it entersin atrivial way
in the formulation. The U term can represent a many-
particle interaction or a one-particle potential. We take the
lattice constant so as to consider a unit volume, electric
chargee = 1 and /i = 1. We add a magnetic field along
the z direction, modul ated by a one component wave vector
g aong the y direction, generated by the vector potential
A,,; this alows one to take the zero magnetic field limit
smoothly [8]:
iB igm B

-~ .., . =e -,
2sin(g/2

(q/2) 'q (2)
_ Am) _ Betq(m+l/2)

Am — eiqm

Bm+]/2 = _(Am+l

[for convenience, we present the long wavelength limit,
substituting 2sin(g/2) — ¢]. Electric fields along
the x,y directions are generated by time dependent
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vector potentials: x X
T = ol (@ — O)LE*(1)]
.. E* (1) ia(m . 1 ‘
G0 = T Gpapl0) = TG0 o X (@ = OF (1),
E*(1) = Ee™™,  E'(t) = iE"¢ ™, (3) 1, X ©)
. U = == xb (0 = O)E*(1)
Z=w t+in. q
2
Currents are defined through derivatives of the Hamilto- + <3> lX»/u,nq(“’ = 0)[iE”(1)],
nian expanded to second orderdii~': q9/ @
where the subscript zero denotes the leading ordes in
x_ _OH vy _O0H response,
Fom e T g (4)
, (0|A|n){(n|B|0) + H.c.
. . . )(AB(CU = O) Z s (10)
with the paramagnetic parts: o) E, — Ep
. and|n) (E,) are eigenstates (eigenvalues) of the Hamilto-
Jjt = tZ(ie’A”’cHl,mcl’m + H.c), nian in the presence of the magnetic field.
5 Now, following Kohris observation [1], we can identify
®) the different terms as derivatives of the ground state ener
Y igm+1/2)(: .t +H ) . 0 " ) ) g . - qy
Jg =1 Z‘f (iCim+1CLm ). densitye” of a fictitious Hamiltonian depending on static
Lm &%, u, fields:
The reactive Hall response.—From standard linear re-
' = (—I)Z( @it + H.c)
sponse theory we obtain e Cm mClm
<JX> = O jx tEx(t) + Oix ‘Ey(t) ~
7 ) e (6) + (=)D (el ircim + HE) + pgng + U
<J > = o er (t) + O'MME)(I‘) Im
(11)
(...) are ground state expectation values in the presence . _ )
the magnetic field, with the conductivities gorH(/\, M), usm29 ;[)he followmg identity,
0
0
i ’H €ur =
o = ¢ (saeaga) ~xrr) h e~ i
v (Ol |n><n )L|O> + H.c.
- (7) -3 . @)
. izt — Ep
XAB l/ dt e ([A(t), B]). n>0
0 we can rewrite the currents as
Now, in contrast to the usual derivation of the Hall con- o ¢ b o -1
stant expression, we will keep thedependence explicit o = LE* (] + p €gou, B (1),
by converting the current-current to current-density corre- (13)
lations using the continuity equation: (I = AR _Eu LLE ()]
1 . . . .
Iy = 0ppEX(t) + — xjon, EV (1), Finally, setting(J3), = 0 we determine the reactive Hall
q gy constant:
1 7\ i ®) 1 EY 0
) € x
<J‘> == Xn j‘E (1) + < ) ananEy([)s Ry = —— o 4 0 0 bad 0 0 .
q B <J >() B Ed,xqsxeluqluq + E,uqqﬁ"eqﬁ'*,uq
with ng = Zl m —le 'qm)cl mClm- (14)

At T = 0, the response is nondissipative so we will Neglecting theO(B?) cross termeM ¢re¢ e and Taylor
study the reactive (out-of-phase) induced currents. Furexpanding the numerator i, we can rewriteRy as

thermore, at this point we will consider tiacreening €0 20

(or slow) response in the direction, by taking théq, w) Y Bap, 0" aﬂq(agw ) 15

limits in the orderw — 0 firstandg — 0 last; in the usual H=4q Gpeed g gl (15)
Mg lhg "¢ €, u,

“transport (or fast) response the limits are in the opposite, = . i . .
order [9]. As we discuss below, this approach leads to &sing (12) we find the final expression

simple physical picture for the Hall constant and it might g&
be argued that at least for certain cases, for example, for Ry = . (16)
a system of finite size in the direction, it is indeed the Dxy

right one. The expressions (8) for the currents become where
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D — 1 ol — T'0 metal-insulator transition.  This picture emerges, on
" 9 ( 410) the one hand, by an exact calculation Rf for ladder
o - systems using the numerical method of Ref. [5] and on
0 0) + H.c. . .
_ z< l |"><n|]‘1| ) ¢ } the other hand, from the expression (18) assuming nearly
n E, — Eo decoupled chains’(— 0) and calculatingDd(n) for each

' ) (17)  chain analytically using the Bethe ansatz method [12,13].
Jg = (=1) Z(—ie’qm)(ic,Jerc,,m + H.c), It is clear that this analytical approach refers to either
Lm ladder (with#’ — 0) or quasi-one-dimensional models.
. igmy 1 Three prototype models will be discussed: the Hubbard
Ty = (1) ]Z(_l" ) (Crrimerm + H.C). model, as the most experimentally relevant, the spinless
1 o " . . . fermions model {z-V") showing both a metallic and an
D = 3€4:¢- the Drude we|ght, is identical t®, by insulating phase depending on interaction strength, and the
the replacement of} (T}) by j* (T%). k, =€l , =

) L Mgk supersymmetri¢-J model.
dng /9, is the compressibility corresponding to the den- (i) The Hubbard model is given by the Hamiltonian
sity modulationn,,. Notice that the spatial dependence of

_ t
J2 andn, is the same as that af,,. H = (=0) Y (/s 1maClms + HC)
Taking theg — 0 limit, we obtain a particularly simple Lm

expression foRy: + (—t’)Z(c;rm+l oClmo + H.C)

1 oD o

Ry = —— 2= (18)

D on

A handwaving argument leading to expression (18) for + U D Mt - (20)

t' — 0 is as follows:A,, corresponds to a twist of bound-
ary conditions on chaim:, inducing an extra current on
each chain proportional tb (besides the uniform one in-
duced by the fluxp*); minimization of the energy at fixed
x current gives rise to am-dependent charge den.s'lty. The This behavior is characteristic of correlated systems un-

Hall potgntlaf Kq 1S then determined b_y requiring the dergoing a metal-insulator transition at half filling: at
cancellation of this induced charge density, leading to thc,z

. itiesRy = —1/n, whil half fillingRy =
above expression by the definition of the Hall constantf\iv/g??ﬁglizsﬁion of {:ﬁa\évgéeop E%rn ;ti:elr::%rr?ers de-

_(14). Note that a similar idea, analyzing the Hall Con_Stan%Jending on the details of the interaction.
in terms of independent channels (edge states), exists In (i) The 7-V model on a ladder is given by

the literature of the quantum Hall effect [10].
This expression is appealing as it gives a direct, intu- H = (—t)Z(cLl,ch,m + H.c)

l,m
Clmo (c;f,,,,,,) is an annihilation (creation) operator at site
(I, m) of a fermion with spinc = 1,|. Ry extracted from
a Bethe ansatz calculation bf(n) for the one-dimensional
Hubbard model [13] is shown in Fig. 1.

itive understanding for the change of sign of charge carri- Lm

ers in the vicinity of a metal-insulator transition. First, at , t

low densitiesD = n giving Ry = —1/n; close to a Mott + (=) Defierz + HE) + VX miisim .
insulatorD « § = 1 — n, implying Ry = +1/56. Fur- ! b (1)

thermore, we obtain a change of sign in the vicinity of a . Lo _
Mott transition at a density which depends on the interac!—Iere and in the following = 1,..., Ly,m = 1,2. For a
tion strength and is given by the position of the maximum
of D. Second, for independent electrons, whbrés pro- 10
portional to the kinetic energy, by taking the limit— 0
and calculatingd as a sum oD’s for individualx chains,
we obtain from (18)
2t . (hn T 1

b== Sm( 2 > Re =% anmy: 19
an expression used for the Hall constant of quasi-one-.* 0
dimensional compounds [7]. Considering that the- 0
limit might by subtle, it is of particular theoretical and ex-
perimental interest whether the Hall constant of quasi-one-
dimensional correlated systems [11] is indeed given by the
expression and thus related to the Drude weight of the in-
dividual chains. The same applies for the transverse Hall —1g & - - - -
effect of weakly coupled planes. 0 0.2 0.4 0.6 0.8 1

Examples.—In this section we present a generic picture n

for the behavior of the Hall constant for models of FiG. 1. Ry for the Hubbard model from expression (18) for
strongly correlated fermions showing a Mott-Hubbard:’ — 0.
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FIG. 3. Ry for thes-J ladder from expression (18) fof — 0
(continuous line) and from a numerical evaluation (symbols).

behavior of the Hall constant in the vicinity of a metal-
insulator transition and present an intriguing link between
s s s the Hall constant and the Drude weight. It is possible that
0 01 02 03 04 05 Ry is dominated at low temperatures by correlations and
n not the relaxation mechanism so this formulation could
FIG. 2. Ry for thes-V ladder from expression (18) fot — 0 have more general validity.
(continuous line) and from a numerical evaluation (symbols). |n conclusion, the emerging simple physical picture
V = t(4); metallic (insulating) phase at = 0.5. raises the question of the relation of this novel formulation
) ) ) ) ) to the traditional semiclassical approach to the Hall
single chain, this model describes a metallic phase at alionstant, its range of validity, and the role of relaxation in
densities fo < 27, while for V' > 2z itis an insulator at  the description of the Hall effect and of the perspectives
half f|”|ng In Flg 2 we ShOWRH calculated numerica”y for an extension at finite temperatures_
on finite systems for two values ofand analytically from Part of this work was done during visits of P.P. and
(18) in thet’ — 0 limit. The numerical evaluation being M. L. at IRRMA as academic guests of EPFL. X.Z. and
especially sensitive to finite size effects for— 0, we  F N. acknowledge support by the Swiss National Founda-

study relatively large values of. tion Grant No. 20-49486.96, the EPFL, the University of
Results forRy clearly show the difference between the Frinourg and the University of Neuétel.

metallic regimeV = ¢, where at half filling ¢ = 0.5) we
get Ry = 0, while in the insulating regim& = 4¢, we
are dealing withRy(n — 0.5) — oo,

(i) The 7-J model on a ladder is given by the

[1] W. Kohn, Phys. Rev133, A171 (1964).
[2] H.E. Castillo and C. A. Balseiro, Phys. Rev. L&d8, 121

Hamiltonian (1992).
H=(-1) %(C;L+l,m,a-cl,m,0' + H.c) [3] ﬁféélzgj?i§§3§0tllar’ and G.S. Canright, Phys. Rev. B
’ [4] P. Prelosek, Phys. Rev. B55, 9219 (1997).
4l T [5] P. Preloek, M. Long, T. Markez, and X. Zotos, Phys. Rev.
o t)z(cl""’cl’z’” + He) Lett. 83, 2785 (1999).
L. 1 [6] For a review, see, e.g., N.P. Ong, Physical Proper-
+ JZ<Sl,mSl+l,m — —nz,mn1+1,m>- (22) ties of High Temperature Superconductors, edited by
. Lm 4 D.M. Ginsberg (World Scientific, Singapore, 1990),
S1w is the spin operator at sité, m) and the double occu- Vol. 2.
pancy on a site is forbidden. [7] J.R. Cooperet al., J. Phys. (Paris)38, 1097 (1977);
In Fig. 3 we show agai® calculated analytically for K. Maki and A. Virosztek, Phys. Rev. B1, 557 (1990).

[8] H. Fukuyama, H. Ebisawa, and Y. Wada, Prog. Theor. Phys.
42, 495 (1969).
[9] J. M. Luttinger, Phys. Rev135, A1505 (1964).

the “supersymmetric model, J = 2¢, and by numerical
evaluation for/ = 0.5¢ and different size systems.

The above three examples show a remarkable agret[al-O] B.1. Halperin, Phys. Rev. &5, 2185 (1982)
ment between the numerical evaluatiorRgf on finite size [11] O.r .of the str,ipe ph.ase i.n hiéfm compounds; T. Noda,
systems using the method of Ref. [5] (at finitg and the H. Eisaki, and S. Uchida, Scien@86, 265 (1999).
analytical calculation using (18) faf — 0, indicating @  [12] F.D. M. Haldane, Phys. Let81A, 153 (1981).
relative insensitivity on the transverse coupliridor lad-  [13] N. Kawakami and S-K. Yang, Phys. Rev. 81, 7844
ders. These results confirm the intuitive picture for the (1991).

380



