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Reactive Hall Response
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The zero temperature Hall constant RH , described by reactive (nondissipative) conductivities, is ana-
lyzed within linear response theory. It is found that in a certain limit RH is directly related to the density
dependence of the Drude weight, implying a simple picture for the change of sign of charge carriers in
the vicinity of a Mott-Hubbard transition. This novel formulation is applied to the calculation of RH in
quasi-one-dimensional and ladder prototype interacting electron systems.

PACS numbers: 71.27.+a, 71.10.Fd, 72.15.Gd
It is now well known that in strongly correlated sys-
tems, zero temperature (T � 0), the reactive part of the
conductivity can be used as a criterion of a metallic or
insulating ground state [1]. In particular, following the
work of Kohn, the imaginary part of the conductivity,
s00�v ! 0� � 2D�v, characterized by D (now called the
“Drude weight” or charge stiffness), can be related to the
ground state energy density e0 dependence on an applied
fictitious flux f as D � �1�2�≠2e0�≠f2jf!0.

A similar question is posed by the doping of an in-
sulating state, where it would be interesting to have a
simple description of the charge carriers sign as probed
in a Hall experiment. For instance, we would like to de-
scribe the doping of a Mott-Hubbard insulator; within a
semiclassical approach it is expected that the Hall constant
RH � 11�ed, holelike (positive) near half filling (d �
1 2 n, n � density), changing to RH � 21�en, elec-
tronlike at low densities, the turning point depending on
the interaction.

Over the recent years, ingenious ways have been pro-
posed [2,3] for characterizing this sign change and strongly
correlated electron systems, such as the t-J model, have
been studied. In particular, following the suggestion to
focus on the T � 0 Hall constant within linear response
theory [4], the RH of a hole in the t-J model was analyzed
and a numerical method was proposed for calculating the
Hall response in ladder systems [5]. This activity is partly
motivated by the physics of high temperature superconduc-
tors viewed as doped Mott-Hubbard insulators and related
Hall measurements showing a change of the sign of carri-
ers with doping [6].

In this Letter, we show that within a certain frequency
v, wave vector q limiting procedure, the T � 0, v !
0, thus “reactive" Hall constant, is simply related to the
density dependence of the Drude weight. Following this
point of view, we recover in a straightforward way: (i) the
semiclassical expressions for RH at low density and near
an insulating state, (ii) a physical picture of the sign change
0031-9007�00�85(2)�377(4)$15.00 ©
of carriers in the vicinity of a Mott-Hubbard transition
and its dependence on interaction strength, (iii) a common
expression used to describe the Hall constant in quasi-one-
dimensional conductors described by a band picture [7],
(iv) good accord with RH for ladder systems calculated
using the numerical method proposed in [5].

The Hamiltonian.—In the following we will consider a
generic Hamiltonian for fermions on a lattice, where for
simplicity we describe the kinetic energy term by a one-
band tight binding model; it is straightforward to extend
this formulation to a many-band or continuum system. The
sites are labeled l�m� along the x� y� direction with peri-
odic boundary conditions in both directions:

H � �2t�
X
l,m

eifx �t�eiAm c
y
l11,mcl,m 1 H.c.

1 �2t0�
X
l,m

eif
y
m11�2�t�c

y
l,m11cl,m 1 H.c.

1 Û, l � 1, . . . , Lx ; m � 1, . . . , Ly . (1)

cl,m �cy
l,m� is an annihilation (creation) operator at site

�l, m� and the spin is neglected as it enters in a trivial way
in the formulation. The Û term can represent a many-
particle interaction or a one-particle potential. We take the
lattice constant so as to consider a unit volume, electric
charge e � 1 and h̄ � 1. We add a magnetic field along
the z direction, modulated by a one component wave vector
q along the y direction, generated by the vector potential
Am; this allows one to take the zero magnetic field limit
smoothly [8]:

Am � eiqm iB
2 sin�q�2�

� eiqm iB
q

,

Bm11�2 � 2�Am11 2 Am� � Beiq�m11�2�
(2)

[for convenience, we present the long wavelength limit,
substituting 2 sin�q�2� ! q]. Electric fields along
the x, y directions are generated by time dependent
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vector potentials:

fx,y�t� �
Ex,y�t�

iz
, f

y
m11�2�t� � eiq�m11�2�fy�t� ;

Ex�t� � Exe2izt , Ey�t� � iEye2izt ;

z � v 1 ih .

(3)

Currents are defined through derivatives of the Hamilt
nian expanded to second order infx,y:

Jx � 2
≠H
≠fx

, Jy
q � 2

≠H
≠fy

, (4)

with the paramagnetic parts:

jx � t
X
l,m

�ieiAm c
y
l11,mcl,m 1 H.c.� ,

jy
q � t0

X
l,m

eiq�m11�2��icy
l,m11cl,m 1 H.c.� .

(5)

The reactive Hall response.—From standard linear re-
sponse theory we obtain

�Jx� � sjxjx Ex�t� 1 sjxj
y
q Ey�t� ,

�Jy
q � � sj

y
qjx Ex�t� 1 sj

y
qj

y
q Ey�t� .

(6)

�. . .� are ground state expectation values in the presenc
the magnetic field, with the conductivities

sjajb �
i
z

µø
≠2H

≠fa≠fb

¿
2 xjajb

∂
,

xAB � i
Z `

0
dt eizt��A�t�, B�� .

(7)

Now, in contrast to the usual derivation of the Hall con
stant expression, we will keep theq dependence explicit
by converting the current-current to current-density cor
lations using the continuity equation:

�Jx� � sjxjx Ex�t� 1
1
q

xjxnq E
y�t� ,

�Jy
q � � 2

1
q

xnqjx Ex�t� 1

µ
z
q

∂2

xnqnq

i
z

Ey�t� ,

(8)

with nq �
P

l,m�2ieiqm�cy
l,mcl,m.

At T � 0, the response is nondissipative so we w
study the reactive (out-of-phase) induced currents. F
thermore, at this point we will consider the“screening”
(or slow) response in they direction, by taking the�q, v�
limits in the orderv ! 0 first andq ! 0 last; in the usual
“transport” (or fast) response the limits are in the oppos
order [9]. As we discuss below, this approach leads to
simple physical picture for the Hall constant and it mig
be argued that at least for certain cases, for example,
a system of finite size in they direction, it is indeed the
right one. The expressions (8) for the currents become
378
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�Jx�0 � s00
jxjx �v ! 0� �iEx�t��

1
1
q

x 0
jxnq

�v � 0�Ey�t� ,

�Jy
q �0 � 2

1
q

x 0
nqjx �v � 0�Ex�t�

1

µ
v

q

∂2 1
v

x 0
nqnq

�v � 0� �iEy�t�� ,

(9)

where the subscript zero denotes the leading order inv

response,

x 0
AB�v � 0� �

X
n.0

�0jAjn� �njBj0� 1 H.c.
En 2 E0

, (10)

and jn� �En� are eigenstates (eigenvalues) of the Hamilto
nian in the presence of the magnetic field.

Now, following Kohn’s observation [1], we can identify
the different terms as derivatives of the ground state energ
densitye0 of a fictitious Hamiltonian depending on static
fx, mq fields:

H � �2t�
X
l,m

�eifx

eiAmc
y
l11,mcl,m 1 H.c.�

1 �2t0�
X
l,m

�cy
l,m11cl,m 1 H.c.� 1 mqnq 1 Û .

(11)

For H�l, m�, using the following identity,

e0
ml �

≠2e0

≠m≠l
� �0j

≠2H
≠m≠l

j0�

2
X
n.0

�0j≠H
≠m jn� �nj≠H

≠l j0� 1 H.c.

En 2 E0
, (12)

we can rewrite the currents as

�Jx�0 �
e

0
fxfx

v
�iEx�t�� 1

µ
21
q

∂
e

0
fxmq

Ey�t� ,

�Jy
q �0 �

1
q

e
0
mqfxEx�t� 2

v

q2 e0
mqmq

�iEy�t�� .

(13)

Finally, setting�Jy
q �0 � 0 we determine the reactive Hall

constant:

RH 	 2
1
B

Ey

�Jx�0
�

q
B

e
0
mqfx

e
0
fxfxe0

mqmq
1 e

0
mqfxe

0
fxmq

.

(14)

Neglecting theO�B2� cross terme
0
mqfxe

0
fxmq

and Taylor
expanding the numerator inB, we can rewriteRH as

RH � q

≠3e0

≠B≠mq≠fx

e
0
fxfxe0

mqmq

� q

≠

≠mq
� ≠2e0

≠B≠fx �

e
0
fxfxe0

mqmq

. (15)

Using (12) we find the final expression

RH � 2

≠Dq

≠mq

Dkq
, (16)

where



VOLUME 85, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 10 JULY 2000

n
o

-

e

s

t
r

m

n

n
t

r

r

n

on
rly

3].
er

rd
ss

the

e

n-
t

e-

r

Dq �
1
2

∑
�0j 2 Tx

q j0�

2
X
n

�0jjxjn� �njjx
q j0� 1 H.c.

En 2 E0

∏
,

jx
q � �2t�

X
l,m

�2ieiqm� �icy
l11,mcl,m 1 H.c.� ,

Tx
q � �2t�

X
l,m

�2ieiqm� �cy
l11,mcl,m 1 H.c.� .

(17)

D �
1
2e

0
fxfx , the Drude weight, is identical toDq by

the replacement ofjx
q (Tx

q ) by jx (Tx). kq � e0
mqmq

�
≠nq�≠mq is the compressibility corresponding to the de
sity modulationnq. Notice that the spatial dependence
jx

q andnq is the same as that ofAm.
Taking theq ! 0 limit, we obtain a particularly simple

expression forRH :

RH � 2
1
D

≠D
≠n

. (18)

A handwaving argument leading to expression (18) f
t0 ! 0 is as follows:Am corresponds to a twist of bound
ary conditions on chainm, inducing an extra current on
each chain proportional toD (besides the uniform one in-
duced by the fluxfx); minimization of the energy at fixed
x current gives rise to anm-dependent charge density. Th
“Hall potential” mq is then determined by requiring the
cancellation of this induced charge density, leading to t
above expression by the definition of the Hall consta
(14). Note that a similar idea, analyzing the Hall consta
in terms of independent channels (edge states), exist
the literature of the quantum Hall effect [10].

This expression is appealing as it gives a direct, in
itive understanding for the change of sign of charge ca
ers in the vicinity of a metal-insulator transition. First, a
low densities,D ~ n giving RH � 21�n; close to a Mott
insulatorD ~ d � 1 2 n, implying RH � 11�d. Fur-
thermore, we obtain a change of sign in the vicinity of
Mott transition at a density which depends on the intera
tion strength and is given by the position of the maximu
of D. Second, for independent electrons, whereD is pro-
portional to the kinetic energy, by taking the limitt0 ! 0
and calculatingD as a sum ofD’s for individualx chains,
we obtain from (18)

D �
2t
p

sin

µ
pn
2

∂
, RH � 2

p

2
1

tan�pn
2 �

, (19)

an expression used for the Hall constant of quasi-o
dimensional compounds [7]. Considering that thet0 ! 0
limit might by subtle, it is of particular theoretical and ex
perimental interest whether the Hall constant of quasi-o
dimensional correlated systems [11] is indeed given by
expression and thus related to the Drude weight of the
dividual chains. The same applies for the transverse H
effect of weakly coupled planes.

Examples.— In this section we present a generic pictu
for the behavior of the Hall constant for models o
strongly correlated fermions showing a Mott-Hubba
-
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metal-insulator transition. This picture emerges, o
the one hand, by an exact calculation ofRH for ladder
systems using the numerical method of Ref. [5] and
the other hand, from the expression (18) assuming nea
decoupled chains (t0 ! 0) and calculatingD�n� for each
chain analytically using the Bethe ansatz method [12,1
It is clear that this analytical approach refers to eith
ladder (witht0 ! 0) or quasi-one-dimensional models.

Three prototype models will be discussed: the Hubba
model, as the most experimentally relevant, the spinle
fermions model (“t-V”) showing both a metallic and an
insulating phase depending on interaction strength, and
supersymmetrict-J model.

(i) The Hubbard model is given by the Hamiltonian

H � �2t�
X
l,m

�cy
l11,m,scl,m,s 1 H.c.�

1 �2t0�
X
l,m

�cy
l,m11,scl,m,s 1 H.c.�

1 U
X
l,m

nl,m,"nl,m,# . (20)

cl,m,s �cy
l,m,s� is an annihilation (creation) operator at sit

�l, m� of a fermion with spins � ", #. RH extracted from
a Bethe ansatz calculation ofD�n� for the one-dimensional
Hubbard model [13] is shown in Fig. 1.

This behavior is characteristic of correlated systems u
dergoing a metal-insulator transition at half filling: a
low densitiesRH � 21�n, while near half fillingRH �
11�d, the position of change of sign of the carriers d
pending on the details of the interaction.

(ii) The t-V model on a ladder is given by

H � �2t�
X
l,m

�cy
l11,mcl,m 1 H.c.�

1 �2t0�
X

l

�cy
l,1cl,2 1 H.c.� 1 V

X
l,m

nl,mnl11,m .

(21)
Here and in the followingl � 1, . . . , Lx , m � 1, 2. For a
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D
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D:

FIG. 1. RH for the Hubbard model from expression (18) fo
t0 ! 0.
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FIG. 2. RH for the t-V ladder from expression (18) fort0 ! 0
(continuous line) and from a numerical evaluation (symbols
V � t�4t�; metallic (insulating) phase atn � 0.5.

single chain, this model describes a metallic phase at
densities forV , 2t, while for V . 2t it is an insulator at
half filling. In Fig. 2 we showRH calculated numerically
on finite systems for two values oft0 and analytically from
(18) in thet0 ! 0 limit. The numerical evaluation being
especially sensitive to finite size effects fort0 ! 0, we
study relatively large values oft0.

Results forRH clearly show the difference between the
metallic regimeV � t, where at half filling (n � 0.5) we
get RH � 0, while in the insulating regimeV � 4t, we
are dealing withRH�n ! 0.5� ! `.

(iii) The t-J model on a ladder is given by the
Hamiltonian

H � �2t�
X
l,m

�cy
l11,m,scl,m,s 1 H.c.�

1 �2t0�
X

l

�cy
l,1,scl,2,s 1 H.c.�

1 J
X
l,m

µ
�Sl,m

�Sl11,m 2
1
4

nl,mnl11,m

∂
. (22)

�Slm is the spin operator at site�l, m� and the double occu-
pancy on a site is forbidden.

In Fig. 3 we show againRH calculated analytically for
the “supersymmetric” model, J � 2t, and by numerical
evaluation fort0 � 0.5t and different size systems.

The above three examples show a remarkable agr
ment between the numerical evaluation ofRH on finite size
systems using the method of Ref. [5] (at finitet0) and the
analytical calculation using (18) fort0 ! 0, indicating a
relative insensitivity on the transverse couplingt0 for lad-
ders. These results confirm the intuitive picture for th
380
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FIG. 3. RH for the t-J ladder from expression (18) fort0 ! 0
(continuous line) and from a numerical evaluation (symbols).

behavior of the Hall constant in the vicinity of a metal-
insulator transition and present an intriguing link betwee
the Hall constant and the Drude weight. It is possible th
RH is dominated at low temperatures by correlations an
not the relaxation mechanism so this formulation coul
have more general validity.

In conclusion, the emerging simple physical pictur
raises the question of the relation of this novel formulatio
to the traditional semiclassical approach to the Ha
constant, its range of validity, and the role of relaxation i
the description of the Hall effect and of the perspective
for an extension at finite temperatures.
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