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Transport and conservation laws
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We study the effect of conservation laws on the finite-temperature transport properties in one-dimensional
integrable quantum many-body systems. We show that the energy current is closely related to the first con-
servation law in these systems and therefore ttieymal transport coefficients are anomalous. Using an
inequality on the time decay of current correlations we show how the existence of conserved quantities implies
a finite charge stiffnes@veight of the zero-frequency component of the conductiatyd so ideal conductivity
at finite temperature$S0163-182607)03318-3

One-dimensional(1D) integrable quantum many-body orthogonality will not enter. Further, we can write
(IQM) systems, such as the Heisenberg spin-1/2 chain, thA(t)A)=Caa+ C(t) as the sum of a time-independent fac-
Hubbard, or supersymmetrieJ model, are characterized by tor,
a macroscopic humber of conservation ldwsWe have re-
cently proposed, based on analytical and numerical studies, _ 2
that IQM systems show dissipationless finite-temperature CAA_; Pa E [(alAlB)I*, @
conductivity?~’ It is natural to think that this anomalous
transport behavior is related to the macroscopic nhumber
conserved quantities characterizing these systems. A set of
conservation laws is represented by local involutive opera- CtH=>, pa > |(alAlb)|2eila=)t, (3)
tors Q,,, commuting with each othdiQ,,,Q,,]=0 and with a  blepFea
the Hamiltonian[Q,,H]=0. The indexn indicates that the Here |a),|b) are eigenstates of the Hamiltonian,
operatorQy, is of the formQ,==;_,"qf", whereq’ are local . —e~A</Z the corresponding Boltzmann weights, agd
operators involvingn sites around sité, on a lattice ofL  the inverse of the temperature. For time correlations

€= €4

Oz,md a time-dependent one,

sites. (A(t)A) with nonsingular low-frequency behavior, the term
Although rather formal procedures exist for the construc-"mhx(1/-r)fgc(t)dt goes to zero and S0Cpa
tion of these operators! it is not clear how to study their =lim,_.(A(t)A),

physical content and even more how to take them into ac-

count in the analysis of transport properties. In this paper we AQ,)?

show that, in different models of actual interest, the first CAAZEn: W 4)
nontrivial quantityQ5 (Q, often denotes the Hamiltonian :

has a simple physical significance: It(sr it is closely re- In particular, we will use this inequality in the analysis

lated tg the energy currentoperator. Further, we analyze of the real part of the conductivity, o'(w)
how the coupling of the energy current or current operator tCEZwD(T)é(w)vLa,eg(w), related within linear response
the conserved quantities results to time correlations not deheory to the current-current correlatiqd(t)J). A finite
caying to zero at long times. Thus, transport does not have ggjye of the charge stiffnes®D, given also by D
simple diffusive character and within the Kubo linear re- —1,,5"(w)|,, .o, implies an ideally conducting systefh®

port coefficients. . _ following inequality holds for the charge stiffness:
We can relate the time decay of correlations to the local
conserved quantities in the Hamiltonian systems we discuss B (IQn?
by using an inequality proposed by MaZur: D=0 ; Q@ )
n
1T (AQp)? In this derivation, we assume again that the regular part of
Tlincﬁfo <A(I)A>dt>§n: <Q§> ' @ the conductivity o) shows a nonsingular behavior at

low frequencies so that the contribution frad{t) in Eq. (1)
Here( ) denotes thermodynamic average, the sum is over @anishes. This is a very mild condition for the physical sys-
subset of conserved quantiti€s, , orthogonal to each other, tems we consider; as numerical simulations indi€dtthese
(QnQm) =(Q2)8, m, AT=A, and(A)=0. In the following, IQM systems are characterized by a pseudogap and so a
we will only considerQyj in relation (1) so that the issue of vanishing regular pardre{w—0).
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_ To relateD to Cjj, it is5conv_e_nient to use a generaliz_a- jiE:Jny(SX—lSZS.yH—S.y—le X )
tion of Kohn's approact?® to finite temperatures. In this _ _
formulationD(T) can be expressed as the thermal average of +cyclic permutations ofx,y,z). (10

curvatures of energy levels in a Hamiltonian describing a - ) .
system on a ring pierced by a fictitious flux, Now it is straigthforward to verify that the global energy

D:(1/2L)Eapa(‘926a/a¢2)|¢—»0- Evaluating the second de- current operatod® commutes with the Hamiltonia®). Fur-

rivative of the free energf as a function of the fluxp we ther, JE coincides with the first nontrivial conserved quantity
find Q3 as obtained from an expansion of the transfer matrix in
the algebraic Bethe ansatz metHdtdn agreement with the
&°F Je€, d€,\ ? notation Q, for the Hamiltonian, the local energy operator
WZZLD—IBE Pa(% ; paﬁ) - (8 h;;,; involves two sites i(i+1), while the local energy
current operatog®= jF involves three sitesi ¢ 1,i,i+1).
In the models we will discuss, the third term on the right-  The vanishing commutatdrJ®,H]=0 implies that the
hand side(RHS) vanishes by symmetrygsumming overk  energy current time correlations are independent of time:
and —k subspaces Further, these systems show no persis-
tent currents at finite temperatures in the thermodynamic 5
limit; therefore,d*F/d¢?| 4_o— 0 in this limit. We have nu- <JE(t)JE>:§ Paila, (11)
merically verified that this is indeed the case for tempera-
tures larger than the level spacing; at zero temperature, thekghere jg, are the eigenvalues of, J¥a)=jg,la). The
is no contradiction with Kohn's formula fdb as the second hondecaying of the energy current leads tivgerging ther-
term on the RHS vanishes in a ground state with zero curmal conductivityrelated to thgJ%(t)J%) correlation’
rent. Finally, ase,/d¢| 4_.o=(alj|a) and degenerate levels ~ AS for the conductivity, it is more relevant to discuss the
contribute a vanishing weight in ER), we arrive at relation ~fermionic version of the Heisenberg model, defined through
(5). This inequality provides a lower bound for the chargethe Jordan-Wigner transformation, the so-calied model:
stiffnessD which, if not zero, implies ideal conductivity at L L
finite temperatures. 1 1
In gengral, it is difficult to evaluate the right-hand side of H :(_t)Zﬁ (cleiat H'C')+V2‘1 (Mi=2)(Ni1=2),
the inequality(4) involving the “overlap” (AQ,). However, (12)
we will give some examples below, this correlation can eas- + o )
ily be evaluated in the case of a grand canonical trace ovefnere ci(ci) denote annihilation(creation operators of
states, in the thermodynamic limit and fg—0. We thus  SPinless fermions at siteand ni=clc;.
obtain the charge stiffness in leading orderdn In this case, the corresponding energy current operator
Before studying concrete models, we construct the energipat commutes with the Hamiltonigid2) is given by
current operator as follows: We consider Hamiltonians de-
fined on a 1D lattice withL sites and periodic boundary JEZZ (—t)(icl ¢ 1+ H.C)+ Vi i a(ni_ 1+ N ,—1),
conditionsh_ | ,;=h, ; of the form |

2
+B

L (13
H=> hiisq. 7) whereji,Hl:(—t)(—icLlciJrH.c.) is the particle current.
=1 Therefore, for this fermionic model, we find that the

Because the energy is a conserved quantity, the time evolgd () IF) as well as tthE(F)‘D correlations are time inde-
tion of the local energy operatdr ; . ,(t) can be written as pendent, implying a diverging thermal conductivity and ill-

the discrete divergence of the energy current operatofi€fined thermopower, respectively.

JE=3L jE: Regarding the charge stiffneBs we can evaluate analyti-
=1 cally (JQ5)?/(Q3) for B—0 and in the thermodynamic
ohi i11(b) limit, obtaining from Eq.(5),

S =iTH b (0]= (50— D), ©)
_B2Vip(1-p)(2p—1)°

D=3 1+V%(2p>—2p+1) "’

(14

where h; ;. (t)=e*hi; 67 and  jF=—i[hi_y,
h; i+1]. Now, by direct evaluation for some IQM systems,

we will see that the energy curredf is closely related to a Where p is the fermion density=1. We note that forp
conserved quantity. #1/2, D is finite, implying ideal conductivity as we have

(i) Heisenberg modelThe general anisotropic Heisenberg Suggested befofeFor p=1/2, this inequality is, however,

Hamiltonian is given by insufficient for proving thaD is nonzero. Due to electron-
hole symmetry, this remains true even if we consider all the
L L higher-order conserved quantiti€s, . The reason is that, for
H:i21 hi,i+1:i21 (5SS 1+ 9,99, 1 +3,55 ), the Heisenberg model, a@,’s can be generatéd by a re-

©) cursive relation B,Q,,]~Q,+1 whereB is a “boost” opera-
tor given byB=3X,nh, ,,.1. Then by the electron-hole trans-
where S*=307", of are Pauli spin operators with compo- formation ¢;=(—1)"C;, we see thatl——J but Q,—Q,
nentsa=x,y,z at sitei. The local energy current operator and therefore forp=1/2, (JQ,)=0. The eventual nonor-
jiE is thogonality of theQ,’s is not important as we can see by
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TABLE I. ((JQ3)?/(Q3))/C;; as a function of filingp and  when the factotU/2 in Eq. (17) is replaced byU. So the

Vit energy current)®=3!,jF does not commute with the
Hamiltonian. However, as® has a finite overlagJ®Qs),

Vit p=113 p=1/4 with the conserved quantit®s we still find that the energy

0.0 0.0 0.0 current correlations decay to a finite value at long times so

1.0 0.11 0.23 that the thermal transport coefficients are anomalous. We can

20 0.50 0.58 find a lower bound for the decay by using E@) for

4.0 0.83 0.89 B—0 and in the thermodynamic limit 1)

8.0 0.96 0.98

% 1.0 1.0 (JFQ3)?

lim (JE(t)IE)=Ceje= ——, (18

t—oo <Q3>

considering new orthogonal conserved quantities constructed

using, for instance, a Gram-Schmidt orthogonalization pro—<‘]EQ )2

cedure. >
In Table I, we present somze indicative numerical results (Q3)

comparingC,; with (JQ3)%/(Q3) for a couple ofp values 4 _ 2 2

andB—0. The results foC;; were obtained by exact diago- U_ (252001~ po)(20% 5~ 2p s+ 1)] )

nalization of the Hamiltonian matrix on finite-size lattices 4 3,2p,(1-p,)[1+U%2p% ,—2p_,+1)]

(L up to 20 sitey followed by finite-size scaling using a (19

second-order polynomial in L/ From this table we see that

(i) the smaller the density, the more the inequally is . )

exhausted by just considering the contribution frQx (ii) As for the chargf stiffness, we can again evaluate ana-

for V/t—, the overlap(JQs) gives the total weight of Ivtically (JQ3)%/(Q3) for B—0 and in the thermodynamic

C,;; indeed, studying the higher-order local conserved quanlimit, obtaining, from Eq.(5),

tities we can see that they only contribute terms in powers of

=L, 2p,(1-p,)

1N. Nevertheless, it is not clear why the inequal{) is B [US,2p.(1—p,)(2p_,— 1)
exhausted and no other, e.g., nonlocal, conserved quantities D=~ M " ,

Finally, returning to the Heisenberg model, we note that (20

the bound(14) implies anomalous spin transport at finite - _
magnetization, as the particle current maps to the spin cuwhere p,, are the densities ofr=1,| fermions,t=1. For
rent and the density to the magnetizationhalf-filing  p,=1/2, the right-hand side of E¢20) vanishes, although a

p=1/2 corresponding to zero magnetizajion general proof involving all higher conserved quantities is not
(i) Hubbard model It describes a system of interacting Possible as a boost operator for the Hubbard model is not
fermions on a lattice with Hamiltonian given by known.

(iii ) “t-J” model It belongs to a class of multicomponent
; . ) quantum systems$ describing interacting particles of differ-
H=(-1) iE_l (CiyCi+1,TH.COTH Ui21 (Miy—2)(ni;—2), ent species, singly occupying each site. The Hamiltonian acts
7 - (15) on each bondi(i+1) by the operatoP; ;. which per-
mutes neighboring particles, independently of their type:

L L

where cig(cit,) are annihilation(creatior) operators of fer-

mions with spinc=1,] at sitei andn;,= ciTUci(,.

L
Similarl bove, defi local t
by imilarly as above, we can define a local energy operator H :;1 Piiea. 21)
" U N 1 . . . .
hi,i+l=(—t)2 (C{,Ci+1stH.C)+ E[(“iT_ 3) (N —3) For this generic model we can directly verify that the energy
o current operator
+(Nisg—2)(Nitg —3)] (16)
L
From the time evolution of; ;,, we find the local energy E_ 5
current operatoj - involving sites (—1,i,i+1): = ';1 [Pi-1i:Piival (22
jE= > (—t)2(icl, 1 i 1ot H.C.)—E(J i—tiotiii+1e) coincides with a conserved quanttyand so commutes with
g the Hamiltonian.
x(n, _,—1 (17) Now considering three types of particles, corresponding
I,—o 1

to empty sites, up spins, and down spins, we recovet-the
whereji,”lg:(—t)(—icf+1gcia+ H.c.) is the particle cur- J model? for special values of/t. This model describes a
rent. By comparing this expression for the energy current teystem of interacting fermions subject to a constraint of no
the conserved quantfty Qs we find that they coincide double occupancy, with the Hamiltonian given by
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L godic (see, however, Ref. 14 for the recent notion of “quan-
H=-t E P(ciT,,ciH,,Jr H.c)P tum mixing™). Within linear response theory, this translates
oi=1 to ideal conducting behavior at finite temperatures, the
L charge stiffnesD being a measure of nonergodicity. We
+J21 (SS+1— NN 1/4)+2N—-L, (23)  also expect that the noise spectrum, described by the current-
i<

current correlations, shows anomalous behavior characteris-
fermion on sitd with spino=1, | . P:HiLzl(l—nmnu) isa Isto b7e contrgsted to_ the normal d|SS|pa'§|ve behavior we
projection operator on sites with no double occupancy{%l:q”i;lvgor similar nonintegrable systems with no conserva-
_ 1 sl .
nm;h(i:;orcrllgc,ie,\lli_s;ziﬁt:(algorglt)”lé fod/t=0, corresponding to the . In conclu_sion, IQM systems open the p.OS.Sibi"ty of study-
U/t—co limit of the Hubbard model or to the modé21) ing a new kind of(nearly dissipationless finite-temperature

Where permUIOnS o oy on bonds it “empy-up SrSECrt LBt many oy sytems Tre obserebily
spin” or “empty-down” configurations. For this case, we P

found that the corresponding energy current commutes witlﬁjuc“nrq l:_)ehavior for systems c_Iose to in_tegrability, an i_ssue
the Hamiltonian, as is also known for the particle curfént very similar to the one in classical near-integrable nonlinear

Finally, for J=2t, the “supersymmetric” mode(23) is also systems.
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