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Transport and conservation laws
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We study the effect of conservation laws on the finite-temperature transport properties in one-dimensional
integrable quantum many-body systems. We show that the energy current is closely related to the first con-
servation law in these systems and therefore thethermal transport coefficients are anomalous. Using an
inequality on the time decay of current correlations we show how the existence of conserved quantities implies
a finite charge stiffness~weight of the zero-frequency component of the conductivity! and so ideal conductivity
at finite temperatures.@S0163-1829~97!03318-3#
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One-dimensional~1D! integrable quantum many-bod
~IQM! systems, such as the Heisenberg spin-1/2 chain,
Hubbard, or supersymmetrict-J model, are characterized b
a macroscopic number of conservation laws.1–4We have re-
cently proposed, based on analytical and numerical stud
that IQM systems show dissipationless finite-temperat
conductivity.5–7 It is natural to think that this anomalou
transport behavior is related to the macroscopic numbe
conserved quantities characterizing these systems. A s
conservation laws is represented by local involutive ope
torsQn , commuting with each other@Qn ,Qm#50 and with
the Hamiltonian,@Qn ,H#50. The indexn indicates that the
operatorQn is of the formQn5( i51

Lqi
n , whereqi

n are local
operators involvingn sites around sitei , on a lattice ofL
sites.

Although rather formal procedures exist for the constr
tion of these operators,3,4 it is not clear how to study thei
physical content and even more how to take them into
count in the analysis of transport properties. In this paper
show that, in different models of actual interest, the fi
nontrivial quantityQ3 (Q2 often denotes the Hamiltonian!
has a simple physical significance: It is~or it is closely re-
lated to! the energy currentoperator. Further, we analyz
how the coupling of the energy current or current operato
the conserved quantities results to time correlations not
caying to zero at long times. Thus, transport does not ha
simple diffusive character and within the Kubo linear r
sponse theory8 is described by diverging or ill-defined tran
port coefficients.

We can relate the time decay of correlations to the lo
conserved quantities in the Hamiltonian systems we disc
by using an inequality proposed by Mazur:9

lim
T→`

1

TE0
T

^A~ t !A&dt>(
n

^AQn&
2

^Qn
2&

. ~1!

Here ^ & denotes thermodynamic average, the sum is ov
subset of conserved quantitiesQn , orthogonal to each other
^QnQm&5^Qn

2&dn,m , A
†5A, and^A&50. In the following,

we will only considerQ3 in relation ~1! so that the issue o
550163-1829/97/55~17!/11029~4!/$10.00
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orthogonality will not enter. Further, we can writ
^A(t)A&5CAA1C(t) as the sum of a time-independent fa
tor,

CAA5(
a

pa (
b~eb5ea!

u^auAub&u2, ~2!

and a time-dependent one,

C~ t !5(
a

pa (
b~ebÞea!

u^auAub&u2ei ~ea2eb!t. ~3!

Here ua&,ub& are eigenstates of the Hamiltonia
pa5e2bea/Z the corresponding Boltzmann weights, andb
the inverse of the temperature. For time correlatio
^A(t)A& with nonsingular low-frequency behavior, the ter
limT→`(1/T)*0

TC(t)dt goes to zero and soCAA

5 limt→`^A(t)A&,

CAA>(
n

^AQn&
2

^Qn
2&

. ~4!

In particular, we will use this inequality in the analys
of the real part of the conductivity, s8(v)
52pD(T)d(v)1s reg(v), related within linear respons
theory to the current-current correlation^J(t)J&. A finite
value of the charge stiffnessD, given also by D
5 1

2vs9(v)uv→0, implies an ideally conducting system.10,5

We will now argue thatD.(b/2L)CJJ and therefore the
following inequality holds for the charge stiffness:

D>S b

2L D(
n

^JQn&
2

^Qn
2&

. ~5!

In this derivation, we assume again that the regular par
the conductivitys reg(v) shows a nonsingular behavior a
low frequencies so that the contribution fromC(t) in Eq. ~1!
vanishes. This is a very mild condition for the physical sy
tems we consider; as numerical simulations indicate,6,7 these
IQM systems are characterized by a pseudogap and
vanishing regular parts reg(v→0).
11 029 © 1997 The American Physical Society
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To relateD to CJJ , it is convenient to use a generaliz
tion of Kohn’s approach10,5 to finite temperatures. In this
formulationD(T) can be expressed as the thermal averag
curvatures of energy levels in a Hamiltonian describing
system on a ring pierced by a fictitious fluxf,
D5(1/2L)(apa(]

2ea /]f2)uf→0. Evaluating the second de
rivative of the free energyF as a function of the fluxf we
find

]2F

]f2 52LD2b(
a

paS ]ea
]f D 21bS (

a
pa

]ea
]f D 2. ~6!

In the models we will discuss, the third term on the righ
hand side~RHS! vanishes by symmetry~summing overk
and2k subspaces!. Further, these systems show no pers
tent currents at finite temperatures in the thermodyna
limit; therefore,]2F/]f2uf→0→0 in this limit. We have nu-
merically verified that this is indeed the case for tempe
tures larger than the level spacing; at zero temperature, t
is no contradiction with Kohn’s formula forD as the second
term on the RHS vanishes in a ground state with zero c
rent. Finally, as]ea /]fuf→05^au j ua& and degenerate level
contribute a vanishing weight in Eq.~2!, we arrive at relation
~5!. This inequality provides a lower bound for the char
stiffnessD which, if not zero, implies ideal conductivity a
finite temperatures.

In general, it is difficult to evaluate the right-hand side
the inequality~4! involving the ‘‘overlap’’ ^AQn&. However,
we will give some examples below, this correlation can e
ily be evaluated in the case of a grand canonical trace o
states, in the thermodynamic limit and forb→0. We thus
obtain the charge stiffness in leading order inb.

Before studying concrete models, we construct the ene
current operator as follows: We consider Hamiltonians
fined on a 1D lattice withL sites and periodic boundar
conditionshL,L115hL,1 of the form

H5(
i51

L

hi ,i11 . ~7!

Because the energy is a conserved quantity, the time ev
tion of the local energy operatorhi ,i11(t) can be written as
the discrete divergence of the energy current oper
JE5( i51

L j i
E :

]hi ,i11~ t !

]t
5 i @H,hi ,i11~ t !#52@ j i11

E ~ t !2 j i
E~ t !#, ~8!

where hi ,i11(t)5eiHthi ,i11e
2 iHt and j i

E52 i @hi21,i ,
hi ,i11]. Now, by direct evaluation for some IQM system
we will see that the energy currentJE is closely related to a
conserved quantity.

~i! Heisenberg model. The general anisotropic Heisenbe
Hamiltonian is given by

H5(
i51

L

hi ,i115(
i51

L

~JxSi
xSi11

x 1JySi
ySi11

y 1JzSi
zSi11

z !,

~9!

whereSi
a5 1

2s i
a , s i

a are Pauli spin operators with compo
nentsa5x,y,z at site i . The local energy current operato
j i
E is
of
a

-

-
ic

-
re

r-

f

-
er

y
-

lu-

or

j i
E5JxJy~Si21

x Si
zSi11

y 2Si21
y Si

zSi11
x !

1cyclic permutations of~x,y,z!. ~10!

Now it is straigthforward to verify that the global energ
current operatorJE commutes with the Hamiltonian~9!. Fur-
ther,JE coincides with the first nontrivial conserved quanti
Q3 as obtained from an expansion of the transfer matrix
the algebraic Bethe ansatz method.1,4 In agreement with the
notationQ2 for the Hamiltonian, the local energy operat
hi ,i11 involves two sites (i ,i11), while the local energy
current operatorqi

35 j i
E involves three sites (i21,i ,i11).

The vanishing commutator@JE,H#50 implies that the
energy current time correlations are independent of time

^JE~ t !JE&5(
a

paj Ea
2 , ~11!

where j Ea are the eigenvalues ofJE, JEua&5 j Eaua&. The
nondecaying of the energy current leads to adiverging ther-
mal conductivityrelated to thê JE(t)JE& correlation.8

As for the conductivity, it is more relevant to discuss t
fermionic version of the Heisenberg model, defined throu
the Jordan-Wigner transformation, the so-calledt-V model:

H5~2t !(
i51

L

~ci
†ci111H.c.!1V(

i51

L

~ni2
1
2 !~ni112

1
2 !,

~12!

where ci(ci
†) denote annihilation~creation! operators of

spinless fermions at sitei andni5ci
†ci .

In this case, the corresponding energy current oper
that commutes with the Hamiltonian~12! is given by

JE5(
i

~2t !2~ ic i11
† ci211H.c.!1V ji ,i11~ni211ni1221!,

~13!

where j i ,i115(2t)(2 ic i11
† ci1H.c.) is the particle current

Therefore, for this fermionic model, we find that th
^JE(t)JE& as well as thêJE(t)J& correlations are time inde
pendent, implying a diverging thermal conductivity and i
defined thermopower, respectively.

Regarding the charge stiffnessD, we can evaluate analyti
cally ^JQ3&

2/^Q3
2& for b→0 and in the thermodynamic

limit, obtaining from Eq.~5!,

D>
b

2

2V2r~12r!~2r21!2

11V2~2r222r11!
, ~14!

where r is the fermion densityt51. We note that forr
Þ1/2, D is finite, implying ideal conductivity as we hav
suggested before.6 For r51/2, this inequality is, however
insufficient for proving thatD is nonzero. Due to electron
hole symmetry, this remains true even if we consider all
higher-order conserved quantitiesQn . The reason is that, fo
the Heisenberg model, allQn’s can be generated3,4 by a re-
cursive relation@B,Qn#;Qn11 whereB is a ‘‘boost’’ opera-
tor given byB5(nnhn,n11. Then by the electron-hole trans
formation ci5(21)i c̃ i

† , we see thatJ→2J but Qn→Qn

and therefore forr51/2, ^JQn&50. The eventual nonor-
thogonality of theQn’s is not important as we can see b
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considering new orthogonal conserved quantities constru
using, for instance, a Gram-Schmidt orthogonalization p
cedure.

In Table I, we present some indicative numerical resu
comparingCJJ with ^JQ3&

2/^Q3
2& for a couple ofr values

andb→0. The results forCJJ were obtained by exact diago
nalization of the Hamiltonian matrix on finite-size lattice
(L up to 20 sites!, followed by finite-size scaling using
second-order polynomial in 1/L. From this table we see tha
~i! the smaller the density, the more the inequality~5! is
exhausted by just considering the contribution fromQ3; ~ii !
for V/t→`, the overlap^JQ3& gives the total weight of
CJJ ; indeed, studying the higher-order local conserved qu
tities we can see that they only contribute terms in power
1/V. Nevertheless, it is not clear why the inequality~4! is
exhausted and no other, e.g., nonlocal, conserved quan
contribute.

Finally, returning to the Heisenberg model, we note t
the bound~14! implies anomalous spin transport at fini
magnetization, as the particle current maps to the spin
rent and the densityr to the magnetization~half-filling
r51/2 corresponding to zero magnetization!.

~ii ! Hubbard model. It describes a system of interactin
fermions on a lattice with Hamiltonian given by

H5~2t ! (
s,i51

L

~cis
† ci11s1H.c.!1U(

i51

L

~ni↑2
1
2 !~ni↓2

1
2 !,

~15!

wherecis (cis
† ) are annihilation~creation! operators of fer-

mions with spins5↑,↓ at sitei andnis5cis
† cis .

Similarly as above, we can define a local energy opera
by

hi ,i115~2t !(
s

~cis
† ci11s1H.c.!1

U

2
@~ni↑2

1
2 !~ni↓2

1
2 !

1~ni11↑2
1
2 !~ni11↓2

1
2 !#. ~16!

From the time evolution ofhi ,i11 we find the local energy
current operatorj i

E involving sites (i21,i ,i11):

j i
E5(

s
~2t !2~ ic i11s

† ci21s1H.c.!2
U

2
~ j i21,i ,s1 j i ,i11,s!

3~ni ,2s2 1
2 !, ~17!

where j i ,i11s5(2t)(2 ic i11s
† cis1H.c.) is the particle cur-

rent. By comparing this expression for the energy curren
the conserved quantity2,4 Q3, we find that they coincide

TABLE I. ( ^JQ3&
2/^Q3

2&)/CJJ as a function of fillingr and
V/t.

V/t r51/3 r51/4

0.0 0.0 0.0
1.0 0.11 0.23
2.0 0.50 0.58
4.0 0.83 0.89
8.0 0.96 0.98
` 1.0 1.0
ed
-

s

n-
f

ies

t

r-

or

o

when the factorU/2 in Eq. ~17! is replaced byU. So the
energy currentJE5( i51

L j i
E does not commute with the

Hamiltonian. However, asJE has a finite overlap̂JEQ3&,
with the conserved quantityQ3 we still find that the energy
current correlations decay to a finite value at long times
that the thermal transport coefficients are anomalous. We
find a lower bound for the decay by using Eq.~1! for
b→0 and in the thermodynamic limit (t51!

lim
t→`

^JE~ t !JE&5CJEJE>
^JEQ3&

2

^Q3
2&

, ~18!

^JEQ3&
2

^Q3
2&

5L(
s

2rs~12rs!

1
U4

4

@(s2rs~12rs!~2r2s
2 22r2s11!#2

(s2rs~12rs!@11U2~2r2s
2 22r2s11!#

.

~19!

As for the charge stiffnessD, we can again evaluate ana
lytically ^JQ3&

2/^Q3
2& for b→0 and in the thermodynamic

limit, obtaining, from Eq.~5!,

D>
b

2

@U(s2rs~12rs!~2r2s21!#2

(s2rs~12rs!@11U2~2r2s
2 22r2s11!#

,

~20!

where rs are the densities ofs5↑,↓ fermions, t51. For
rs51/2, the right-hand side of Eq.~20! vanishes, although a
general proof involving all higher conserved quantities is n
possible as a boost operator for the Hubbard model is
known.

~iii ! ‘‘ t-J’’ model. It belongs to a class of multicomponen
quantum systems11 describing interacting particles of differ
ent species, singly occupying each site. The Hamiltonian
on each bond (i ,i11) by the operatorPi ,i11 which per-
mutes neighboring particles, independently of their type:

H5(
i51

L

Pi ,i11 . ~21!

For this generic model we can directly verify that the ener
current operator

JE52 i(
i51

L

@Pi21,i ,Pi ,i11# ~22!

coincides with a conserved quantity12 and so commutes with
the Hamiltonian.

Now considering three types of particles, correspond
to empty sites, up spins, and down spins, we recover tht-
J model12 for special values ofJ/t. This model describes a
system of interacting fermions subject to a constraint of
double occupancy, with the Hamiltonian given by
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H52t (
s,i51

L

P~cis
† ci11s1H.c.!P

1J(
i51

L

~SW iSW i112nini11/4!12N2L, ~23!

where cis (cis
† ) are annihilation~creation! operators of a

fermion on sitei with spins5↑,↓. P5) i51
L (12ni↑ni↓) is a

projection operator on sites with no double occupan
nis5cis

† cis , N5( i51,s
L nis .

This model is integrable forJ/t50, corresponding to the
U/t→` limit of the Hubbard model or to the model~21!
where permutations act only on bonds with ‘‘empty-
spin’’ or ‘‘empty-down’’ configurations. For this case, w
found that the corresponding energy current commutes w
the Hamiltonian, as is also known for the particle curren13

Finally, for J52t, the ‘‘supersymmetric’’ model~23! is also
integrable and the energy current coincides with the c
served quantityQ3 as is presented in Ref. 12. Therefore t
transport coefficients of the supersymmetrict-J model are
also anomalous.

The above results imply that, at least, certain quanti
related to transport coefficients in IQM systems are non
,

th

-

s
r-

godic ~see, however, Ref. 14 for the recent notion of ‘‘qua
tum mixing’’!. Within linear response theory, this translat
to ideal conducting behavior at finite temperatures,
charge stiffnessD being a measure of nonergodicity. W
also expect that the noise spectrum, described by the cur
current correlations, shows anomalous behavior charact
tic of a ballistic rather than a diffusive system. This behav
is to be contrasted to the normal dissipative behavior
found6,7 for similar nonintegrable systems with no conserv
tion laws.

In conclusion, IQM systems open the possibility of stud
ing a new kind of~nearly! dissipationless finite-temperatur
transport in quantum many-body systems. The observab
of these effects will depend on the robustness of ideal c
ducting behavior for systems close to integrability, an iss
very similar to the one in classical near-integrable nonlin
systems.
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