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Finite-temperature dynamical correlations using the microcanonical ensemble
and the Lanczos algorithm
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We show how to generalize the zero-temperature Lanczos method for calculating dynamical correlation
functions to finite temperatures. The key is the microcanonical ensemble which allows us to replace the
involved canonical ensemble with a single appropriately chosen state; in the thermodynamic limit it provides
the same physics as the canonical ensemble but with the evaluation of a single expectation value. We can
employ the same system sizes as for zero temperature but, whereas the statistical fluctuations present in small
systems are prohibitive, the spectra of the largest system sizes are surprisingly smooth. We investigate, as a test
case, the spin conductivity of the spin-1/2 anisotropic Heisenberg model and in particular we present a
comparison of spectra obtained by the canonical and microcanonical ensemble methods.
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I. INTRODUCTION

The study of lattice quantum many-body systems by
exact diagonalization technique has proven popular at z
temperature (T50) where only the ground state is require
but it is of less use at finite temperature. The reason can
attributed to the different system sizes applicable where
spin 1/2 the ground state can be found for up toN;30 lattice
sites, but the entire spectrum can readily be achieved
systems only up toN;16. The intrinsic difficulties associ
ated with applying the finite-size scaling method on su
small systems severely limit finite temperature applicatio
At T50 the continued fraction technique1,2 allows accurate
calculations of dynamical correlations using only the m
chinery of the Lanczos algorithm, but unfortunately th
technique has not been extended to finiteT where mostly full
diagonalization has been employed. As well as direct ap
cations of the canonical ensemble, there is also a hy
method which employs the canonical representation of
namical correlation functions but uses a Lanczos basis
provide a set of orthogonal states.3 This method allows ac-
cess to systems larger than those accessible to full diago
ization techniques but to systems smaller than the cur
proposal, which does not need details of all the states eve
the Lanczos basis. In this paper we extend theT50 formal-
ism to finite temperature by applying amicrocanonical en-
semble approach combined with the Lanczos meth
~MCLM ! that provides smooth predictions for dynamic
correlation functions at least at high temperatures.

The physical advance is to appreciate that in the ther
dynamic limit the microcanonical ensemble is equivalent
the canonical one,4,5 but for finite systems this is much easi
to work with. The statistical fluctuations engendered by
microcanonical choice are a drawback for small systems
become controllable for large systems. In practice, as
finite T calculations are much smoother, it is more natura
contemplate applying finite-size scaling than for theirT50
0163-1829/2003/68~23!/235106~10!/$20.00 68 2351
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counterparts. The exponentially dense nature of a ma
particle spectrum in the bulk is the property that smooths
calculations, a characteristic that is lost near the ground s
where the spectrum is sparse.

Besides the computational interest of this proposal it
worth pointing out that, to our knowledge, no studies of t
fundamental equivalence between the microcanonical
canonical ensemble for quantum dynamic correlations e
in the literature. Thus this work is a step in numerica
exploring this basic postulate of nonequilibrium statistic
mechanics. Clearly, analytical studies are needed to cla
for instance, the meaning of the microcanonical ensemble
a quantum system with dense spectrum as an average o
single quantum state~or a narrow window of states! and the
finite-size corrections inherent in this ensemble.

II. THERMODYNAMIC ENSEMBLES

In this section we will discuss how an arbitrary probab
ity distribution can be used, under reasonable assumpti
to represent the canonical ensemble in the thermodyna
limit.6 The choice of a~un-normalized! distribution in the
thermodynamic limit can be examined by considering
Laplace transform,

ef (t)5E
0

`

deeetp~e!, Ret,0,

p~e!5E
1 i`

2 i` dt

2p i
e2te1 f (t), ~1!

where f (t) controls the properties of a distribution desi
nated byp(e). The standard canonical ensemble arises fr

ef (t)5
1

b2t
°p~e!5e2be ~2!
©2003 The American Physical Society06-1
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and the microcanonical ensemble, that we would like to e
ploy, at energyl, arises from

f ~t!5lt°p~e!5d~l2e!. ~3!

Unfortunately, it is impractical in our theory to achieve ev
the pure microcanonical ensemble and so we need a m
general theory. The ‘‘Gaussian’’ ensemble, at energyl and
with width s, arises from

f ~t!5lt1
s2~t2l!2

2
5tl~12s2!1

s2

2
~t21l2!°p~e!

5e2(e2l)2/2s2
~4!

and converges to the microcanonical in the limits°0. Note
that the linear coefficient isshiftedby ls2, an effect that can
be compensated for in our theory. It is quite natural to e
ploy f (t)5lt1F(t) wherel is extrinsic andF(t) is in-
trinsic, in order to limit towards the microcanonical e
semble.

If we examine the partition functionZp , then

Zp5tr p~e!5E
i`

2 i` dt

2p i
ef (t)1 ln Z(t) ~5!

whereZ(t) is the canonical partition function. This integr
may be approximated using the idea of ‘‘steepest desce
with negligible error,

Zp}ef (b* )Z~b* !, ~6!

whereb* is chosen so that

] f

]t
~b* !52

1

Z

]Z

]t
~b* !5^Ĥ& ~7!

and the average energy at the desired temperature turn
to be crucial. For the particular case of the microcanon
distribution l5^Ĥ& whereas an inclusion ofF(t) provides
l5^Ĥ&2(]F/]t)(b* ) and a finite-size correction.

III. DYNAMICAL CORRELATIONS IN THE
MICROCANONICAL AND CANONICAL ENSEMBLE

The usually studied quantities of direct physical intere7

are the dynamic structure function related to an operatorX̂q ,

S~q,v!5E
2`

1`

dteivt^X̂q~ t !X̂2q~0!&, ~8!

and dynamic susceptibility

x~q,v!5 i E
0

1`

dteizt^@X̂q~ t !,X̂2q~0!#&, ~9!

wherez5v1 ih, the angle brackets denote a canonical
semble thermal average and the commutator plays a ce
role in the linear-response theory~or Kubo! formulation of
transport.

The two quantities are related by the fluctuatio
dissipation relation,
23510
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x9~q,v!5
12e2bv

2
S~q,v!, ~10!

where b51/kBT is the inverse temperature. Note th
S(q,v) satisfies the symmetry relationS(2q,2v)
5e2bvS(q,v) while the sum rule

1

2pE2`

1`

dvS~q,v!5^X̂qX̂2q& ~11!

makes it natural to consider the normalized to a unit a
correlation function,

S~q,v!°
S~q,v!

^X̂qX̂2q&
. ~12!

We have presented the dynamical correlation functions
the canonical ensemble and now we will establish their fo
in the microcanonical one. Starting from Eq.~8! and employ-
ing solely the idea that our distribution has a restricted
ergy l we can generate a correlation functions(q,v) in the
microcanonical ensemble,

s~q,v!5E
2`

1`

dteivt(
m

,X̂qum&^muX̂2q.ei (l2em)t.

~13!

From here on, . denotes average over the microcanoni
distribution; we have used the relation

,ÔU~Ĥ !.°,Ô.U~l! ~14!

@U(Ĥ) a function of Ĥ] and a decomposition using th
eigenbasisum&. Expression~13! integrates to provide

s~q,v!52p(
m

,X̂qum&^muX̂2q.d~v1l2em! ~15!

that can be rerepresented as the basic correlation in the
crocanonical ensemble,

s~q,v!522 lim
h°0

Im,X̂q@z2Ĥ1l#21X̂2q.. ~16!

Note that this expression is exact in the zero-tempera
limit where the expectation value is to be taken over
ground-state wave function.

Now let us imagine that we could find a single eigenst
at will, with an energy arbitrarily close~in the thermody-
namic limit! to a target energy, sayl. It is in principle
straightforward then to determine

s* ~q,v!522 lim
h°0

Im^* uX̂q@z2Ĥ1e* #21X̂2qu* & ~17!

exactly as before, whereĤu* &5e* u* & is the known eigen-
state withe* °l. If the microcanonical ensemble is equiv
lent to the canonical ensemble and if a single eigenstat
representative of the microcanonical one, then provided
l5^Ĥ& for the desired temperature, we can expect that
6-2
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s* ~q,v!°S~q,v! ~18!

in the thermodynamic limit. This amounts to the physic
idea behind our calculations.

Furthermore, from Eq.~10!, it follows that

x9~q,v!5
12e2bv

2
s~q,v! ~19!

and from the symmetry ofS(q,v) in the canonical ensembl
we can deduce that

ln
s~q,v!

s~2q,2v!
°bv; ~20!

this relation then provides an alternative, cross-check
technique for determining the temperature for a particu
value ofl. Although a single eigenstate might correspond
the microcanonical ensemble, based on a putative ergod
assumption for the eigenstate, in practice it is not possibl
find such an eigenstate for large systems with dense s
trum. So we will in effect relax the eigenstate hypothesis a
go back to a distribution of eigenstates close to the des
valuel.

IV. THE LANCZOS METHOD

In the technique we propose, we employ the well-kno
Lanczos algorithm that is an efficient way of diagonalizi
large Hamiltonians using as variational subspace~truncated
basis! the set of states8

$u0&,Ĥu0&, . . . ,ĤM1u0&%, ~21!

whereu0& is a ~usually random! initial state andM111 the
number of Lanczos steps. To obtain a state close to enerl
one might expect to use the closest eigenstate tol in the
truncated basis, but this is totally incorrect. In practice, o
the states at the edge of the spectrum converge and the
‘‘eigenstates’’ in the truncated subspace have the sugge
energies but are usually far from eigenstates.

In order to apply the Lanczos method idea, one can s
ply push the energetic region of interest to the edge of
spectrum by choosing an appropriate new operator. O
natural choice is to use

K̂[~Ĥ2l!2, ~22!

which is positive definite and pushes the eigenstates w
energy close tol towards the minimal, zero, eigenvalue
K̂. Another way to understand this technique is to consi
expanding the ground state ofK̂ in subspace~21!, which we
will call ul&, as a probability distribution over eigenstate
Choosingl establishes the appropriate mean for this dis
bution but minimizing,K̂. corresponds to minimizing the
variance of the distribution, and consequently localizing
distribution nearl ~see discussion below on the degree
convergence that is employed in practice!.

One can perform a Lanczos calculation based upon
operatorK̂ or, more efficiently, one can evaluate the opera
23510
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K̂ ~now a pentadiagonal matrix! in a previously constructed
Lanczos basis usingĤ ~‘‘L-projection’’ method!. Note that

,~Ĥ2,Ĥ. !2.5,~Ĥ2l!2.2~,Ĥ.2l!2>0
~23!

~the expectation value is overul&), and so a small variance
guarantees a narrow distribution of energies aroundl.

In any Lanczos calculation the mathematical orthogon
ity between states gets lost at some stage as numerical e
build up. In practice only the well-separated converged sta
suffer from this disease and for us these states, which ar
the edge of the spectrum, do not gain any significant wei
in the correlation functions and so do not manifest in o
results. The states at low frequency are all well behaved
maintain their orthogonality.

It is straightforward to implement these ideas numerica
with a ‘‘double-Lanczos’’ calculation. The first run through
Lanczos procedure ofM1 steps is employing the operatorK̂
starting from a random state and it is used to find the s
ul& which plays the role of the microcanonical distributio
The second run ofM2 steps through Lanczos is made usi
X̂qul& as the initial state and then the resulting tridiagon
matrix can be diagonalized to form the dynamical corre
tions directly or by employing the continued fraction
method which is numerically more efficient but introduces
loss of resolution.

All the analysis so far has been subject to several cave
First, the microcanonical ensemble is equivalent to the
nonical one in the thermodynamic limit and in the context
quantum dynamic correlations. Second, a single eigensta
equivalent to the microcanonical ensemble and third, we
find such an eigenstate at will. The first two assumptions
we have mentioned in the Introduction, should be the fo
of analytical studies as fundamental issues of nonequilibr
statistical mechanics.

Regarding the third assumption, it is clearly problema
as it is well known that although the Lanczos method co
verges quite easily at the sparse edges of the spectrum, i
denser inner regions of the spectrum, of interest at fin
temperature, it takes the Lanczos procedure an exponent
large number of iterations to converge. A many-body sp
trum has an exponential number of states, e.g., for spin
the number of states;2N, and for a bounded Hamiltonian
the eigenstates are compressed into an energy region
grows only linearly with system size. Although the low
energy region maintains a sparse density of states, the ei
states become exponentially close together in the area o
terest and essentially become unattainable.

At first sight this appears an insurmountable difficulty, b
in practice this issue allows the technique its success as
will now discuss. The first Lanczos procedure provides
single quantum stateul& that is not an eigenstate, but whic
when decomposed in an eigenstate basis is represented
narrow distributionuanu2 aroundl;

ul&5(
n

anun&, Ĥun&5enun&,
6-3
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^luĤul&5l ~24!

gives, for the expectation value of an operatorÔ,

^luÔul&5(
n

uanu2^nuÔun&1 (
nÞm

am* an^muÔun&.

~25!

The ensemble

p̂~e!5(
n

uanu2un&^nu ~26!

is presumed to correspond to a Guassian ensemble, a
sumption that we partially test in the following section.

This state, used in the evaluation of expectation valu
acts as a statistical average over an energy window.
important to note that by employing a single quantum st
~not eigenstate! for evaluating an expectation value~as a sub-
stitute for a statistical average over a narrow energy wind
of eigenstates!, we assume that the appearing off-diagon
terms@second term in Eq.~25!# cancel each other. This as
sumption can be justified~and numerically verified! by in-
voking a random-phase decomposition of the used quan
state.

From this discussion we can expect two types of fluct
tions in the obtained spectra; first, intrinsic fluctuations d
to the finite size of the system, present even when a sin
eigenstate is used for the evaluation of the expectation va
Second, statistical fluctuations entering by the off-diago
terms in Eq.~25! due to the use of a single pure state tha
not an eigenstate; this type of fluctuations can be reduce
averaging over orthogonal statesul& ~e.g., corresponding to
different translational symmetryk subspaces as we will show
below!.

V. CONVERGENCE OF PROJECTION

In the following, we present a test on the rate of conv
gence of the projection to a single quantum state with ene
close to l. Due to the innate complexity of an implic
scheme like Lanczos, we develop the theory of a simp
technique briefly to exhibit the ideas.

A rather simple method of numerically solving for th
ground state is by an iterative sequence of applications of
scaled Hamiltonian. For us this amounts to iterative appli
tions of the operator,

P̂512S Ĥ2l

m
D 2

, ~27!

where m is chosen to be large enough so thatm2.(en
2l)2 for the full spectrum. Repeated applications of th
operator exponentially suppresses all states except thos
which en;l which remain unaffected. We can start out wi
a set of random states and then forM applications of our
operator we can build a distribution

p̂M~Ĥ !5(
c

P̂Muc&u@ P̂#^cuP̂M ~28!
23510
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@u( P̂) is the step function# and if we were to perform an
average over an orthogonal basisuc&, then this would con-
verge to

p̂M~Ĥ !°u@ P̂# P̂2M. ~29!

Elementary analysis provides

p̂M~Ĥ !5E
i`

2 i` dt

2p i
exp@lt2tĤ#

3~2M !!22M2mF1

x

d

dxG
2M sinhx

x U
x5tm

. ~30!

In the limit M°` we find that

f ~t!°lt1
m2t2

2~4M13!
1OS 1

M2D ~31!

and we see that we do converge to the microcanonical
semble but with a finite-size correction. We recognize a n
row Gaussian probability distribution

p̂M~Ĥ !;expF2
~Ĥ2l!2

2m2
~4M13!G . ~32!

Note that we have an intrinsic correction to the microcano
cal ensemble and that

l1
m2b*

4M13
5^Ĥ& ~33!

and sol is shifted.The width of this distribution is under ou
control,

^~Ĥ2l!2&;
m2

4M13
;

W2N2

4M13
, ~34!

whereW is the natural energy scale for the model and we
thatM needs to scale with the square of the system sizeN to
maintain resolution.

The Lanczos method is clearly much more sophistica
and provides a much narrower distribution. We have exa
ined the distribution obtained in a Lanczos calculation a
we find that it is well represented by a Gaussian distribut
with a variance controlled by the eigenvalue ofK̂ attained by
the calculation. In practice this is about two orders of ma
nitude better in energy than the result obtained from
projection analysis@Eq. ~27!#, which however it is analyti-
cally controllable; indeed, we find that the Lanczos meth
scales as,K̂.}M1

22 so that the intrinsic resolution,s

5A,K̂., is inversely proportional to the number of itera
tions. The convergence properties of the three schemes
discussed are depicted in Fig. 1 for a representative calc
tion of the study that we present in the following section.

The application of the technique should now be transp
ent; employing a single random state, or averaging ove
sequence of orthogonal random states, one performs a
Lanczos calculation ofM1 steps to find the approximat
ground stateul& for the operatorK̂5(Ĥ2l)2. The value of
6-4
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l must be preselected so thatl5^Ĥ& for the chosen tem-
perature; several techniques are available for reliably de
mining this energy versus temperature relation as the B
ansatz~for integrable systems!, the finite temperature Lanc
zos ~FTLM!,3 the transfer-matrix renormalization grou
~TMRG!,9 or quantum Monte Carlo method. The degree
convergence can be measured using the eventual eigen
of K̂; it plays the role of the variance of the chosen distrib
tion and its square root is an intrinsic energy resolutions.
This scales can never drop below the distance to the nea
eigenvalue. For a usual size system, e.g.,N.16, and tem-
perature, this limit is unattainable but a resolution ofs

;0.01 (,K̂.;0.0001) is readily available with a thousan
or soM1 iterations.

Once one has found this stateul&, which plays the role of
the stateu* &, a second Lanczos projection sequence is g
erated employing the stateX̂qul& as the initial state. The
resolution of the eventual result is controlled by the intrin
dependence on the microcanonical ensemble and the de
of convergence measured bys. This can be seen from rela
tion ~16! as the eigenstates over which the stateul& is de-
composed have a spread in energys with respect to the
reference energyl. The resolution also depends on the co
vergence achieved in the second Lanczos procedure w
the number of iterationsM2 denotes the finite number o
poles which are used to try to represent the dynamical
relations. At the sparse edges of the spectrum these p
denote the eigenvalues of the system but in the bulk of
spectrum, when grouped into bins of a given frequen
width, they are fairly uniformly spread and offer a furth
natural energy resolution for the calculation.

More Lanczos steps provide more poles and a finer sp
tral grid for the correlation functions, until the graininess
the real system is achieved. We have elected to use a
thousand poles in our calculations with very little improv
ment obtained by increasing this number as we shall see.
final resolution is self-imposed and is theh of Eq. ~16!
which we choose to be of the order of the spectral grid
order to smooth our calculations.

FIG. 1. Convergence properties of different Lanczos project
procedures:~i! dashed line, using Eq.~27!, ~ii ! dotted line, using

K̂5(Ĥ2l)2, and~iii ! continuous line, ‘‘L projection’’ ~see text!.
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VI. APPLICATION ON THE SPIN-1 Õ2 HEISENBERG
MODEL

We are now in a position to test our proposed techniq
and uncover its strengths and weaknesses. We have chos
investigate the finite temperature dynamics of the protot
spin-1/2 Heisenberg model~equivalent to the fermionic
‘‘ t-V’’ model!. This choice was dictated by its central role
low-dimensional quantum magnetism; an exact solution
the thermodynamics and elementary excitations is known
ing the Bethe Ansatz method,10 the spin dynamics probed b
nuclear magnetic resonance is of current experime
interest11,12 and several numerical and analytical studi
have been devoted to the study of finite temperature dyna
correlations.13,15–18The Hamiltonian is given by

H5(
l

hl5J(
l 51

N

~Ŝl
xŜl 11

x 1Ŝl
yŜl 11

y 1DŜl
zŜl 11

z !, ~35!

whereŜl
a (a5x,y,z) are spin-1/2 operators on sitel and we

takeJ as the unit of energy and frequency (\51).
In particular, we will look at the high-temperature sp

conductivity in the antiferromagnetic regime,J, D.0, for
which several studies exist and some exact results
known.17 To discuss magnetic transport, we first define t
relevant spin currentĵ z by the continuity equation of the
corresponding local spin densityŜl

z ~provided the totalŜz

component is conserved!,

Ŝz5(
l

Ŝl
z ,

]Ŝl
z

]t
1“ ĵ l

z50. ~36!

Thus, we obtain for the spin currentĵ z ~that plays the role of
the operatorX̂q),

ĵ z5(
l

ĵ l
z5J(

l
~Ŝl

xŜl 11
y 2Ŝl

yŜl 11
x !. ~37!

The real part of the ‘‘spin conductivity’’s8(v) ~correspond-
ing to the charge conductivity of the fermionic model! in-
cludes two parts, the Drude weightD and the regular par
s reg(v),13,14

s8~v!52pDd~v!1s reg~v!. ~38!

The regular contribution is given by

s reg~v!5
12e2bv

v

p

N (
nÞm

wnu,nu ĵ zum.u2d~v2vmn!,

~39!

wherewn are the Boltzmann weights andvmn5em2en .
To compare the presented data on the conductivity

normalize them using the well-known optical sum-rule th
in the b→0 limit takes the form

E
2`

1`

dvs reg~v!12pD5b
p

N
^ ĵ z2&. ~40!

n

6-5
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M. W. LONG et al. PHYSICAL REVIEW B 68, 235106 ~2003!
The normalized conductivitys(v) in this high-temperature
limit is given by

s~v!5

(
nÞm

u,nu ĵ zum.u2d~v2vmn!

^ ĵ z2&
, ~41!

which can be calculated using our microcanonical ensem
procedure by

s~v!°2 lim
h°0

ImK lU ĵ z
1

z2Ĥ1l
ĵ zUlL

p^lu ĵ z2ul&
. ~42!

In principle this expression includes also the contribut
from the zero-frequency Drude weightd function, but in
practice as the second Lanczos procedure cannot fully
verge, the Drude peak appears as a low-frequency contr
tion. As we will discuss below, sorting out this low
frequency part, in general, allows us to reliably extract
Drude weight value.

In general, we can employ the translational symmetry
the Hamiltonian and study spectra in a given pseudomom
tum k subspace or average the results over differentk sub-
spaces; in the following, we typically employM151000 and
M254000 Lanczos iterations atb→0 unless otherwise
stated. In Fig. 2 we compare a zero-temperature2 with an
infinite-temperature (b→0) calculation for a fairly large
system in thek50 subspace. The zero-temperature calcu
tion finds a few poles with exact weights whereas
infinite-temperature calculation provides a much smoot
result.

There is clear structure in the infinite-temperature res
but also apparently some noise. To interpret this result
must consider the issue of the veracity of the microcanon
ensemble for such small systems namely the extent to w
the microcanonical ensemble is equivalent to the canon
one.

In Fig. 3 we present a comparison, extremely encour
ing, of some microcanonical calculations with the analogo
canonical ones. There is ‘‘noise’’ in all calculations, the o
gin and magnitude of which we will now discuss. The c

FIG. 2. Microcanonical calculations forN526, D52, h
50.02; ~a! T50 and~b! b→0.
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nonical calculations are essentially a direct evaluation of
pression~39!, where we applied a ‘‘binning’’ procedure o
the d-function weights over an energy scale of about 0.
The number of contributing matrix elements are of the or
of the dimensionD of the Hilbert space squared,D 2, e.g.,
1062108 d functions, with no continuity in the weights. Th
results are not smooth and the resulting intrinsic fluctuati
are heavily smoothed by our binning procedure. In the m
crocanonical calculations we employ our scheme, further
eraging over translational symmetryk subspaces. Now, only
O(D) d functions are essentially contributing, multiplied b
the number of states involved in the decomposition of
stateul& ~a few thousand depending on the convergence! and
the number ofk subspaces. Note that the observed fluct
tions are not associated with any of our different resolut
processes which are much smaller than the observed sca
fluctuations; they are due to the finite size of our system
thus effective smaller number of matrix elements contrib
ing to the construction of the spectra. This seemingly n
problem associated with our technique turns out to be do
nant for small system sizes; very soon however it becom
negligible as larger systems are achieved, especially con
ering that the dimension of Hilbert space grows expon
tially fast with the system sizeN.

In order to assess these fluctuations and simultaneo
the role of our smoothing parameterh, we performed some
basic calculations involving only a singlek-subspace state
ul&. In Figs. 4~a,c! we offer a comparison of calculation
involving just the poles evaluated using the second Lanc

FIG. 3. Microcanonical vs canonical calculations~displaced for
clarity!; ~a! N520, D50.5, h50.01 and~b! N518, D51, h
50.01.
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procedure eigenstates against smoothed versions of the
data but employing the continued fraction technique. Also
Fig. 4~b! we show the sensitivity of the spectra tol and
initial random vector for the rather small systemN522.

The fluctuations clearly decay with system size with t
final system being surprisingly smooth. The limitations
the smoothing process are clear, the sharper features
slightly washed out although the ease of assessing the
makes such a smoothing advisable. The weights for th
microcanonical calculations are truly quite continuous
comparison to the intrinsic properties of the canonical cal
lation which is necessarily ragged. Obviously, for our larg
calculations we are nowhere near converged to the true s
trum which is a possible explanation for the observed co
nuity.

FIG. 4. Microcanonical finite-size effects forD52 ~displaced
for clarity!; ~a! N522, ~b! N522, sensitivity tol, initial random
vector u0&, and~c! N528.
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We can now fairly safely conclude that our technique is
viable way to calculate dynamical correlation functions
high temperature for the same systems accessible by
Lanczos method atT50. By its very nature, the finiteT
correlations are much smoother and more regular to in
pret. Our technique introduces new statistical fluctuatio
which make small system sizes ragged but appear to le
large system sizes essentially unaffected.

Although we can now investigate finite temperature d
namic correlations using the Lanczos method, we are
restricted toN;30 for a spin-1/2 system. The key to makin
useful physical deductions is the procedure of finite-s
scaling, the attempt to deduce the properties of the infin
size system using assumed properties of the sizeN depen-
dence. This method has been widely and successfully app
in the evaluation of ground-state energies or gap values u
data provided by the exact diagonalization, Lanczos
density-matrix renormalization group technique. But to e
tract information on finite temperature dynamic correlatio
one would need to know the form of the curves before fitti
and scaling could take place mathematically. As it is cle
from Fig. 5 this might be a challenging task considering t
statistical fluctuations inherent in the spectra;19 however,
from ongoing studies on other systems using this method
find that the behavior of the spectra might greatly depend
the model Hamiltonian and correlations under study~e.g., it
is far more structureless for energy current dynamic corre
tions in a nonintegrable systems20!. Note that the high-
frequency behavior is generally rather weakly size depend
while the low-frequency one is the most subtle to determi
The last however is the most physically interesting as it
termines, for instance, the diffusive or ballistic behavior
the conductivity.

The basic properties of theb→0 current-current correla
tions are now available and so we provide in Fig. 6 a few
examples of the frequency dependence of the conductivit
b→0 as a function ofD.

Although we have devoted most of our effort to infini
temperature (b→0), our technique is valid at essentially an
temperature~provided that we remain at a dense region
the spectrum!. Analyzing the pure Heisenberg model, w
look at a couple of finite temperaturek-averaged calculations
in Fig. 7. The temperature has been deduced from a le
squares fit of the quantity

FIG. 5. Finite-size scaling forD52, b→0.
6-7
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ln
s~v!

s~2v!
;a1bmicrov ~43!

to a linear ansatz, and although the statistical fluctuations
compounded, an almost vanishing intercept and a clear s
indicate the feasibility of the strategy. The obtainedbmicro
values compare favorably with those corresponding to
canonical ensemble in the thermodynamic limit, evalua
using l5^Ĥ&; for l523, bmicro;0.14 versusbcanonical
;0.15, forl526, bmicro;0.28 versusbcanonical;0.3.

Although we have compared numerical evaluation of d
namic correlations obtained by a canonical and a micro
nonical method, we have yet to compare with an exact s
tion. Recently even non-zero-temperature dynam
correlations have become partially accessible, with a ca
lation of the Drude weight for the 0^D,1 Heisenberg mode
at finite temperature.17 In particular, the Drude weight in the
b→0 limit is given analytically22 by

D/b5
1

2

@p/n20.5 sin~2p/n!#

8p/n
, D5cos~p/n!.

~44!

The Drude weight, strictly speaking, is defined as the wei
of a zero-frequencyd function, Eq.~38!; it is a particularity
of the Heisenberg model that it appears as a narrow pea
low frequencies, of the order of the inverse lattice size,21 in
contrast to the fermionic ‘‘t-V’’ version where it is accounted
for only by the diagonal energy elements (v50).

In extracting the Drude weight by the above describ
procedure we must take into account the problem cause
the intrinsic resolution of our calculations, which is of th

order s5A,K̂.. Although our chosen resolution ofs
;0.01 is almost invisible for the smooth background, for t
Drude weight the resolution is essentially limited by that
our ‘‘microcanonical’’ distribution, viz.,s. An example of
these ideas is provided in Fig. 8, from which it is clear th
the Drude peak is the only contribution for which the chan

FIG. 6. Microcanonical ensemble evaluation of the normaliz
conductivity s(v) for b→0, N528; ~a! D50.5,1.0 for D50,
@ j z,H#50 so that there is only ad(v) contribution~not shown as it
diverges!; ~b! D52.0,4.0.
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in resolution is relevant. These calculations involve a sin
state and are much improved byk averaging, also the energ
window is so small that the individual poles in the seco
Lanczos procedure are visible and have been smoothed
with an h50.005 value which adds to the observed reso
tion. In the inset, the scale of the conductivity clearly sign

FIG. 7. Finite temperature calculations forN524, D51, h
50.01; ~a! s(v), l523, ~b! temperature fitbmicro.0.14, ~c!
s(v), l526, and~d! temperature fitbmicro.0.28.

FIG. 8. A comparison of three ‘‘microcanonical’’ distribution
^K&50.002 (M15500),0.0005 (M151000),0.0012 (M152000),
for N526 andD50.5; inset, low-frequency range.

d
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a low-frequency peak~note the difference in scale betwee
Fig. 8 and its inset!; still, in order to extract the Drude weigh
from the smooth background, we must integrate the peak
to at least as far as it is resolved and that necessitates
inclusion of some of the background. We have elected to
on the side of inclusion and tend to integrate past where
Drude peak appears to become small.

In Fig. 9 we offer a comparison of the analytical an
numerically extracted Drude weights in theb→0 limit. The
quantitative agreement is reasonably satisfactory, becom
rather poor nearD;1 because of our technique for extrac
ing the Drude weight; due to the finite resolution of o
calculation we need to sample a finite width aroundv50.
For the caseD51 there is no Drude weight but there do
appear to be a power-law-like divergence which we pick
in our finite window leading to the observed corrupted b
havior.

VII. DISCUSSION

Our investigation appears to validate the use of the La
zos algorithm to analyze finite temperature dynamical pr
erties of strongly correlated systems; the crucial step is
employ the microcanonical ensemble, which essentially
lows the thermodynamic average to be replaced by an
ementary expectation value. All the simplicity of the zer
temperature formalism can then be taken over to the fi
temperature calculation. The comparison of canonical w
microcanonical procedures indicates that the thermodyna
limit is reached with quite modest system sizes and con
quently there appears to be little systematic error com
from our choice of ensemble. There are intrinsic statisti
fluctuations in our calculations but these are severely c

FIG. 9. Comparison ofb→0 Drude weight,D/b; numerical
evaluation~points! vs analytical expression Eq.~44! ~continuous
line!.
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tailed by increasing the system size and are an implicit
ficulty with canonical calculations too. We believe that w
can calculate the high enough temperature dynamical co
lations for a finite system with an excellent tolerance.

The statistical fluctuations in our results require to be c
trolled if an error analysis is to be contemplated. Althou
we have not got analytical control, we do have experienc
various approaches to reducing the statistical fluctuatio
The crucial point is that, when taking a statistical avera
one should use ‘‘orthogonal’’ states (ul& ’s decomposed into
different sets of eigenstatesun&). Averaging over random
starting vectors in the same subspace is not very effect
even if they are originally orthogonal, because the result
distribution involves the same states and consequently
overlap. Performing ak average, over translational symmet
subspaces, is an excellent procedure, since the states ar
tomatically orthogonal and intellectually one is revertin
back towards the real physical statistical average. Anot
possibility is to use several of the eigenstates of the fi
Lanczos procedure; although the orthogonality is guarante
there is an induced loss in resolution due to the largers ’s of
the higher Lanczos states. A final possibility is to employ t
parameterl, where the average over differentl ’s must be
limited within a window that corresponds to the energy flu
tuations at the studied temperature in the given size sys
Provided that thel ’s are further apart than the chosens, the
orthogonality is essentially guaranteed.

Although we believe we have access to the tempera
behavior of finite-size systems, this does not give immed
access to the dynamics in the thermodynamic limit beca
finite-size scaling must be performed; Fig. 6 exhibits cle
peaks of unknown form, plausible ‘‘cusps’’ and region
where the correlations vanish. Unless we can guess or
duce the form of these structures, finite-size scaling app
problematic. We should note however from our experien
that not all models and dynamic correlations exhibit so
volved spectra; in forthcoming works we will present ana
sis of charge/spin/energy current correlations for other~non-!
integrable systems of current interest~higher spin, ladder
models20! where the obtained spectra are far more struc
less. Finally, besides the finite frequency behavior, o
method allows the reliable study of scalar quantities as
Drude weight.
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