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We show how to generalize the zero-temperature Lanczos method for calculating dynamical correlation
functions to finite temperatures. The key is the microcanonical ensemble which allows us to replace the
involved canonical ensemble with a single appropriately chosen state; in the thermodynamic limit it provides
the same physics as the canonical ensemble but with the evaluation of a single expectation value. We can
employ the same system sizes as for zero temperature but, whereas the statistical fluctuations present in small
systems are prohibitive, the spectra of the largest system sizes are surprisingly smooth. We investigate, as a test
case, the spin conductivity of the spin-1/2 anisotropic Heisenberg model and in particular we present a
comparison of spectra obtained by the canonical and microcanonical ensemble methods.
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[. INTRODUCTION counterparts. The exponentially dense nature of a many-

particle spectrum in the bulk is the property that smooths our

The study of lattice quantum many-body systems by thesalculations, a characteristic that is lost near the ground state

exact diagonalization technique has proven popular at zerghere the spectrum is sparse.

temperature T=0) where only the ground state is required, ~Besides the computational interest of this proposal it is
but it is of less use at finite temperature. The reason can borth pointing out that, to our knowledge, no studies of the

attributed to the different system sizes applicable where fofundamental equivalence between the microcanonical and
spin 1/2 the ground state can be found for uplte 30 lattice ~ €anonical ensemble for quantum dynamic correlations exist
sites, but the entire spectrum can readily be achieved fof! the_ "tefaF“re- T_hus this work is a ste_p in ”“mer_'C?‘"y
systems only up tdN~16. The intrinsic difficulties associ- exploring this basic postulate of nonequilibrium statistical
ated with applying the finite-size scaling method on suc mechanics. Clearly, analytical studies are needed to clarify,

small systems severely limit finite temperature applications. " instance, the meaning of the microcanonical ensemble for
y . y fimit np bp a quantum system with dense spectrum as an average over a
At T=0 the continued fraction technigtreallows accurate

. . ; ) single quantum stat@r a narrow window of statésand the
calculations of dynamical correlations using only the ma-gite_size corrections inherent in this ensemble
chinery of the Lanczos algorithm, but unfortunately this

technique has not been extended to fifit@here mostly full
diagonalization has been employed. As well as direct appli- Il. THERMODYNAMIC ENSEMBLES

cations of the canonical ensemble, there is also a hybrid |, this section we will discuss how an arbitrary probabil-

method which employs the canonical representation of dyyy distribution can be used, under reasonable assumptions,

namical correlation functions but uses a Lanczos basis g represent the canonical ensemble in the thermodynamic

provide a set of orthogonal staté3his method allows ac- [imit.% The choice of a(un-normalizedl distribution in the

cess to systems larger than those accessible to full diagonahermodynamic limit can be examined by considering its

ization techniques but to systems smaller than the currentaplace transform,

proposal, which does not need details of all the states even in

the Lanczos basis. In this paper we extendTle0 formal- o

ism to finite temperature by applyingraicrocanonical en- ef(T)zf dee“p(e), Rer<O,

semble approach combined with the Lanczos method 0

(MCLM) that provides smooth predictions for dynamical

correlation functions at least at high temperatures. —iw dr
The physical advance is to appreciate that in the thermo- P(G)ZI , me_"H(T)

dynamic limit the microcanonical ensemble is equivalent to o

the canonical on&® but for finite systems this is much easier . S .
. - ; where f(7) controls the properties of a distribution desig-
to work with. The statistical fluctuations engendered by the . \
. . . nated byp(e). The standard canonical ensemble arises from
microcanonical choice are a drawback for small systems but
become controllable for large systems. In practice, as the 1
finite T calculations are much smoother, it is more natural to of(1 = >p(e)=eBe @)

contemplate applying finite-size scaling than for thE# 0 B—T

, @
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and the microcanonical ensemble, that we would like to em- 1—e Be
ploy, at energyA, arises from X"(Q,0)= ——>—5(q,0), (10
f(r)=Am>p(e)=06(A—e). (3 where B=1/kgT is the inverse temperature. Note that

Unfortunately, it is impractical in our theory to achieve evens(qlfgl satisfies the symmetry relationS(—q,— o)
the pure microcanonical ensemble and so we need a more€ ~“S(q, ) while the sum rule
general theory. The “Gaussian” ensemble, at enexggnd

. . . 1 [+ ~ A
with width o, arises from ﬂf_w doS(d,0)=(XX_o) (11)
0'2( T— )\)2 ) a? )
f(r)=\7+ > =7N(1-0%)+ 7(7'2“\ )—>p(e€) makes it natural to consider the normalized to a unit area
correlation function,
=g (e \)21202 (4) s :
. - . q,®

and converges to the microcanonical in the limit>0. Note S(q,w)— ————. (12
that the linear coefficient ishiftedby \ 0%, an effect that can (XgX-q)

be compensated for in our theory. It is quite natural to em-
ploy f(7)=A7+F(7) where\ is extrinsic andF(7) is in-
trinsic, in order to limit towards the microcanonical en-
semble.

If we examine the partition functiod,, then

We have presented the dynamical correlation functions in
the canonical ensemble and now we will establish their form
in the microcanonical one. Starting from Eg) and employ-
ing solely the idea that our distribution has a restricted en-
ergy A we can generate a correlation functis(g, ) in the
—iw dr () zin microcanonical ensemble,

Zp—trp(e)—fioo me (5) .

_ _ o _ o s(q,w)zf dtel @Y, <Xg/my(m|X_ >el*emt,
whereZ(7) is the canonical partition function. This integral — m
may be approximated using the idea of “steepest descents” (13

with negligible error, . .
From here on< > denotes average over the microcanonical

7z Ocef(ﬁ*)z(ﬁ*) 6) distribution; we have used the relation
p L
where8* is chosen so that <OU(A)>—><O>U\) (14)
ﬁ(ﬁ*):_fﬁ(ﬁ*):<ﬂ> 0 [U(H) a function of H] and a decomposition using the
arT Z ot eigenbasigm). Expression(13) integrates to provide

and the average energy at the desired temperature turns out R R
to be crucial. For the particular case of the microcanonical s(q,w)szE <Xq|m><m|x,q> Sw+N—¢,) (15
m

distribution A =(H) whereas an inclusion d#(7) provides

A=(H)—(dF/a7)(B*) and a finite-size correction. that can be rerepresented as the basic correlation in the mi-
crocanonical ensemble,

I1l. DYNAMICAL CORRELATIONS IN THE

MICROCANONICAL AND CANONICAL ENSEMBLE s(g,w)=—2limIm<X[z—H+\]"X_,>. (16)
7—0

The usually studied quantities of direct physical interest

are the dynamic structure function related to an oper&&or Note that this expression is exact in the zero-temperature

limit where the expectation value is to be taken over the
ground-state wave function.

+® . ~ ~
S(q,w)=f dte'“'(Xq(H)X_4(0)), (8) Now let us imagine that we could find a single eigenstate
- at will, with an energy arbitrarily closé¢in the thermody-
and dynamic susceptibility namic limit) to a target energy, say. It is in principle
straightforward then to determine
+ o
—i izt/ " ~ ~ ~
X(q:w)_|f0 dtelz ([Xq(t),X_q(O)D, (9) S*(q,w)=—2IimIm<*|Xq[z—H+e*]‘1X,q|*> (17)

7—0
wherez=w+i7, the angle brackets denote a canonical en- - ) _
semble thermal average and the commutator plays a centr@kactly as before, whertl[* )=, |*) is the known eigen-
role in the linear-response theofgr Kubo) formulation of ~ State withe, —\. If the microcanonical ensemble is equiva-

transport. lent to the canonical ensemble and if a single eigenstate is
The two quantities are related by the fluctuation-representative of the microcanonical one, then provided that
dissipation relation, )\=<I3|> for the desired temperature, we can expect that
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s*(g,w)—>S(g,w) (19 K (now a pentadiagonal matjiin a previously constructed

in the thermodynamic limit. This amounts to the physicall-@nczos basis using (“L-projection” method). Note that
idea behind our calculations. R ) R R
Furthermore, from Eq(10), it follows that <(H-<H>)?>=<(H-\)?>—(<H>-)\)?= 0( )
23
1-e Ae
X'(Q,w)=——>——s(q,0) (199 (the expectation value is ovéx)), and so a small variance
guarantees a narrow distribution of energies around
and from the symmetry d8(q, ) in the canonical ensemble In any Lanczos calculation the mathematical orthogonal-

we can deduce that ity between states gets lost at some stage as numerical errors
build up. In practice only the well-separated converged states

s(q,w) ) suffer from this disease and for us these states, which are at
In s(—q,— ) = Bo; (20 the edge of the spectrum, do not gain any significant weight

] . . . _in the correlation functions and so do not manifest in our
this relation then provides an alternative, cross-checkingesyits. The states at low frequency are all well behaved and
technique for determining the temperature for a particulaimaintain their orthogonality.
value of\. Although a single eigenstate might correspond to |t js straightforward to implement these ideas numerically,
the microcanonical ensemble, based on a putative ergodicityjith a “double-Lanczos” calculation. The first run through a

assumption for the eigenstate, in practice it is not possible ® anczos procedure o, steps is employing the operatir
find such an eigenstate for large systems with dense spe@ !

i~ . ; tarting from a random nd it i find th
trum. So we will in effect relax the eigenstate hypothesis an arting from a random state and it is used to find the state

S . . » which plays the role of the microcanonical distribution.
32“5):;k to a distribution of eigenstates close to the desire he second run ofl, steps through Lanczos is made using

5(q|)\> as the initial state and then the resulting tridiagonal
matrix can be diagonalized to form the dynamical correla-
tions directly or by employing the continued fractions

In the technique we propose, we emp]oy the We||_knownmeth0d which is numerically more efficient but introduces a
Lanczos algorithm that is an efficient way of diagonalizingloss of resolution.

IV. THE LANCZOS METHOD

|arge Hamiltonians using as variational Subspaumcated All the analysis so far has been subject to several caveats.
basig the set of statés First, the microcanonical ensemble is equivalent to the ca-
nonical one in the thermodynamic limit and in the context of

{l0y,A|0Y, ... AM10)}, (21  quantum dynamic correlations. Second, a single eigenstate is

equivalent to the microcanonical ensemble and third, we can
where|0) is a (usually randominitial state andVi;+1 the  find such an eigenstate at will. The first two assumptions, as
number of Lanczos steps. To obtain a state close to energy we have mentioned in the Introduction, should be the focus
one might expect to use the closest eigenstate io the  of analytical studies as fundamental issues of nonequilibrium
truncated basis, but this is totally incorrect. In practice, onlystatistical mechanics.
the states at the edge of the spectrum converge and the otherRegarding the third assumption, it is clearly problematic
“eigenstates” in the truncated subspace have the suggesteg it is well known that although the Lanczos method con-
energies but are usually far from eigenstates. verges quite easily at the sparse edges of the spectrum, in the
In order to apply the Lanczos method idea, one can simdenser inner regions of the spectrum, of interest at finite
ply push the energetic region of interest to the edge of theemperature, it takes the Lanczos procedure an exponentially
spectrum by choosing an appropriate new operator. Ongirge number of iterations to converge. A many-body spec-

natural choice is to use trum has an exponential number of states, e.g., for spin 1/2
o the number of states-2", and for a bounded Hamiltonian
K=(H-\)3?, (22)  the eigenstates are compressed into an energy region that

o -, - . _grows only linearly with system size. Although the low-
which is positive definite and pushes the eigenstates Wltlgnergy region maintains a sparse density of states, the eigen-

energy close to towards the minimal, zero, eigenvalue of g ieq'hecome exponentially close together in the area of in-
K. Another way to understand this technique is to consideterest and essentially become unattainable.
expanding the ground state Kfin subspacé21), which we At first sight this appears an insurmountable difficulty, but
will call |\), as a probability distribution over eigenstates.in practice this issue allows the technique its success as we
Choosing\ establishes the appropriate mean for this distri-will now discuss. The first Lanczos procedure provides a
bution but minimizing<K > corresponds to minimizing the Single quantum statg,) that is not an eigenstate, but which
variance of the distribution, and consequently localizing thevhen decomposed in an eigenstate basis is represented by a
distribution near\ (see discussion below on the degree ofnarrow distribution|a,|* around\;
convergence that is employed in pracjice

One can perform a Lanczos calculation based upon the

operatorK or, more efficiently, one can evaluate the operator

|)\>:; an|n>: H|n>:‘5n|n>v
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()\|I3||7\>=)\ (29 [6(|5) is the step functiohand if we were to perform an
. ) « average over an orthogonal bakig, then this would con-
gives, for the expectation value of an operafr verge to
(O = |anXn|Ony+ >, a*an(m|On). pu(H)— 6[PIP?M. (29
n n#m . .
(25) Elementary analysis provides
The ensemble "~ a —i=dr .
pM(H)=f —exgA7—7H]
i 27Tl
p(e)=2 [ay/?n)(n| (26) oM g
o 1d sinhx
X(2M)122M2 4 ~ I > . (30
is presumed to correspond to a Guassian ensemble, an as- X=r1
sumption that we partially test in the following section. In the limit M—c we find that
This state, used in the evaluation of expectation values,
acts as a statistical average over an energy window. It is w2r? 1
important to note that by employing a single quantum state f(r)—>N7+ m+o > (31

(not eigenstatefor evaluating an expectation val(as a sub-

stitute for a statistical average over a narrow energy windovgnd we see that we do converge to the microcanonical en-

of eigenstatgs we assume that the appearing off-diagonalsemble but with a finite-size correction. We recognize a nar-

terms[second term in Eq(25)] cancel each other. This as- row Gaussian probability distribution

sumption can be justifieand numerically verifiedby in-

voking a random-phase decomposition of the used quantum A (H—X)2

state. pm(H)~exg — ————(4M+3)
From this discussion we can expect two types of fluctua- 2p

tions in the obtained spectra; first, intrinsic fluctuations dueNote that we have an intrinsic correction to the microcanoni-

to the finite size of the system, present even when a singleal ensemble and that

eigenstate is used for the evaluation of the expectation value.

Second, statistical fluctuations entering by the off-diagonal w?B* ~

terms in Eq.(25) due to the use of a single pure state that is A AM +3 =(H) (33

not an eigenstate; this type of fluctuations can be reduced b ) _ ) o

averaging over orthogonal states) (e.g., corresponding to nd so\ is shifted.The width of this distribution is under our

different translational symmetiysubspaces as we will show control,

below). <(|:|_)\)2>~ 2 NWZNZ
AM+3 4M+3’

) whereW is the natural energy scale for the model and we see
In the following, we present a test on the rate of convernai M needs to scale with the square of the system Nize
gence of the projection to a single quantum state with energy,sintain resolution.
close toA. Due to the innate complexity of an implicit  The | anczos method is clearly much more sophisticated
scheme like Lanczos, we develop the theory of a simplegng provides a much narrower distribution. We have exam-
technique briefly to exhibit the ideas. ined the distribution obtained in a Lanczos calculation and

A rgther s_imtp:le method of numericall}y sol}/ing. for ”]]ehwe find that it is well represented by a Gaussian distribution
groun state_ IS by an |terat|ve_sequence ot app |c§1t|ons o! t With a variance controlled by the eigenvalud%’attained by
scaled Hamiltonian. For us this amounts to iterative apphca-h lculati ice this is ab q f
tions of the operator the calculation. In practice this is about two orders of mag-

' nitude better in energy than the result obtained from the
2 projection analysigEq. (27)], which however it is analyti-
(27)  cally controllable; indeed, we find that the Lanczos method
scales as<K>xM;? so that the intrinsic resolutiony

where . is chosen to be large enough so that> (e, =\<K>, is inversely proportional to the number of itera-
—\)? for the full spectrum. Repeated applications of thistions. The convergence properties of the three schemes we
operator exponentially suppresses all states except those fdiscussed are depicted in Fig. 1 for a representative calcula-
which e,~\ which remain unaffected. We can start out with tion of the study that we present in the following section.

a set of random states and then fdrapplications of our The application of the technique should now be transpar-
operator we can build a distribution ent; employing a single random state, or averaging over a
sequence of orthogonal random states, one performs a first
Lanczos calculation oM, steps to find the approximate

ground staté\ ) for the operatoK = (H—\)2. The value of

. (32

(34)
V. CONVERGENCE OF PROJECTION

E>M<ﬂ>=§ PM| ) 6] P1( 9| PM (28)
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5 . ,v w VI. APPLICATION ON THE SPIN-1 /2 HEISENBERG
’ MODEL

We are now in a position to test our proposed technique
, and uncover its strengths and weaknesses. We have chosen to
3 1 investigate the finite temperature dynamics of the prototype
xC spin-1/2 Heisenberg modelequivalent to the fermionic
“t-V” model). This choice was dictated by its central role in
low-dimensional quantum magnetism; an exact solution of
the thermodynamics and elementary excitations is known us-
ing the Bethe Ansatz methdfthe spin dynamics probed by
FA— el nuclear magnetic resonance is of current experimental
) 00 0.02 0.04 0.06 0.08 interest®? and several numerical and analytical studied
1M have been devoted to the study of finite temperature dynamic
1 correlations>*>~*The Hamiltonian is given by
FIG. 1. Convergence properties of different Lanczos projection
procedures{i) dashed line, using Eq27), (ii) dotted line, using N A o
K=(H—-\)?, and(iii) continuous line, . projection” (see text HZEI hl:‘]gl (S'S1+SS 1 HASSL ), (39

\ must be preselected so that=(F) for the chosen tem- WhereS" (a=Xx,y,z) are spin-1/2 operators on sitand we
perature; several techniques are available for reliably detef@keJ as the unit of energy and frequendy<1). .
mining this energy versus temperature relation as the Bethe N particular, we will look at the high-temperature spin
ansatz(for integrable systemsthe finite temperature Lanc- conductivity in the antiferromagnetic regimé, A>0, for

zos (FTLM),? the transfer-matrix renormalization group \Ith'Ch Severa] studies exist and some exact results are
(TMRG),? or quantum Monte Carlo method. The degree of nown: To_ discuss Amagnetlc trans_po_rt, we fII’S.t define the
convergence can be measured using the eventual eigenvalffdévant spin curren® by the continuity equation of the

of K; it plays the role of the variance of the chosen distribu-corresponding local spin densitf (provided the totalS*

tion and its square root is an intrinsic energy resolugon ~component is conservgd
This scaleo can never drop below the distance to the nearest

eigenvalue. For a usual size system, eNy= 16, and tem- oy , ISt ay

perature, this limit is unattainable but a resolution @f S —EI: S W“LVJ'_O' (36)
~0.01 (<K>~0.0001) is readily available with a thousand A

or soM; iterations. Thus, we obtain for the spin currejtt (that plays the role of

Once one has found this state), which plays the role of the operat0§(q),
the statg* ), a second Lanczos projection sequence is gen-
erated employing the staté,|\) as the initial state. The - oz P ~yax
resolution of the eventual re(:];ult> is controlled by the intrinsic lzzzl Ji :‘]Z (S+1~SS0)- (37
dependence on the microcanonical ensemble and the degree
of convergence measured by This can be seen from rela- The real part of the “spin conductivity’ (w) (correspond-
tion (16) as the eigenstates over which the state is de- ing to the charge conductivity of the fermionic modéi-
composed have a spread in energywith respect to the cludes two parts, the Drude weigbt and the regular part
reference energy. The resolution also depends on the con-oey(®),>*
vergence achieved in the second Lanczos procedure where
the number of iterationdl, denotes the finite number of 0 (0)=27D(w)+ ooy ). (38
poles which are used to try to represent the dynamical cor- o
relations. At the sparse edges of the spectrum these poldd1€® regular contribution is given by
denote the eigenvalues of the system but in the bulk of the 1—eFo o
spectrum, when groupgd into bins of a given frequency Tregl®) = o 2 W, <n[jAm=>[28(w— wmy),
width, they are fairly uniformly spread and offer a further () N iZm
natural energy resolution for the calculation. (39

More Lanczos steps provide more poles and a finer spec- .
tral grid for the correlation functions, until the graininess of wherew, are the Boltzmann weights anal,,= em— ¢ L
the real system is achieved. We have elected to use a few To compare the_ presented data on the conductivity we
thousand poles in our calculations with very little improve- _normahze th(_em_ using the well-known optical sum-rule that
ment obtained by increasing this number as we shall see. THB the 5—0 limit takes the form
final resolution is self-imposed and is thg of Eq. (16) .
which we choose to be of the order of the spectral grid in f dwa’reg(w)+27TD:Bz<]\zz>- (40)
order to smooth our calculations. —o N
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8.0 ‘ ‘ ‘ 16
6.0 t a) —— microcanonical a)
40| -0 TR | FO— canonical
20} J k
= 3
® 00 ‘ - €
04 r b 1 Al R T~
0.2 |
00 0 1 2 3 4 5 ) 0
® [0
: . . 2.4
FIG. 2. Microcanonical calculations foN=26, A=2, 7
=0.02; (@) T=0 and(b) B—0. —— microcanonical b)
»»»»»»»»»»»»»»»»»» canonical
The normalized conductivity(w) in this high-temperature 1.6 1
limit is given by 5
©
2 |<n|jzlm>|25(w_wmn) 0.8 ;
(@)="" (4) |
o(w)= = )
(1) A
, , ) , 0.0 & ‘ e
which can be calculated using our microcanonical ensemble 0.0 0.5 1.0 1.5 20
procedure by o
FIG. 3. Microcanonical vs canonical calculatiofisplaced for
5 1 clarity); (8 N=20, A=0.5, »=0.01 and(b) N=18, A=1, 7
Im{ N j*———]
o zZ—H+\ “2 =0.01.
o(w)——1Im S
70 m(\[j?[\)

nonical calculations are essentially a direct evaluation of ex-

In principle this expression includes also the contributionpression(39), where we applied a “binning” procedure on
from the zero-frequency Drude weiglé function, but in  the §-function weights over an energy scale of about 0.01.
practice as the second Lanczos procedure cannot fully corFhe number of contributing matrix elements are of the order
verge, the Drude peak appears as a low-frequency contribwf the dimensionD of the Hilbert space square®?, e.g.,
tion. As we will discuss below, sorting out this low- 10°—10° & functions, with no continuity in the weights. The
frequency part, in general, allows us to reliably extract theresults are not smooth and the resulting intrinsic fluctuations
Drude weight value. are heavily smoothed by our binning procedure. In the mi-

In general, we can employ the translational symmetry ofcrocanonical calculations we employ our scheme, further av-
the Hamiltonian and study spectra in a given pseudomomereraging over translational symmetkysubspaces. Now, only
tum k subspace or average the results over diffekestib-  O(D) & functions are essentially contributing, multiplied by
spaces; in the following, we typically empldy,=1000 and the number of states involved in the decomposition of the
M,=4000 Lanczos iterations gB—0 unless otherwise state|\) (a few thousand depending on the convergg¢acel
stated. In Fig. 2 we compare a zero-temperatwvith an  the number ofk subspaces. Note that the observed fluctua-
infinite-temperature §—0) calculation for a fairly large tions are not associated with any of our different resolution
system in thek=0 subspace. The zero-temperature calculaprocesses which are much smaller than the observed scale of
tion finds a few poles with exact weights whereas thefluctuations; they are due to the finite size of our system and
infinite-temperature calculation provides a much smoothethus effective smaller number of matrix elements contribut-
result. ing to the construction of the spectra. This seemingly new

There is clear structure in the infinite-temperature resulproblem associated with our technique turns out to be domi-
but also apparently some noise. To interpret this result waant for small system sizes; very soon however it becomes
must consider the issue of the veracity of the microcanonicahegligible as larger systems are achieved, especially consid-
ensemble for such small systems namely the extent to whicéring that the dimension of Hilbert space grows exponen-
the microcanonical ensemble is equivalent to the canonicdlally fast with the system sizhl.
one. In order to assess these fluctuations and simultaneously

In Fig. 3 we present a comparison, extremely encouragthe role of our smoothing parametgr we performed some
ing, of some microcanonical calculations with the analogoudasic calculations involving only a singlesubspace state
canonical ones. There is “noise” in all calculations, the ori-|\). In Figs. 4a,0 we offer a comparison of calculations
gin and magnitude of which we will now discuss. The ca-involving just the poles evaluated using the second Lanczos
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FIG. 5. Finite-size scaling foA=2, 8—0.

We can now fairly safely conclude that our technique is a
viable way to calculate dynamical correlation functions at
high temperature for the same systems accessible by the
Lanczos method aT=0. By its very nature, the finitd
correlations are much smoother and more regular to inter-
pret. Our technique introduces new statistical fluctuations
which make small system sizes ragged but appear to leave
large system sizes essentially unaffected.

Although we can now investigate finite temperature dy-
namic correlations using the Lanczos method, we are still
restricted ta\N~ 30 for a spin-1/2 system. The key to making
useful physical deductions is the procedure of finite-size
scaling, the attempt to deduce the properties of the infinite
size system using assumed properties of the Nizkepen-
dence. This method has been widely and successfully applied
in the evaluation of ground-state energies or gap values using
data provided by the exact diagonalization, Lanczos or
density-matrix renormalization group technique. But to ex-
tract information on finite temperature dynamic correlations
one would need to know the form of the curves before fitting
and scaling could take place mathematically. As it is clear
from Fig. 5 this might be a challenging task considering the
statistical fluctuations inherent in the specitahowever,
from ongoing studies on other systems using this method, we
find that the behavior of the spectra might greatly depend on

FIG. 4. Microcanonical finite-size effects far=2 (displaced the model Hamiltonian and correlations under stiely., it
for clarity); (8 N=22, (b) N=22, sensitivity to\, initial random is far more structureless for energy current dynamic correla-
vector|0), and(c) N=28. tions in a nonintegrable systeffls Note that the high-

frequency behavior is generally rather weakly size dependent
procedure eigenstates against smoothed versions of the sambile the low-frequency one is the most subtle to determine.
data but employing the continued fraction technique. Also, inThe last however is the most physically interesting as it de-
Fig. 4(b) we show the sensitivity of the spectra Xoand termines, for instance, the diffusive or ballistic behavior of
initial random vector for the rather small systéts-22. the conductivity.

The fluctuations clearly decay with system size with the The basic properties of th@—0 current-current correla-
final system being surprisingly smooth. The limitations oftions are now available and so we provide in.Figa few
the smoothing process are clear, the sharper features ag@amples of the frequency dependence of the conductivity at
slightly washed out although the ease of assessing the dag—0 as a function ofA.
makes such a smoothing advisable. The weights for these Although we have devoted most of our effort to infinite
microcanonical calculations are truly quite continuous intemperature 8—0), our technique is valid at essentially any
comparison to the intrinsic properties of the canonical calcutemperaturgprovided that we remain at a dense region of
lation which is necessarily ragged. Obviously, for our largesthe spectrum Analyzing the pure Heisenberg model, we
calculations we are nowhere near converged to the true spelwok at a couple of finite temperatukeaveraged calculations
trum which is a possible explanation for the observed contiin Fig. 7. The temperature has been deduced from a least-
nuity. squares fit of the quantity
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FIG. 6. Microcanonical ensemble evaluation of the normalized
conductivity o(w) for B—0, N=28; (a) A=0.5,1.0 forA=0,
[j*,H]=0 so that there is only & w) contribution(not shown as it
diverges; (b) A=2.0,4.0.

s(w)

s(w)

S(—w)

In

~a+ Bmicrow (43

to a linear ansatz, and although the statistical fluctuations are
compounded, an almost vanishing intercept and a clear slope
indicate the feasibility of the strategy. The obtain@gicro
values compare favorably with those corresponding to the
canonical ensemble in the thermodynamic limit, evaluated

using A\=(H); for A=—3, Bmicro~0.14 versusBcanonical 0.0
~0.15, forh=—6, Bmicro~0.28 versuB.anonicar-0-3.

Although we have compared numerical evaluation of dy-
namic correlations obtained by a canonical and a microca- FIG. 7. Finite temperature calculations fbt=24, A=1, 5
nonical method, we have yet to compare with an exact solu=0.01; (&) s(w), A=-3, (b) temperature fitBpic;o=0.14, (c)
tion. Recently even non-zero-temperature dynamicaf(®), A=—6, and(d) temperature fip;c;o=0.28.
correlations have become partially accessible, with a calcu- o ] . )
lation of the Drude weight for the(@d <1 Heisenberg model N resolution is relev_ant. These calcula_tlons involve a single
at finite temperatur&’ In particular, the Drude weight in the State and are much improved kyveraging, also the energy

In[s(w)/s( )]

0.5 1.0 1.5 2.0
[

B—0 limit is given analyticall§? by window is so small that the individual poles in the second
Lanczos procedure are visible and have been smoothed out
1[m/v—0.5siM27/v)] with an »=0.005 value which adds to the observed resolu-
Dip=5 877v ,  A=cog7/v). tion. In the inset, the scale of the conductivity clearly signals
(44) 08

The Drude weight, strictly speaking, is defined as the weight
of a zero-frequency function, Eq.(38); it is a particularity
of the Heisenberg model that it appears as a narrow peak at
low frequencies, of the order of the inverse lattice $izim
contrast to the fermionict-V” version where it is accounted g g4l
for only by the diagonal energy elemenis£0).

In extracting the Drude weight by the above described
procedure we must take into account the problem caused by 0.2
the intrinsic resolution of our calculations, which is of the

order o=V <K>. Although our chosen resolution af 0.0 ‘ ‘
~0.01 is almost invisible for the smooth background, for the 0.0 0.5 10 15 20

Drude weight the resolution is essentially limited by that of ®

our “microcanonical” distribution, viz.,o. An example of FIG. 8. A comparison of three “microcanonical” distributions
these ideas is provided in Fig. 8, from which it is clear that(k)=0.002 M,=500),0.0005 ¥ ,=1000),0.0012 K ,=2000),
the Drude peak is the only contribution for which the changefor N=26 andA =0.5; inset, low-frequency range.
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0.08 - - - - tailed by increasing the system size and are an implicit dif-
analytical ficulty with canonical calculations too. We believe that we
006 b o N=24 | can calculate the high enough temperature dynamical corre-
: o N=26 lations for a finite system with an excellent tolerance.
S * N=28 The statistical fluctuations in our results require to be con-
< 0.04 | ] trolled if an error analysis is to be contemplated. Although
we have not got analytical control, we do have experience at
8 various approaches to reducing the statistical fluctuations.
0.02 | ¢ ] The crucial point is that, when taking a statistical average,
» one should use “orthogonal” states\()’s decomposed into
0.00 , , , , different sets of eigenstatds)). Averaging over random
00 02 04 06 08 10 starting vectors in the same subspace is not very effective,
A even if they are originally orthogonal, because the resulting

FIG. 9. Comparison of3—0 Drude weight,D/g; numerical distribution involves the same states and consequently an
evaluation(pointg vs analytical expression Eq44) (continuous overlap. Perform'ng &average, Overtran_SIat'onal symmetry
line). subspaces, is an excellent procedure, since the states are au-

tomatically orthogonal and intellectually one is reverting

a low-frequency peaknote the difference in scale between Pack towards the real physical statistical average. Another
Fig. 8 and its inset still, in order to extract the Drude weight POssibility is to use several of the eigenstates of the first
from the smooth background, we must integrate the peak up@nczos procedure; although the orthogonality is guaranteed,
to at least as far as it is resolved and that necessitates th@ere is an induced loss in resolution due to the largsrof
inclusion of some of the background. We have elected to erthe higher Lanczos states. A final possibility is to employ the
on the side of inclusion and tend to integrate past where thBarameten, where the average over differents must be
Drude peak appears to become small. limited within a window that corresponds to the energy fluc-
In Fig. 9 we offer a comparison of the analytical and tuations at the studied temperature in the given size system.
numerically extracted Drude weights in tge-0 limit. The ~ Provided that tha’s are further apart than the chosenthe
quantitative agreement is reasonably satisfactory, becomingfthogonality is essentially guaranteed.
rather poor neah ~ 1 because of our technique for extract-  Although we believe we have access to the temperature
ing the Drude weight; due to the finite resolution of our Pehavior of finite-size systems, this does not give immediate
calculation we need to sample a finite width aroume¢t0.  @CCess to the dynamics in the thermodynamic limit because
For the case\=1 there is no Drude weight but there does finite-size scaling must be performed; Fig. 6 exhibits clear
appear to be a power-law-like divergence which we pick upP€aks of unknown form, plausible “cusps” and regions

in our finite window leading to the observed corrupted be-Where the correlations vanish. Unless we can guess or de-
havior. duce the form of these structures, finite-size scaling appears

problematic. We should note however from our experience,
that not all models and dynamic correlations exhibit so in-
volved spectra; in forthcoming works we will present analy-
Our investigation appears to validate the use of the Lancsis of charge/spin/energy current correlations for othen-)
zos algorithm to analyze finite temperature dynamical propintegrable systems of current interg$tigher spin, ladder
erties of strongly correlated systems; the crucial step is tanodel$®) where the obtained spectra are far more structur-
employ the microcanonical ensemble, which essentially alless. Finally, besides the finite frequency behavior, our
lows the thermodynamic average to be replaced by an emethod allows the reliable study of scalar quantities as the
ementary expectation value. All the simplicity of the zero-Drude weight.
temperature formalism can then be taken over to the finite
temperature calculation. The comparison of canonical with
microcanonical procedures indicates that the thermodynamic
limit is reached with quite modest system sizes and conse- Part of this work was done during visits ¢P.P) and
quently there appears to be little systematic error comingM.L.) at IRRMA as academic guests of EPFL. J.K. and X.Z
from our choice of ensemble. There are intrinsic statisticancknowledge support by the Swiss National Foundation, the
fluctuations in our calculations but these are severely curtniversity of Fribourg and the University of Neudka
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