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In this essay, we first sketch the development of ideas on the extraordinary

dynamics of integrable classical nonlinear and quantum many body Hamil-

tonians. In particular, we comment on the state of mathematical techniques

available for analyzing their thermodynamic and dynamic properties.

Then, we discuss the unconventional finite temperature transport of inte-

grable systems using as example the classical Toda chain and the toy model

of a quantum particle interacting with a fermionic bath in one dimension; we

focus on the singular long time asymptotic of current-current correlations, we

introduce the notion of the Drude weight and we emphasize the role played by

conservation laws in establishing the ballistic character of transport in these

systems.

PACS numbers: 71.27.+a, 05.45, 72.10.-d

1. INTRODUCTION

The extraordinary stability of solitons upon collisions in integrable non-
linear systems was first discovered in a numerical simulation of the Korteweg-
de-Vries evolution equation, a system commonly studied in hydrodynamics
and plasma physics1. This discovery was soon followed by the development
of a beautiful mathematical theory - the Inverse Scattering Method (ISM) -
that allows the analytical evaluation of the time evolution of an initial pulse
configuration using linear operations2; this is the analogue of the Fourier
Transform for linear systems. These seminal works opened the new and still
rapidly expanding field of nonlinear physics, with developments ranging from
mathematical physics to applications3.

Here, we should point out that there is a fundamental distinction be-
tween integrable systems (mostly one dimensional) characterized by the pres-
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ence of “mathematical solitons” and those with “topological solitons”. On
the one hand, the stability of mathematical solitons is guaranteed by a subtle
interplay between dispersion and nonlinearity; this interplay is expressed by
the existence of a macroscopic number of conservation laws constraining the
dynamical evolution. On the other hand, the stability of topological solitons
is enforced by a topological constraint; of course there are examples, like
the sine-Gordon field theory, which possess topological solitons but they are
also integrable. In this work we will focus on the transport properties of
integrable systems.

Due to the presence and stability upon scattering of nonlinear excita-
tions, integrable systems are expected to show unconventional finite temper-
ature transport properties, as ideal thermal, charge or spin conductivities,
ballistic rather than diffusive transport. Within the traditional framework
of linear response theory, the finite temperature dynamic correlations char-
acterize the transport behavior and they are directly linked to experimental
observations. However, although integrable models are considered as exactly
soluble, meaning that the initial value problem can be exactly analyzed using
the ISM, rather little progress has been done in the evaluation of dynamic
correlations which remains at best technically very involved.

In the quantum domain, parallel to developments on the analysis of
classical integrable nonlinear systems, in the early 80’s it was realized that
the exact solution of a certain class of one dimensional quantum models
by the Bethe ansatz (BA) method was equivalent to a quantum version of
the ISM4. In this class belong well known prototype systems as the Hub-
bard or spin-1/2 Heisenberg model, commonly used for the description of
(quasi) one-dimensional electronic or magnetic materials. The BA method
provides the exact eigenfunctions and eigenvalues and by a certain proce-
dure (and assumptions) the exact thermodynamic properties and excitation
spectrum. Similarly to their classical counterparts, the quantum systems
possess a macroscopic number of conservation laws, characteristic of their
integrability. It should therefore come as no surprise the proposition that
quantum integrable systems should also exhibit unconventional transport5.
The situation however is similar to the one of classical systems; although
the exact eigenfunctions and eigenvalues are known, the calculation of finite
temperature dynamic correlations is still out of reach for most of the models.

In the following, we discuss two simple examples, one classical and one
quantum, in order to show the ideal conducting properties of integrable
systems. Our strategy is to focus on the long time asymptotic value of the
current correlations in order to demonstrate the ballistic transport instead
of attempting to evaluate the full frequency dependence of the conductivity
(or mobility). Furthermore, instead of linking the ideal conductivity to the
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dynamics of soliton excitations, not very transparent for quantum many
body systems, we directly relate it to the conservation laws characterizing
integrable systems.

First, we present a study of the energy current - current correlations
(related to the thermal conductivity) for the classical Toda chain. Second, we
introduce the notion of the Drude weight as a criterion of ideal conductivity
and evaluate it exactly using the Bethe ansatz method in the context of the
mobility for a toy model describing a quantum particle interacting with a
fermionic bath.

2. A classical system: the Toda chain

The classical Toda lattice is a prototype model for studying the physics
of nonlinear excitations6. It is one of the first models analyzed using the In-
verse Scattering method7, the conservation laws characterizing this system8

have been presented and it has even been invoked in attempts to describe
nonlinear transport in DNA molecules9. As we mentioned above, although
the initial value problem and the thermodynamic properties can be analyt-
ically studied, there is no clear picture on the finite temperature dynamic
correlations10.

A physical quantity of interest in an anharmonic chain is the heat con-
ductivity. In a generic case, it is expected that the energy current correlations
decay to zero at long times and the decay is fast enough so that a transport
coefficient can be defined. This behavior seems rather difficult to observe in
several one dimensional systems11,12, where the currents decay to zero but
often too slowly, leaving the issue of diffusive transport controversial.

For an integrable model, ideal conducting behavior is expected with
current correlations decaying to a finite value at long times. To quantify
the contribution of nonlinear excitations, different ingenious methods have
been devised9 (soliton counting procedures). Here, we will use the long time
asymptotic value of current correlations as a measure of ideal transport,
related in integrable systems to the existence of conservation laws.

To establish this relation, we will use an inequality proposed by Mazur13,
linking the long time asymptotic of dynamic correlations functions to the
presence of conservation laws:

lim
T→∞

1

T

∫ T

0
〈A(t)A〉dt ≥

∑
n

〈AQn〉
2

〈Q2
n〉

. (1)

Here 〈〉 denotes thermodynamic average, the sum is over a set of conserved
quantities Qn, orthogonal to each other 〈QnQm〉 = 〈Q2

n〉δn,m and we suppose
that 〈A〉 = 0.
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The classical Toda Hamiltonian for a chain of L sites with periodic
boundary conditions is given in reduced units by:

H =
L∑

l=1

p2
l

2
+ e−ql (2)

where pl is the momentum of particle l, xl its position and ql = xl+1 − xl.
The energy current for a system of interacting particles is given by14:

jE =
L∑

l=1

plhl +
(pl+1 + pl)

2
qle

−ql (3)

where hl =
p2

l

2 + 1
2(e−ql + e−ql−1).

We consider dynamic correlation functions in the fixed temperature-
pressure thermodynamic ensemble:

〈A(t)A〉 = Z−1
∫ L∏

l=1

dpldqlA(t)Ae−β(H+PL) (4)

where Z =
∫ ∏L

l=1 dpldqle
−β(H+PL), L =

∑L
l=1 ql, P is the pressure and β

the inverse of the temperature.
In this thermodynamic ensemble, equal time correlation functions can

be calculated analytically. For instance the average distance is given by:

〈q〉 = ln(β) − Ψ(βP ) (5)

where Ψ(z) is the digamma function.
The classical Toda lattice is characterized by a macroscopic number of

conservation laws. The first few ones are:

Q1 =
L∑

l=1

pl (6)

Q2 =
L∑

l=1

p2
l

2
+ e−ql (7)

Q3 =
L∑

l=1

p3
l

3
+ (pl + pl+1)e

−ql (8)

Q4 =
L∑

l=1

p4
l

4
+ (p2

l + plpl+1 + p2
l+1)e

−ql +
1

2
e−2ql + e−qle−ql+1 (9)

Q5 =
L∑

l=1

p5
l

5
+ (p3

l + p2
l pl+1 + plp

2
l+1 + p3

l+1)e
−ql (10)

+ (pl + pl+1)e
−2ql + (pl + 2pl+1 + pl+2)e

−qle−ql+1... (11)
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with Q1 the total momentum, of course present in all translationally invari-
ant systems, integrable or not, as also Q2 the total energy. According to the
standard Green-Kubo formulation of transport theory14 “subtracted fluxes”
should be used in the dynamic correlation functions determining the trans-
port coefficients. So in the case of energy transport we will study the decay
of the “subtracted” energy current15:

j̃E = jE −
〈Q1j

E〉

〈Q2
1〉

Q1 (12)

We see that the use of a subtracted flux is equivalent to removing the con-
tribution of Q1 in the long time asymptotic bound13 for 〈jE(t)jE〉.

We will now calculate a bound on the long time asymptotic value of
〈jE(t)jE〉 by the Mazur inequality eq.(1) using the first m conservation
laws. We should note that Q3 has a structure very similar to the energy
current, so we expect a large contribution from this term; actually in some
quantum models like the spin-1/2 Heisenberg chain or the t-J model, the
energy current is identical to a conservation law, directly implying a nonde-
caying energy current and thus infinite thermal conductivity16. Here, Q′

ns
with n =even do not couple to j̃E so we will consider only Qn, n = 3, 5, 7.
Higher Q′

ns can of course be included but the calculations become rather
cumbersome. Orthogonalizing the conserved quantities which appear in the
right hand side of eq.(1) is equivalent to evaluating the expression:

Cm
jEjE = 〈j̃E |Q〉〈Q|Q〉−1〈Q|j̃E〉 (13)

where 〈Q|Q〉 is the m × m overlap matrix of Q′

nn and 〈Q|j̃E〉 the overlap
vector of j̃E with the Q′

ns.

In Fig.1 we show the temperature dependence of Cm
jEjE/〈j̃E

2
〉 for m =

1 (n = 3), m = 2 (n = 3, 5) and m = 3 (n = 3, 5, 7). At low T the
behavior is linear with slope 3

35 for m = 2 and 4
63 for m = 3. It is interest-

ing that this value is comparable to the value for the density of solitons17

Ns/N = ln(2)/π2T . So, we find that the long time asymptotic value of the
subtracted energy current correlations is finite and most interestingly that
it increases with temperature. This trend we can interpret as evidence for
an increasing contribution of thermally excited nonlinear excitations on the
ballistic transport.

The idea presented here provides, on the one hand a conceptual under-
standing of the role played by the conservation laws on the finite temperature
dynamic correlations and on the other hand a simple analytical method for
evaluating, or at least giving bounds on their long time asymptotic value.
A similar analysis can be carried out for quantum integrable systems16 al-
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Fig. 1. Lower bounds on the long time asymptotic value of energy current
correlations.

though the complexity of the quantum conservation laws renders their wide
use rather limited.

3. A quantum system: the “heavy particle” model

The Drude weight D (or charge stifness) was introduced as a criterion
of an ideal conducting or insulating state at zero temperature18 and recently
extended as a measure of ideal transport at finite temperatures5. Within
linear response theory, it is essentially the prefactor of the low frequency
reactive part of the conductivity, σ′′ = 2D/ω|ω→0, a finite D implying a
freely accelerating system. For a normal, diffusive system the Drude weight
is zero at any finite temperature in the thermodynamic limit; according to
the standard scenario the weight at zero frequency spreads to a “Drude
peak” with width proportional to the inverse of the collision time. As we
will see below, in integrable systems the Drude weight remains finite at all
temperatures indicative of ballistic rather than diffusive transport.

The Drude weight can be conveniently evaluated18 as the thermal av-
erage of curvatures of energy levels ǫn of the system subject to a fictitious
flux φ,
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D =
1

2L

∑
n

pn

∂2ǫn

∂φ2
|φ→0 (14)

where pn are the Boltzmann weights and the sum is over all eigenstates
of the system. It is also equal to the long time asymptotic value of the
current-current correlations16,

D =
β

2L
〈j(t)j〉|t→∞ =

β

2L

∑
n

pn|〈n|j|n〉|
2 (15)

so useful bounds on D can be obtained using the Mazur inequality following
the same formulation as in the previous example.

For integrable quantum many body models it can evaluated exactly fol-
lowing recent developments in the Bethe ansatz technique, thus providing
essential information on the transport properties of these systems without
requiring the full calculation of the frequency dependence of the conduc-
tivity. This type of analysis, still under discussion as it is technically in-
volved, has been carried out for several one dimensional integrable quantum
models as the Hubbard chain, the spin 1/2 Heisenberg and the nonlinear-σ
model20,21,22. These calculations show that in most of the cases the Drude
weight is finite at all temperatures implying ideal thermal, charge or spin con-
ductivity. Recently, investigation of the finite temperature of these systems
was also carried out by a semiclassical approach23 and within the Luttinger
liquid description24,25.

Here, we will demonstrate the idea behind this type of Bethe ansatz
analysis by evaluating the Drude weight related to the mobility of a quantum
particle interacting with a bath of fermions in a one dimensional system19.
A similar analysis was carried out for a particle moving on a lattice5 but the
case discussed below is simpler and shows a qualitatively new behavior.

We consider a particle with coordinate y moving on a system of length L
with periodic boundary conditions and interacting with a set of N fermions
described by the coordinates xj via a δ−function interaction of strength c,

H = −
∑
j

∂2

∂x2
j

−
∂2

∂y2
+ 2c

∑
j

δ(xj − y). (16)

When the mass of the “heavy particle” is equal to the mass of the
fermions the model is integrable and so we expect a ballistic behavior of
the mobility and therefore a finite Drude weight. To evaluate D using eq.
(14), we consider the dependence of the energy levels on a flux φ acting
only on the heavy particle. The momenta kj and the collective coordinate
Λ describing the Bethe ansatz wavefunctions are then given by the following
standard equations obtained by applying periodic boundary conditions,
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Lkj = 2πIj + θ(kj − Λ), j = 1, ..., N + 1, (17)

θ(p) = −2 tan−1(2p/c), (18)

L
N+1∑
j=1

kj = 2π
N+1∑
j=1

Ij + 2πJ + Lφ. (19)

The eigenstates are characterized by the quantum numbers (Ij, J) and their
energy is given by:

E =
N+1∑
j=1

ǫ(kj) =
N+1∑
j=1

k2
j . (20)

These equations can be solved to order 1/L as we consider the effect of the
one particle on the ensemble of fermions.

kj = k0
j +

1

L
θ(kj − Λ), k0

j =
2πIj

L
(21)

Thus the total energy can be written as,

E =
∑
j

ǫ(k0
j ) +

2

L
k0

j θ(k0
j − Λ), (22)

1

L

∑
j

θ(k0
j − Λ) =

2πJ

L
+ φ. (23)

Going to the continuum limit we obtain:

E(ρ(k),Λ) =
L

2π

∫
dkρ(k)(k2 +

2

L
kθ(k − Λ)), (24)

P + φ =
1

2π

∫
dkρ(k)θ(k − Λ), P =

2πJ

L
. (25)

Now we can define a correlation energy ǫc(Λ) assuming that the distri-
bution of the fermion momenta is not affected by the presence of the extra
particle and replacing the density ρ(k) by the Fermi-Dirac distribution f(k),

ǫc(Λ) =
1

2π

∫
dkf(k)2kθ(k − Λ). (26)

Using this formulation and the definition of the Drude weight eq.(14) we
obtain:

D =
1

2πZΛ

∫
dΛg(Λ)w(Λ)

1

2

∂2ǫc(Λ)

∂φ2
(27)
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Fig. 2. Drude weight of the “heavy particle”.

where,

g(Λ) =
∂P

∂Λ
=

1

2π

∫
dkf(k)

∂θ(k − Λ)

∂Λ
, (28)

ZΛ =
1

2π

∫
dΛg(Λ)w(Λ), w(Λ) = e−βǫc(Λ). (29)

In Fig. 2 we show the normalized Drude weight D/D0 for different
values of the interaction c as a function of temperature, with D0 = D(T =
0) = (π/2)(tan−1(2kF /c)−(2kF /c)/(1+(2kF /c)2))/ tan−1(2kF /c)2 and kF =
πn. The chemical potential is chosen so that we consider density n = 1;
upon scaling n → nc, β → β/c2 the Drude weight D remains the same.
We note that the behavior of D is not monotonic, initially decreasing at
low temperatures because of the interaction and then tending to the free
particle value at high temperatures. This is in contrast to the Drude weight
of systems on a lattice (tight binding models) where D goes always to zero
as β at high temperatures. The difference in behavior can be attributed to
the bounded spectrum in lattice models in contrast to the unbounded one
for continuous models. Furthermore, numerical calculations on this model
show that, the Drude weight vanishes at any finite temperature when the
mass of the “heavy particle” is not equal to that of fermions, as expected for
any normal system. In conclusion, the presented analysis demonstrates the
basic features of the generic finite temperature ballistic transport behavior
of integrable quantum many body systems.
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