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Abstract

In most modern hemispherical deflector analyzers (HDAs) using a position sensitive detector (PSD), due to practical geometrical constraints
(fringing field correctors, grids etc.), the PSD cannot always be placed at the optimal position, i.e. the first-order focal plane following 180◦

deflection at h = 0. Here, the dependence of the exit radial base width �r∗ , base energy resolution R and line shape L on the distance h
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etween the focal plane and the detection plane for an ideal HDA (no fringing fields) is investigated theoretically as a function of the maximum
njection angle α∗

max and the diameter of the entry aperture �r0. Both exact numerical results and practical analytic formulas based on Taylor
eries expansions developed for any HDA show RBh and Lh become increasingly degraded with increasing h from their optimal values at h = 0.

detailed comparison of the resolution properties of conventional and biased paracentric HDAs is also presented. Apart from a few marginal
mprovements of limited utility, overall, the ideal paracentric HDA does not seem to have any distinct practical advantages over the conventional
DA. Resolution improvements recently reported for non-ideal paracentric HDAs must therefore be due to their strong fringing fields and needs

o be further investigated. Our ideal HDA results provide a unique standard to evaluate the resolution performance of any HDA under realistic
on-zero h-value conditions.

2006 Elsevier B.V. All rights reserved.
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. Introduction

High resolution electron spectroscopy (as for example elec-
ron spectroscopy for chemical analysis (ESCA) [1–3] or Auger
lectron spectroscopy (AES) [4]) is a mature technique utilized
n many different fields of physics, material science, chem-
stry and even biology and medicine. One of the most popular
pectrometers in use today is the hemispherical deflector ana-
yzer (HDA) also available commercially from many different
igh tech companies. Today’s, modern high power HDAs are
quipped with state-of-the art multi-element zoom lens and po-
ition sensitive detector (PSD) [5–9] and therefore enjoy a very
arge collection efficiency.

∗ Tel.: +30 2810 394117; fax: +30 2810 394101.
E-mail address: tzouros@physics.uoc.gr (T.J.M. Zouros).

In the past, when high resolution HDAs had a much lower
throughput (no PSD) emphasis was primarily given to the opti-
mization of the resolution [10] for highest étendue (the product
of entrance area and solid angle) [11,12] or highest transmit-
ted current [13,14]. The line shape was also investigated the-
oretically [12,15–19] using both analytic piecewise integration
[12,18–20] and Monte Carlo techniques [15,21,16,22]. How-
ever, today, with the existing high throughput of modern ESCA
spectrometers, high resolution has become of utmost impor-
tance. For an ideal HDA, the resolution is primarily determined
by the maximum injection angle α∗

max and the diameter of the
entry aperture or slit (real or virtual) �r0. First-order focusing
is known to take place after deflection through 180◦ within the
HDA and therefore the PSD should in principle be placed at this
focal plane. However, in practice, due to geometrical constraints
imposed primarily by field corrector schemes (grids, fringing
field corrector rings, Jost apertures, see Ref. [23] for a recent
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update) the PSD must be placed at a small distance h ∼5–20 mm
from the ideal HDA focal plane at h = 0. While the HDA resolu-
tion formula at h = 0 is well known and discussed in practically
all reviews dealing with electron spectroscopy (see for exam-
ple Refs. [18,19,24,25]), to our knowledge, there have been no
investigations of the HDA energy resolution for h > 0. Thus,
there is no way to extrapolate the energy resolution from h = 0
to realistic positive h-values, to quantify its expected deterio-
ration and to know its dependence on α∗

max and �r0. The only
h-dependence study known to us, reports on a related subject
also of importance to PSD usage, i.e. the possible reduction of
energy non-linearity in the exit radial position along a PSD for
h > 0 [26].

Of special interest in this presentation is the investigation
of the so called biased paracentric HDA [27–29], i.e. an HDA
whose entry radius R0 is not at the traditional mean radius R̄ and
whose value of the entry potential V0 ≡ V (R0) is biased (non-
zero) rather than zero, as in most conventional HDAs. Such an
HDA was recently shown in simulation [27] to have an im-
proved energy resolution over that of an equal size conventional
HDA and has been used with good results in the author’s labora-
tory for high resolution Auger projectile electron spectroscopy
of ion–atom collisions [30]. The simulation [27] investigated
the case of a realistic HDA with large interradial spacing be-
tween inner and outer electrode and thus included the effect of
the strong fringing fields at both the entry and the exit of the
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so that the central tuning trajectory will always have τ = 1. Fi-
nally, we define the paracentricity parameter ξ:

ξ ≡ R̄

R0
(2)

where R̄ = (R1 + R2)/2 is the mean HDA radius. In the past
[28] we have always dealt with HDAs for which Rπ = R̄ (con-
venient but not necessary) for which ξ = Rπ/R0, in this case.
We shall continue assuming Rπ = R̄, also here, but will maintain
both symbols for generality.

We next introduce the concept of HDA entry bias. This refers
to the value of the potential Ṽ0 ≡ Ṽ (R0) at the central tuning ray
entry radius R0. Thus, we define the biasing parameter γ so that
[28]:

qṼ0 ≡ qṼ (R0) = (1 − γ)w (3)

where q is the particle charge (for electrons q = −|e| with e =
1.61 × 10−19 C) and Ṽ (r) is the potential inside the HDA [33],
in this paper assumed to be ideal and given by:

Ṽ (r) = −k

r
+ c (4)

Then, for γ = 1, Ṽ0 = 0 the HDA is unbiased, while in general
for γ �= 1 the HDA is biased. The combination of ξ and γ de-
fine the particular type of HDA. Thus, conventional HDAs have
Ṽ0 = 0 and R0 = Rπ = R̄. They are therefore unbiased with
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DA thought to be responsible for the resolution improvement.
hile the reason for this improvement is still under investiga-

ion [31,32], it is of interest to also study the energy resolu-
ion of such an HDA in the absence of strong fringing fields,
.e. for ideal fields, and compare to that of the conventional
DA.
Here, we explore theoretically the energy resolution of an

deal HDA for h ≥ 0 and its dependence on α∗
max and �r0.

e utilize both exact numerical and approximate analytic tech-
iques to investigate the h-dependence of the exit radial base
idth �r∗

πh, the base energy resolution RBh and the response
unction or line shape Lh of a generalized ideal HDA, thus in-
luding both conventional and paracentric [27–29] HDAs in one
nified treatment.

. Ideal hemispherical deflector analyzer

.1. Generalized HDA—basic definitions

The most general type of HDA utilizes an elliptical central
uning trajectory [28]. Such a trajectory enters the HDA with an
ncidence angle α∗ = 0, radial position R0 and nominal kinetic
nergy w (in this case also the tuning energy) and exits at radial
osition Rπ after a deflection through 180◦ inside the HDA. All
ther rays enter the HDA at radial position r0, incidence angle α∗
nd nominal pass energy t, exiting after deflection through 180◦
t radial position r∗

π and exiting angle α∗
π. We also introduce the

ractional pass energy:

≡ t

w
(1)
= ξ = 1 and their central tuning trajectory is a circle. Biased
aracentric HDAs with ξ both larger and smaller than 1 have been
eported. These, in general, will have an elliptic central tuning
rajectory. Thus, for example, Belov et al. [34] describe an HDA
ith R0 > R̄ (ξ < 1) without, however, giving specifics about

he actual values of ξ and γ used. Benis et al., used an HDA with
= 1.2308 and γ = 1.5 [30] for which SIMION electron optic

imulations showed improved focusing over equal size conven-
ional HDA [27,28]. In Table 1 we summarize typical values of
DA parameters.

.2. h-Dependence of the exit radius r∗
πh

In Ref. [28] it was shown that a particle moving in the ideal
/r potential Ṽ (r) (see Eq. (4)) of an HDA tuned to the central
uning ray’s nominal pass energy w, entering at radius r0 with
nergy τ and incidence angle α∗, after a deflection through 180◦
nside the HDA (see Fig. 1) will exit at the radius r∗

π given by:

∗
π ≡ r∗

π(r0, α
�, τ) = −r0 + D0

1 + κ(1 − τ cos2 α�)
(5)

ith

0 ≡ R0 + Rπ = (1 + ξ)R0 ≥ 2R0 (6)

≡ ξ

γ
(7)

nd potential constants k and c given by:

k = wD0

κ
(8)

c = w

(
1 + 1

κ

)
(9)
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Table 1
Comparison of equal size paracentric and conventional HDA parameters [28] for electrons (q = −e)

Parameter Value Description

R1 (mm) 72.4 HDA inner radius
R2 (mm) 130.8 HDA outer radius
R̄ (mm) 101.6 HDA mean radius R̄ ≡ (R1 + R2)/2
Rπ (mm) 101.6 Central ray exit radius rπ = Rπ

�rd (mm) ∼ 0.2 PSD position resolution
d0 (mm) 6 HDA entry diameter
dPSD (mm) 40 PSD active diameter
w W/F Nominal central ray pass energy (HDA tuning energy)
F W/w Retardation factor
τ t/w Fractional pass energy

Parameter Description

t Pass energy after retardation t = T + Vp, Vp < 0
Vp HDA retarding plate voltage Vp = w − W < 0
T Energy prior to retardation
W Central ray energy prior to retardation W > w

r0 HDA entry radius
α∗, (α) Angle of incidence at HDA entry prior, (after) refraction
r∗
π, (r∗

πh
) HDA exit radius at h = 0, (h > 0) corrected for refraction

rπ , (rπh) HDA exit radius at h = 0, (h > 0) uncorrected for refraction
απ (α∗

π) Angle of incidence at HDA exit prior, (after) refraction

Parameter Paracentric HDA Conventional HDA Paracentric HDA

R0 (mm) 82.5 101.6 120.65 Central ray entry radius
D0 (mm) 184.15 203.2 222.25 Central ray range D0 ≡ R0 + Rπ

Ṽ0 0.5w 0 −0.6w HDA entry bias Ṽ0 ≡ Ṽ (R0) = (γ − 1)w
γ 1.5 1 0.4 Biasing parameter
ξ 1.2308 1 0.842105 Paracentricity ξ ≡ R̄/R0

κ 0.82053 1 2.10526 κ ≡ ξ/γ

D̄ (mm) 151.1 203.2 467.895 Mean dispersion D̄ = D0κ

For definitions also refer to Fig. 1 and Eqs. (5)–(9)

Fig. 1. Schematic electron trajectories in a typical HDA spectrometer. The drawing is not to scale. The PSD is placed a distance h from the focusing plane of the
HDA. Two sets of trajectories with the same energy t0 and positive, negative and zero injection angle α∗ are shown. Their starting points are at the two limits of the
(virtual) entry aperture having diameter �r0 centered at r = R0. d0 is the diameter of the actual physical entry aperture. Trajectory 3 with α∗ = α∗

max always leads
to the minimum exit radius, r∗

πhmin (Eq. (18)). Trajectory 4 with α∗ = α∗
m0 (Eq. (20)) always leads to the maximum exit radius r∗

πhmax (Eq. (25)). The difference
between the maximum and minimum radii is the base exit radial width �r∗

πh
(Eq. (26)) which together with the dispersion length D determines the base energy

resolution (Eq. (37)).
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Table 2
Comparison of central ray (r0 = R0, α∗ = 0) exit radii r∗

π (evaluated using Eq.
(5)) along the focal plane (h = 0) for biasing parameter γ = 1 and 1.5 and
nominal fractional pass energy τ0 = 0.9, 1, 1.1

γ τ0 r∗
π(mm)

Paracentric HDA Conventional HDA

1 0.9 81.419 83.127
1.5 0.9 87.636 88.900
1 1 101.600 101.600
1.5 1 101.600 101.600
1 1.1 127.446 124.178
1.5 1.1 118.060 116.114

For the paracentric HDA we use ξ = 1.2308 and R0 = 82.55 mm, while for the
conventional HDA we use ξ = 1 and R0 = Rπ = 101.6 mm.

Table 2 lists values of r∗
π for different values of γ and ξ.

For an ideal HDA tuned to the nominal pass energy w [24],
the voltages are set once γ has been specified. They are given
by Ref. [28]:

qVi ≡ qV (Ri) = qṼi + qVp (10)

qVi = w

[
F −

(
γ

ξ

) (
D0

Ri

− 1

)]
(11)

for i = 1, 2 andqVp = W − w, the plate voltage used with prere-
tardation. F is the retardation factor, given by F = W/w, where
W is the original undecelerated “tuning energy" of the HDA
[28] (source central ray kinetic energy). Thus, in cases where
no pre-retardation is used prior to energy analysis, Vp = 0 and
F = 1.

In a conventional HDA, with electrode voltages Vi given by
Eq. (11), Ṽ0 = 0 (i.e. γ = 1), so that it is matched to the poten-
tial outside the HDA also assumed to be zero. Thus, particles
entering the HDA at r0 = R0 will not be refracted at the HDA
potential boundary and the angle of incidence α∗ equals the an-
gle of refraction α, i.e. α∗ = α. However, at any other radius
r0 �= R0 or for a biased HDA (i.e. γ �= 1 see Eq. (3)), differ-
ences in potentials on either side of the potential boundary will
result in refraction so that in general α∗ �= α [28]. In deriving
Eq. (5) in Ref. [28] it was assumed that the potential changes
i
H

m
e
p
t
t

r

P
fi
c
b

t

we can then write:

r∗
πh = r∗

πh(r0, α
∗, τ, h) = r∗

π

(
1 − h

r0
tan α∗

)
(14)

which gives the radial distance from the axis of symmetry for
a particle hitting a PSD placed a distance h from the HDA exit
plane. From Eq. (14) it is clear that for the same entry point r0,
positive injection angles (α∗ > 0) always lead to smaller values
of r∗

πh than negative injection angles (α∗ < 0).
We also define the dispersion length D ≡ D(τ0) for an ideal

HDA utilizing a PSD as:

D ≡ τ0
∂r∗

πh

∂τ

∣∣∣∣
r0=R0,α

∗=0,τ=τ0

= τ0
D̄

X(τ0)2 = τ0
D0κ

X(τ0)2 (15)

where X ≡ X(τ0) = 1 + κ(1 − τ0).
Our definition of the dispersion length D is seen to be depen-

dent on the particle’s fractional pass energy, τ0, thus allowing
for the inclusion of HDAs with PSD, having a large acceptance
energy window around the central ray energy τ0 = 1. Then, the
mean dispersion length D̄ ≡ D(τ0 = 1) = D0κ corresponds to
the traditional dispersion length used with slit spectrometers.
For κ = 1 (conventional HDA) and τ0 = 1, we also have X = 1
and therefore D̄ = D0 = 2R̄. In Fig. 2 , the energy dependence
of D is shown for a few different cases of interest for the HDAs
listed in Table 1. As can be seen from Eq. (15), it is the ratio
κ = ξ/γ that determines the dispersion of the HDA. It is also
seen that the highest dispersion HDAs have increasingly non-
linear energy dependence, of paramount importance for use with
a PSD [26], particularly if the HDA voltages will be scanned for
use at constant tuning energy w. Thus, while high dispersion

Fig. 2. Plot of the dispersion length D as a function of fractional pass energy τ

(Eq. (15)) over a 20% energy window for an HDA with R1 = 72.4 mm, R2 =
130.8 mm and R̄ = Rπ = 101.6, tuned to w = 1000 eV. Cases for three different
entry radii are shown including R0 = 82.55, 101.6, 120.65 mm corresponding
to HDAs with paracentricity ξ = R̄/R0 = 1.2308, 1, 0.8421, respectively (see
Table 1). Three different biases are also shown with γ = 0.4, 1, 1.5. D is seen
to grow with increasing energy τ and κ = ξ/γ (Eq. (7)). The linearity of D
across the 20% PSD acceptance window shown is seen to be compromised with
increasing κ.
n a sharp step-like manner in crossing the boundary. In a real
DA this potential step is, of course, more gradual.
The effect of refraction has been included in the above for-

ula for r∗
π (Eq. (5)) as discussed in detail in Ref. [28]. On

xiting the HDA, the charged particle is again refracted at the
otential boundary exiting with angle α∗

π. It then travels through
he drift region, impinging on the PSD plane (at a distance h) at
he axial distance r∗

πh, as shown in Fig. 1, given by:

∗
πh = r∗

π + h tan α∗
π (12)

aying close attention to the sign of α∗ [15] conventionally de-
ned such that α∗ > 0 when the electron’s radial distance r in-
reases at entry (see Figs. 2–4 in Ref. [28]) and using the relation
etween α∗

π and α∗ (see Eq. (32) in Ref. [28]) we have:

an α∗
π = − r∗

π

r0
tan α∗ (13)
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Fig. 3. Example of the h-Dependence of r∗
πh

(R0 − �r0/2, α∗, τ0, h) (top) and
r∗
πhmin

= r∗
πh

(R0 + �r0/2, α∗
max, τ0, h) (bottom) for the paracentric HDA hav-

ing γ = 1.5, ξ = 1.2308 and α∗
max = 1◦. The continuous (black) lines mark the

locus of r∗
πhmax (top) (with α∗ = α∗

m0—Eq. (25)) and r∗
πhmin (bottom) (Eq. (18)).

The other three lines (top) mark examples of electron trajectories having α∗ = 0
(dotted red line), α∗ = −0.5α∗

max (dashed green line) and α∗ = −α∗
max (dashed-

dot blue line), respectively. The position of h0 given by Eq. (23) is marked.
For h ≥ h0, r∗

πh
(R0 − �r0/2, α∗

m0, τ0, h) and r∗
πh

(R0 − �r0/2, −α∗
max, τ0, h)

merge. The angle α∗
m0 is given by the solution of Eq. (20) and depends on h. An

analytic approximation of α∗
m0 is given in Eq. (29). The distance between the

two thick black lines gives the exit radial base width �r∗
πh

= r∗
πhmax

− r∗
πhmin

, as
indicated by the double headed arrows at three different values of h (for inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of the article).

Fig. 4. h-Dependence of the exact exit radial base width �r∗
πh

. Open symbols
refer to a conventional HDA (γ = ξ = 1), while closed symbols to the equal sized
(R̄ = 101.6 mm) biased paracentric HDA (γ = 1.5, ξ = 1.2308). τ0 = 1 and
�r0 = 0.2 mm. For large values of α∗

max and small values of h, the paracentric
HDA is seen to have a smaller radial base width �r∗

πh
than the conventional

HDA.

is always of interest, as it generally leads to the highest energy
resolution, energy versus exit position non-linearities may limit
the effectiveness of high dispersion, since the energy acceptance
window of the PSD might need to be substantially reduced be-
fore acceptable linearity is recovered.

Recently, a biased paracentric HDA having ξ = 1.2308 and
γ = 1.5, used by the author in zero-degree Auger projectile elec-
tron spectroscopy [30,35] was shown in electron optics simula-
tions using SIMION [36,37] to have improved focusing prop-
erties over that of an equal size conventional HDA [27]. This
property, not yet well understood, is most likely due to fringing
field effects which are however, difficult to treat in general. Here,
as a first step in trying to understand this result, we first consider
just the ideal HDA and compare the focusing properties of the
ideal paracentric HDA to those of the ideal conventional HDA.
In the following, we use Eqs. (5) and (14) to investigate the exit
radial base width �r∗

πh, the base resolution RBh and the line
shape Lh of an ideal HDA and their dependence on h.

2.3. h-Dependence of the HDA exit radial base width ∆r∗
πh

The exit radial base width �r∗
πh is the maximum total length

along the dispersion direction of the trace of the electron tra-
jectory for a monoenergetic electron of fractional pass energy
τ0 due to the range of permissible input radii r0 and injection
a �
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ngles α , i.e.

0 − �r0

2
≤ r0 ≤ R0 + �r0

2
(16)

α∗
max ≤ α∗ ≤ α∗

max (17)

∗
max and �r0 determine the line shape and base resolution of
n ideal HDA. To reduce the tailing of the line shape due to
he angular contributions, Kuyatt & Simpson [38] proposed that
α∗2

max ≤ �r0/2, a condition strived for in most high resolution
DAs. Popular optimization conditions are discussed in detail

nd compared in Refs. [39,40]. For an HDA without a lens, �r0
s equal to the width of the real entry slit or aperture diameter
0. However, for an HDA equipped with an injection lens, �r0
s the diameter of a virtual aperture given by the spot size of the
ens focus. In the case of an injection lens, �r0 and α∗

max are
ot anymore independent, but are related via the Helmholtz–
agrange law. In this case, as we have recently shown for h = 0

41], there is an optimal choice of �r0 and α∗
max that leads to

he best possible resolution of the HDA. Clearly, as long as
r0 < d0, transmission is preserved. In Ref. [42] we use the

esults developed here to extend our optimization method [41]
o the case of non-zero h. In this presentation, however, α∗

max
nd �r0 will be assumed in all generality to be independent of
ne another.

.3.1. Exact calculation
For h > 0 special care must be exercised in computing the

xit radial base width, �r∗
πh. In Fig. 1, pencils of angular diver-

ence α∗ are shown at either side of the entry aperture corre-
ponding to the limiting cases. By inspection, we note that the
inimum exit radial position r∗

πhmin will always come from tra-
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jectory 3 having α∗ = α∗
max and r0 = R0 + �r0/2 correspond-

ing to:

r∗
πhmin = r∗

πh

(
R0 + �r0

2
, α∗

max, τ0, h

)
(18)

Computing the maximum radius requires more attention. For
h = 0, due to first order focusing and as shown in Fig. 1 trajec-
tory 5 (having α∗ = 0) will always give the largest radius. Thus,
we always have:

r∗
πmax± = r∗

π

(
R0 ± �r0

2
, 0, τ0

)
= −R0 ∓ �r0

2
+ D0

X
(19)

However, as seen from Fig. 1, for h > 0 trajectory 4 deriving
from some negative injection angle α∗

m0 not necessarily equal
to −α∗

max will mark the maximum radius r∗
πhmax. To find the

angle α∗
m0 at which r∗

πh(R0 − �r0/2, α∗, τ0, h) is maximized
the following conditions need to be fulfilled:

∂

∂α∗ r∗
πh

(
R0 − �r0

2
, α∗, τ0, h

)∣∣∣∣
α∗

m0

= 0 (20)

∂2

∂α∗2 r∗
πh

(
R0 − �r0

2
, α∗, τ0, h

)∣∣∣∣
α∗

m0

< 0 (21)

|α
≥ α

The exit radial base width �r∗
πh is then defined as:

�r∗
πh ≡ r∗

πhmax − r∗
πhmin (26)

In Fig. 3 , we give an example for the paracentric
HDA of r∗

πh(R0 − �r0/2, α∗, τ0, h) (top) and r∗
πh(R0 +

�r0/2, α∗
max, τ0, h) (bottom) and their dependence on h for

the case of �r0 = 2 mm, τ0 = 1 and α∗
max = 1◦. In the case

of r∗
πh(R0 − �r0/2, α∗, τ0, h), three different values of α∗ in-

cluding α∗
m0 are shown. The exit radial base width �r∗

πh is also
marked.

Evaluation of Eq. (26) can be performed exactly. It is only
necessary to solve the transcendental equation Eq. (20) for α∗

m0
numerically. Then, depending on whether |α∗

m0| is smaller or
larger than α∗

max the correct branch of Eq. (25) can be calculated.
Therefore the value of h0 is really superfluous to the calculation.
However, since h is a physical distance, in principle directly
measurable in the laboratory, while α∗ is a much less accessible
parameter, it is intuitively useful to also compute h0.

In the sections to follow, we use the exact value of α∗
m0 ob-

tained by solving Eq. (20) numerically with Mathematica [43].
However, to obtain a better understanding of the various depen-
dencies, analytic results are also presented using Taylor series
expansions of the quantities of interest to first order in �r0 and
to second order in α∗

max. These are also used in the resolution
optimization presented in Ref. [42].
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Clearly, the solution, if it exists, α∗
m0 = α∗

m0(τ0, h) will depend
on the value of h and τ0. Then we shall always have:

r∗
πh

(
R0 − �r0

2
, α∗

m0, τ0, h

)
≥ r∗

πh

(
R0 − �r0

2
, 0, τ0, h

)
(22)

with the equality occurring at h = 0. In general |α∗
m0(τ0, h)|

is found to increase monotonically with h, eventually reaching
α∗

max at some critical distance h = h0. Since α∗
max is the max-

imum allowed injection angle, any solutions |α∗
m0| > α∗

max are
unphysical, and therefore for h > h0, |α∗

m0| must be replaced by
its limit α∗

max. Thus, h0 must satisfy the equation,

|α∗
m0(τ0, h0)| = α∗

max (23)

and in general will depend on �r0, α∗
max and τ0.

The complete solution for α∗
m0 may thus be represented by

the double branched function:

α∗
m0 =

{
Solution of Eq.(20) for 0 ≤ h ≤ h0

−α∗
max for h ≥ h0

(24)

We may now evaluate r∗
πh(R0 − �r0/2, α∗, τ0, h) at α∗ =

α∗
m0 using Eq. (24) to obtain r∗

πhmax. This necessarily
leads to the double-branched function r∗

πhmax ≡ r∗
πh(R0 −

�r0/2, α∗
m0, τ0, h) given by:

r∗
πhmax =

⎧⎪⎨
⎪⎩

r∗
πh

(
R0 − �r0

2 , α∗
m0, τ0, h

)
for 0 ≤ h ≤ h0 (or ≤

r∗
πh

(
R0 − �r0

2 , −α∗
max, τ0, h

)
for h ≥ h0 (or |α∗

m0|
∗
m0| ≤ α∗

max)

∗
max)

(25)

.3.2. Approximate analytic calculation
A relatively simple analytic approximation to r∗

πh can be
btained by using a Taylor series expansion of r∗

πh(R0 ±
r0/2, α∗, τ0, h) to first order in �r0 and to second order in
∗
max:

r∗
πh(R0 ± �r0

2
, α∗, τ0, h) ≈ r∗

πmax±

− hα∗
[
G

(
1 ∓ �r0

2R0

)
− 1

]
− Dα∗2 (27)

ith r∗
πmax± given by Eq. (19) and where we have introduced

he symbol:

≡ G(τ0) = D0/(R0X) (28)

ith the mean value given by Ḡ = G(τ0 = 1) = D0/R0. For a
onventional HDA (κ = ξ = 1) we also have G = 2/(2 − τ0)
nd Ḡ = 2. Setting Eq. (27) into Eq. (20) and solving for α∗

m0
e obtain the approximate analytic solution for α∗

m0. This can
e represented as a double branched function in analogy to the
xact solution Eq. (24):

∗
m0 ≈

⎧⎨
⎩

− h
2D

[
G

(
1 + �r0

2R0

)
− 1

]
for 0 ≤ h ≤ h0

−α∗
max for h ≥ h0

(29)

∗
m0 is indeed negative in value and also satisfies the condition
or a maximum (Eq. (21)).
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Using approximations Eqs. (27) and (29) to evaluate Eq. (26)
we obtain the approximate analytic form of the base width �r∗

πh:

�r∗
πh ≡ �r∗

πh(�r0, α
∗
max, τ0, h) ≈

⎧⎨
⎩�r0 + hα∗

max

[
G

(
1 − �r0

2R0

)
− 1

]
+ Dα∗2

max + h2

4D

[
G

(
1 + �r0

2R0

)
− 1

]2
for 0 ≤ h ≤ h0

�r0 + 2hα∗
max(G − 1) for h ≥ h0

(30)

with an approximate value for h0 given by:

h0 ≡ h0(�r0, α
∗
max, τ0) ≈ 2Dα∗

max

[G(1 + (�r0/2R0)) − 1]
(31)

For h = 0 we obtain the well known formula for the base
width �r∗

π of an HDA at the focal plane:

�r∗
π = �r0 + Dα∗2

max (32)

All the extra h-terms in �r∗
πh (Eq. (30)) can be shown to be

positive and therefore the situation h > 0 always leads to larger
base widths, i.e. �r∗

πh ≥ �r∗
π. For h = h0, both branches yield

the same result namely:

�r∗ = �r +
[

4(G − 1)
]

Dα∗2 (33)

e
a
a
o
t
t
t
α

c
o
t

2

t
e
e

R

R
t
e
�

d
(
i
b

measurements. If we also include the width of the exit slit (or
position resolution in case of a PSD) �rd , we get the total base

energy width �tB (or equivalently �τB) [25] and therefore

RB = �r∗
πh + �rd

D
. (35)

If we define S as the “slit" term given by the sum of the width
of the slits (or virtual apertures) over the dispersion:

S ≡ S(τ0) = �r0 + �rd

D
(36)

then, using Eq. (26) or its approximation Eq. (30) and Eqs.
(35) and (36), we finally obtain the base resolution RBh ≡
RBh(�r0, α

∗
max, τ0, h) given by:

RBh =
⎧⎨
⎩S + h

D
α∗

max

[
G

(
1 − �r0

2R0

)
− 1

]
+ α∗2

max + h2

4D2

[
G

(
1 + �r0

2R0

)
− 1

]2
for 0 ≤ h ≤ h0

S + 2h
D

α∗
max(G − 1) for h ≥ h0

(37)

at h = h0 both branches give the same result:

πh0 0

G(1 + (�r0/2R0)) − 1 max

In Figs. 4 and 5, the exact values of �r∗
πh are plotted for

qual size (R̄ = 101.6 mm) conventional (R0 = 101.6, γ = 1)
nd biased paracentric (R0 = 82.55, γ = 1.5) HDA with τ0 = 1
nd entry angles α∗

max = 0.1◦, 1◦, 5◦, 10◦ at 6 different values
f h = 0, 5, 10, 15, 20, 25 mm and for two different entry aper-
ure diameters �r0 = 2 mm and �r0 = 0.2 mm. The general
endency is for �r∗

πh to increase with increasing h values. This
endency becomes stronger for increasing values of α∗

max. For
∗
max = 0.1–1◦, �r∗

πh increases extremely slowly and is practi-
ally insensitive to changes in h. Interestingly, for small values
f h the paracentric HDA exhibits smaller radial base widths
han those of the conventional HDA.

.4. h-Dependence of the HDA base resolution RBh

For a beam of monoenergetic particles of pass energy t0,
he base resolution RB of an energy analyzer tuned to the pass
nergy w is defined as the ratio of the transmitted (and detected)
nergy width �tB (the base width) over t0:

B ≡ �tB

t0
= �τB

τ0
(34)

B is a constant, dependent only on the geometrical parame-
ers of the analyzer and independent of the pass energy t0 (or
quivalently τ0). We can convert the maximum radial base width
r∗
πh computed in Eq. (30), to an energy width using the radial

istance-to-energy conversion factor, which is seen from Eq.
15) to be just τ0/D, where D is the HDA dispersion at τ0. This
s equivalent to the experimental energy versus position cali-
ration of a PSD, typically performed in electron spectroscopy
RBh0 = S + 4(G − 1)α∗2
max

G(1 + (�r0/2R0)) − 1
(38)

For h = 0, we get from the first branch the well known result
for the base resolution of an HDA along the focusing plane:

RB(τ0, h = 0) = S + α∗2
max = �r0 + �rd

D
+ α∗2

max (39)

The base resolution is plotted as a function of h in Figs.
6 and 7. In general, a similar h-dependence is observed as
for �r∗

πh. However, now the base resolution for a paracentric

Fig. 5. Same as Fig. 4, but for �r0 = 2 mm.
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Fig. 6. Comparison of h-dependence of base resolution RBh for a conven-
tional (open symbols) and paracentric (closed symbols) HDA of equal size
(R̄ = 101.6 mm) for τ0 = 1 and �r0 = 0.2 mm.

(γ = 1.5) HDA is shown to always be larger than that of the
conventional (γ = 1) HDA. This has to do with the fact that
the dispersion length D is largest for the smallest γ , as already
discussed (see Eq. (15) and Fig. 2). Thus, a small �r∗

πh trans-
lates into a corresponding small RBh only for equal dispersion
lengths.

2.5. h-Dependence of the HDA line shape Lh

As already pointed out, to limit the effect of the angular term
and obtain a more symmetric line shape, Kuyatt and Simpson
[38] proposed the following criterion for the ratio χ of the an-

gular to the “slit" term:

χ ≡ α�
max

2

S
= Dα�

max
2

(�r0 + �rd)
≤ 1

2
(40)

For non-zero h we can extend the Kuyatt-Simpson (KS) criterion
to also incorporate the h-dependent terms. We therefore define
a new ratio χh given by the ratio of the sum of both angular and
h-dependent terms over the slit term:

χh = RBh

S
− 1 (41)

which thus also becomes a double branched function. Directly
from Eq. (40), it is clear that the smallest dispersion will always
lead to the smallest χh. Therefore the biased paracentric HDA
with γ > 1 will always have the smallest χh which will also
be smallest at the lowest energy τ0 and the smallest h. Thus,
paracentric HDAs with γ > 1 can be expected, in principle, to
provide an improved line shape. Whether this is also true for
a real paracentric HDA with strong fringing fields is of course
still an open question and will be explored in future publications
[44,32].

Fig. 8. Line shapes for h = 0 − 25 mm for equal sized (R̄ = 101.6 mm) para-
centric (ξ = 1.2308 and γ = 1.5) and conventional (ξ = γ = 1) HDAs (see
Table 1) at τ0 = 1 with �r0 = 0.2 mm (top) and �r0 = 2 mm (bottom), for
α∗

max = 0.1◦. Lines mark the position of the exit of the central ray with r0 = R0,
α∗ = 0.
Fig. 7. Same as Fig. 6, but for �r0 = 2 mm.
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The line shape Lh gives a much more complete picture of
the electron-optical characteristics of an HDA. The normalized
line shape is also known as the transmission function. Lh can be
readily computed either by exact piecewise integration [12,18–
20] or Monte Carlo techniques [15,16,21,22] assuming uniform
illumination over the entire entry aperture. Here we use the sec-
ond approach.

Ne− = 500, 000 monoenergetic electrons were generated
with fixed energy τ0 but random α∗ and r0 values, within the
ranges specified by Eqs. (16) and (17), for a specific choice of
�r0, α∗

max and h from the HDA parameters of Table 1. For each
specific set of electron parameters, Eq. (12) was used together
with Eq. (5) to generate the exit radii r∗

πh which were then binned
using a position resolution of �rd = 0.2 mm to obtain the final
distributions. These distributions then represent the response or
transmission function of the HDA to a monoenergetic line. The
base width of these distributions will correspond closely to the
computed value of �r∗

πh given by Eqs. (26) or (30).
Different line shape calculations were made for τ0 =

0.9, 1.0, 1.1 representing the 20% energy acceptance window
of the HDA, with �r0 = 2 and 0.2 mm representing realistic
entry size values, at α∗

max = 0.1◦, 1◦, 2◦, 5◦. For α∗
max < 1◦ and

0 ≤ h ≤ 25 mm, the KS criterion is in general satisfied indepen-
dent of the value of �r0. For larger values of the injection angle
and with increasing h, χh increases and the KS criterion becomes
less valid or eventually even violated. Due to space limitations,
the generated characteristic line shapes Lh of equal size (same
R̄—see Table 1) conventional (γ = ξ = 1) and paracentric (γ =
1.5, ξ = 1.2308) HDAs are compared here at different values of
h = 0–25 mm, but only for τ0 = 1 and α∗

max = 0.1◦, 1◦, 2◦, 5◦.
These are shown in Figs. 8–11 for �r0 = 0.2 mm (top), and
�r0 = 2 mm (bottom). The value α∗

max = 2◦ is one of the most
interesting cases since χh varies across 1/2, the KS limit, as h
increases from 0–25 mm. For values of α∗

max ≤ 1◦, Lh does not
changes much with h, basically preserving a nice symmetric
trapezoidal shape for �r0 = 2 mm or almost triangular shape
for �r0 = 0.2 mm with practically no difference between para-
centric and conventional HDA. At larger α∗

max, where the KS
criterion is not satisfied, Lh becomes increasing asymmetric
with increasing h, peaking on the high energy side of Lh (see
Fig. 11). The paracentric HDA is found to have a broader base
Fig. 9. Same as Fig. 8, but for α∗
max = 1◦.
Fig. 10. Same as Fig. 8, but for α∗
max = 2◦. As h varies from 0–25 mm, for

�r0 = 0.2 mm the biased paracentric HDA has χh (Eq. (41)) vary from 0.460–
5.363, while the conventional HDA has χh vary from 0.618–4.354. For �r0 =
2 mm the corresponding χh variations are 0.08357–0.9753 and 0.1124–0.7919,
respectively.
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Fig. 11. Same as Fig. 8, but for α∗
max = 5◦. This angle is probably too extreme

for conventional spectroscopy and is only shown for reference.

width than the conventional HDA which, however, for h-values
near 0 becomes slightly smaller than for the conventional HDA,
as already noted. The line shape and its radial base width do
not change much as the energy sweeps across the PSD with
τ0 going from 0.9 to 1.1 (not shown due to space limitations).
Thus, the dependence of the base resolution RBh on the en-
ergy, is strictly a dispersion effect. The dispersion length D in-
creases with energy as already seen in Fig. 2 forcing the cor-
responding decrease in resolution. This is a well known effect
plaguing HDAs with large PSD, the resolution on the low en-
ergy side of the PSD being substantially worse than on the high
energy side.

3. Summary and conclusions

We have shown that for an ideal HDA, where no fringing
fields are considered, the optimal distance to place the PSD for
best energy resolution is h = 0, the first order focusing plane.
Useful analytic formulas of exit radial width �r∗

πh and base
energy resolution RBh as a function of the distance from the
focal plane h for given maximum injection angle α∗

max and entry
aperture diameter�r0 are presented. These are further illustrated

by line shape calculations at various distances h for specific
typical values of α∗

max and �r0.
In our presentation we have also made a comparison of equal

size ideal conventional and paracentric HDAs. Overall, apart
from a few marginal improvements of limited utility, the para-
centric HDA does not seem to show any significant practical
advantages over the conventional HDA. On the contrary, it has a
lower dispersion length D and therefore a larger base resolution.
However, a smaller D will satisfy the Kuyatt-Simpson criterion
(see Eq. (41)) at larger h, thus extending the range of h values
over which the quality of the line shape is maintained compared
to that of the equal size conventional HDA. The interesting ob-
servation that the paracentric HDA exhibits a smaller radial base
width �r∗

πh than the equal size conventional HDA at small h val-
ues seems to apply only to angles α∗

max that are too large to be
practical in most applications and is therefore probably of only
limited interest.

Clearly, fringing field effects must be responsible for the re-
ported improvement [27] in the resolution of the paracentric
HDA over that of the conventional HDA and needs to be fur-
ther investigated. Nevertheless, the analysis of the ideal case (no
fringing fields) is necessary as it provides a reference for judg-
ing the importance of fringing fields, as deviations from the ideal
case. The investigation of the fringing fields of realistic HDAs
and their effect on the radial focusing and energy resolution is
already under way using specialized electron-optics simulation
s
p

A

i
B
E
d
U
A

R

oftware (e.g. SIMION [36,37]) and will be presented in future
ublications [32,44].
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[22] D. Dubé, D. Roy, Y. Ballu, Rev. Sci. Instrum. 52 (1981) 1497.
[23] T. Sagara, L. Boesten, S. Nishida, K. Okada, Rev. Sci. Instrum. 71 (2000)

4201.
[24] V.P. Afanas’ev, S.Y. Yavor, Sov. Phys. Tech. Phys. 20 (1976) 715, (trans-

lation of Zh. Tekh. Fiz. 45, 1137–1170, 1975).
[25] E. Granneman, M.V. der Wiel, E.-E. Koch (Eds.), Handbook of Syn-

chrotron Radiation, vol. 1A, North Holland Publishing Company, Ams-
terdam(1983) p. 367.

[26] S.C. Page, F.H. Read, Nucl. Instrum. Methods Phys. Res. A 363 (1995)
249.

[27] E.P. Benis, T.J.M. Zouros, Nucl. Instrum. Methods Phys. Res. A 440 (2000)
462.

[28] T.J.M. Zouros, E.P. Benis, J. Electron Spectrosc. Relat. Phenom. 125 (2002)
221.
T.J.M. Zouros, E.P. Benis, J. Electron Spectrosc. Relat. Phenom. 142 (2005)
175.

[29] T.J.M. Zouros, E.P. Benis, I. Chatzakis, Nucl. Instrum. Methods Phys. Res.
B 235 (2005) 535.

[30] E.P. Benis, et al., Phys. Rev. A 69 (2004) 052718.
[31] T.J.M. Zouros, J. Electron Spectrosc. Relat. Phenom., submitted for pub-

lication.
[32] O. Sise, M. Ulu, M. Dogan, and T.J.M. Zouros, J. Electron Spectrosc. Relat.

Phenom., submitted for publication.
[33] F. M. Spiegelhalder, O. Sise, T.J.M. Zouros, and D. Manura, Int. J. Mass

Spectr., submitted for publication.
[34] V.D. Belov, M.I. Yavor, Nucl. Instrum. Methods Phys. Res. A 470 (2001)

105.
[35] T.J.M. Zouros, E.P. Benis, T.W. Gorczyca, Phys. Rev. A 68 (2003) 010701.
[36] D.A. Dahl, SIMION 3D v6.0, Idaho National Engineering Laboratory,

Idaho Falls, 1996.
[37] D.A. Dahl, J.E. Delmore, A.D. Appelhans, Rev. Sci. Instrum. 61 (1990)

607.
[38] C.E. Kuyatt, J.A. Simpson, Rev. Sci. Instrum. 38 (1967) 103.
[39] K.L. Wang, J. Phys. E: Sci. Instrum. 5 (1972) 1193.
[40] A. Poulin, D. Roy, J. Phys. E: Sci. Instrum. 11 (1978) 35.
[41] T.J.M. Zouros, E.P. Benis, Appl. Phys. Lett. 86 (2005) 094105.
[42] T.J.M. Zouros, J. Electron Spectrosc. Relat. Phenom., submitted for pub-

lication.
[43] S. Wolfram, The Mathematica Book, 5th ed., Wolfram Media, Chicago,

IL, 2003.
[44] T.J.M. Zouros and O. Sise, Appl. Phys. Lett., submitted for publication.


	Theoretical investigation of the energy resolution of an ideal hemispherical deflector analyzer and its dependence on the distance from the focal plane
	Introduction
	Ideal hemispherical deflector analyzer
	Generalized HDA---basic definitions
	h-Dependence of the exit radius r*pih
	h-Dependence of the HDA exit radial base width Deltar*pih
	Exact calculation
	Approximate analytic calculation

	h-Dependence of the HDA base resolution RBh
	h-Dependence of the HDA line shape Lh

	Summary and conclusions
	Acknowledgments
	References


