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Abstract

We re-examine the orbits of non-relativistic charged particles in a hemispherical deflector analyser (HDA) assuming an
ideal 1f potential. The particles start their trajectory within the HDA at the arbitrary entry ragiusithin a circular entry
aperture centered &, at an arbitrary potential, = V(R,). We present a vector treatment of the trajectories deriving many
useful relations expressed as a function of the launching amgRefraction at the potential boundary at the entry of the
HDA (modelled by an idealized step potential) is also considered and found to be importantysh®f), whereV, is the
plate voltage used for preretardation. We derive the analyser’s generalized basic equation for deflection throtmh 180
which the principal reference ray is aglipse rather than a circle as in the conventional HDA treatment. Both the
conventional HDA, for whictR, = R andV, =V, as well as thearacentric HDA for which R,# R andV,#V , whereR is
the mean radius, are thus described as special cases of the same trajectory equation. Our results are expected to be of intere
to all fields of electron spectroscopy, but particularly to those utilizing modern spherical sector analysers with sizeable
interradial separation for accommodating large area position-sensitive detectors. This investigation is part of a concerted
effort to investigate the refocusing properties of the paracentric HDA recently reported by Benis and Zouros [Nucl. Instr. &
Meth. A 440 (2000) 462].
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1. Introduction hemispherical deflector analyser (HDA) [2—6] with a
large interradial separationAR/R~50%) depend
In a recent article [1] we demonstrated by ray critically on the placement of the analyser entrance
tracing analysis that the focusing properties of a position (entry aperture centétgdaaid the value

of the HDA potentialV, at R,. It is well known
[7-11] that for HDAs with such large interradial
304101 separations, fringing field effects shift the first order
E-mail address: tzouros@physics.uoc.dif.J.M. Zouros). focus of anideal HDA, found at a deflection angle of
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Fig. 1. SIMION simulation of HDA with parameters given by Table 1. Electrons within an emittance cone anglareff®wn through a

lens and focused into an HDA with a principal ray pass energy €f1000 eV. The voltages on the HDA are ts@me in both cases and set
according to Eq. (109) usinB, = R=R_ =102 mm and/, =V(R,) = 0 V. [Left] central entry withR,= 102 mm. The focus point is seen

to have moved inside the spectrometer resulting in a wide tdacen the 180 detection plane. [Right] Entry and lens were moved to
R, =82 mm in the vicinity of which SIMION show¥(82 mm) to be approximately 500 V. The first order focus is seen to be restored back
to the 180 detection plane reducing the width of the trae Equipotential lines show the strong fringing fields at both entry and exit. The
entry radius at which the focus is restored is shown in Ref. [1] to be a functi®f), ahe nominal potential at entry.

[12] simulation of Fig. 1 (left). This shift results in a position sensitive detector (PSD). This HDA has an

badly focused image at the 18@etection plane entry aperture centered Rf=82.55 mm with
adversely affecting the energy resolution of the HDA diamefer 6 mm and is operated wittf, = 0.5w,

(see Fig. 1 left). It was shown in_Ref. [1] that for wheve is the nominal tuning energy. A FWHM
particular combinations ofR, (<R) and V, the resolution of~0.11% has been attained using pre-
focuscan be shifted back to the 180 detection plane, retardation by a factor= 8 without the use of any
practically restoring the 180first order focusing fringing field correction electrodes. The spectrograph
properties of the HDA (see Fig. 1 righjithout the is used to study the excitation mechanisms of highly
use of any additional fringing field correction scheme Table 1

[11,13-286].

Paracentric HDA parameters

This rather remarkable property of then-ideal

paracentric HDA, seemingly unnoticed in almost 60 R 724 mm inner radius .
. R, 82.55 mm principal ray entry radius
years of intense HDA development, should be of 130.8 mm outer radius
particular interest to all fields utilizing modern high R 101.6 mm mean radius
resolution HDAs, having sizeable interradial sepa- R, R principal ray exit radius
rations for accommodating large area position sensi- deso 40 mm active PS'? diameter
tive detectors for high detection efficiency. Particu- & 6 mm géi:gfg 0 rs”"y aperture
) S 3
larly so, if cumbersome fringing field electrodes can , 0.50 nominal voltage aV/(R,)
be shown not to be necessary. ey 15 see Eq. (3)
We are presently using such a paracentric HDA R
[27—-29] with parameters as given in Table 1 oper- ¢ 1.2308 =R,

ated with a four-element zoom lens and a 2-D
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charged ions in atomic collisions with gas targets optimum lens magnification, energy calibration,
using the technique of Zero-degree Auger electron energy acceptance window and time-of-flight. We
Projectile Spectroscopy (ZAPS) [30]. then compare these results to SIMION simulations
To use our paracentric HDA, we had to derive the and experimental measurements taken with our
spectrometer basic equation from first principles for paracentric HDA, thus also including possible effects
the ideal HDA [31] since no such treatment was due to the strong fringing fields at the entrance and
found in the literature. To further understand tieal exit.
HDA, the effects of the strong fringing fields were Finally, in paper Ill [35], we compare particle
investigated by simulation using the ion-optics soft- trajectories to simulations obtained with SIMION for
ware package SIMION [12]. The refocusing of the motion including the effect of the fringing fields for
particle trajectories back onto the T8@nhage plane both conventional and paracentric cases. Basic tra-
has already been briefly described [1]. Here, we give jectory parameters (position, velocity, electric fields,
a more detailed presentation in a series of three kinetic and potential energy, etc.) that change along
papers, providing further insight into this refocusing the trajectory are compared for motion in the ideal
effect, while at the same time giving a brief up-to- rland in the strong fringing fields of the SIMION
date review of the field. simulated HDA. A much better insight is obtained on
In this paper (paper 1) we present details about the importance of the fringing fields and their
Kepler orbits (i.e. closed trajectories in &feal 1/r focusing properties.
potential). We first derive the trajectory equations In our presentation (papers I-I1ll), the convention-
r(w) (o is the deflection angle in the orbital plane) al HDA is just a special case of the more general

for arbitrary entryR, andV, including the effect of paracentric HDA directly obtained fBf =R and
charged particle refraction at the HDA entry po- \,=V,. In each paper we present a brief history of
tential boundary, usually ignored in conventional relevant results and investigations to date.
HDA treatments, but here shown to be a non-negli-

gible effect. Such a generalized treatment requires

the use of arelliptical principal reference ray rather

than the circular one traditionally used in most 2. Definitions and basic considerations
conventional applications [2,4-6,32,33]. This does

not alter the known double focusing properties of the The schematic of the HDA model under study is
ideal HDA, but shows that the refocusing effects in a shown in Fig. 2. The spherical polar coordinate
real paracentric analyser is clearly due to the fringing systend, (¢) centered at O is adopted to take
fields at the entry and exit of the HDA. We then advantage of the rotational symmetry of the HDA
obtain the basic equation of the ideal spectrograph arguad (Z-axis). The analyser consists of two
which relates the exit position_ in the first order concentric hemispherical plates of inner and outer
focusing plane to the entrance positiog as a radiiR, and R,, respectively. The center of the
function of entry energy and angle. From this hemispheres is set as the origin of the coordinate
equation we also derive the electrode voltages neces- system. The paracentric entry is located at distance
sary for its operation. We develop many useful R, while a PSD is placed at the HDA exit centered
formulas and discuss some interesting properties of at disRpeeR = (R; + R,)/2. The use of such a
Kepler orbits related to the ideal HDA's first order PSD allows for the detection of a whole energy
focusing properties. In the appendices much of the range of particles simultaneously, reducing substan-
details of the various derivations are given. In tially the acquisition time of the spectrum. A cylin-
Appendix A a convenient list of symbol definitions is drical lens system is mounted with its optical axis
given. centered at the paracentric entry for focusing and

In a follow-up paper (paper Il) [34], we use the deceleration purposes. A particle of apargessm
basic spectrometer equation derived in | to investi- and initial kinetic enéfgys ejected atzero
gate the operation and optical properties of itthel potential far from the spectrograph. Prior to entering

HDA. These include dispersion, energy resolution, the analyser it passes through the deceleration/focus-
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Fig. 2. Schematic of HDA geometry. The charged particle initial-
ly enters the lens assembly with kinetic ener§yand is then
focused and decelerated by the lens and plate at potéfytitwn

to an energyt just prior to entering the interior region (region Il
see text) of the analyser (shaded area) with angte The
deflection angle in the plane of the orbitds Upon crossing the
sharp (step-potential model) potential boundary atw/2(w = 0)
atr,and potentiaM(r ), it is refracted to an angle, follows the
trajectory specified by(w)and exits atr _ after being deflected
through an anglem. The center of the entrance aperture is
paracentric aR, < R. Fixing the principal trajectory«* =0) to

an dlipse such that fort=w and r, =R, the exit occurs at
r.. = Rm, fixes the analyser voltages.

\
L 4

ing stage which can change its kinetic energytto
such that:

t=T-qV, (1)

by applying a potentia¥, on the last electrode of the
deceleration stage. Electrong € — €) are typically
decelerated to improve their energy resolution [36—
40] by applying a negativ¥,. When deceleration is
not requiredy, is set to zero\(, = 0).

The potentialV(r, 6, &) is expected to have
azimuthal symmetry with the generic form given by
v, 0)=%, f(, R, R,)P(cos 6) [41,42] with
V(R,) =V, and V(R,) =V, specifying the boundary
conditions. In our theoretical analysis to follow
(paper I) it is assumed thanside the HDA we have
anideal 1/r potential, given by:

(T, ) =V(F) = V(r) +V, 2)
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where \7(r) = —k/r +c. The symbolsV, =V(R)),

V, =V(R,) and the correspondiny,, V, are reserved
for the inner and outer hemispheres, respectively.
Also the symboWV, =V(R,) and the corresponding,

is reserved for the value of the potential at the center
of the entry aperture &,. We note that our voltage
definitions give theactual voltages applied to the
electrodes as supplied by the high voltage power
supplies which are referenced to ground.

The particle enters the HDA crossing the= /2
boundary plane at a point, (within the entrance
aperture centered &,) with kinetic energyt, polar
anglea and azimuthal angl@. The angular momen-
tum L is conserved as is well-known for motion in a
central potential and thus the trajectory will lie in a
plane perpendicular ta. Thus, 8 just rotates the
motional plane around the axis defined by the
entrance point, and the center of the analyser (see
Fig. 3). The particle then follows a trajectory
specified byr(w), where w is the deflection angle
within the orbital plane, and exits &t after being
deflected througldw = .

In a conventional HDA,V, =V, and thus the
particle entering atr, will not feel any substantial
change of kinetic energy in going froNj, to V(r,),
since the variation betwee¥(r,) andV(R,), will in
general be small within the limited diameter of the
spectrometer’s aperture. Furthermore, in a conven-
tional HDA, theprincipal ray (particle entering with
kinetic energyt=w, =0 andr,=r_=R) will
describe a circular trajectory and go through the
HDA with the constant pass energw. Similarly, in a
paracentric HDA with, howevehy, =V, the princi-
palray (=w, « =0 andr,=R,, r_=R_) will also
not feel any large change in its kinetic energy at
entry. However, sinc®, # R_ (e.g. it is required to
exit at a different radius) it will necessarily follow an
elliptical trajectory and its pass energy will therefore
not be constant.

However, whenv, is substantially different from
V,, then in both cases above, the particle is refracted
and its kinetic energy at entry changes. If we define
the parametery so that:

qV, —V,) = Vo= (1— y)w 3)

then any principal ray will be accelerated when
qVo —V,) <0 (y >1) to a new energy’ = yw.
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Fig. 3. A 3-D orbit in an HDA obtained with the use of Eq. (60).
Charged particle enters at K,(= —78.6,Y,=10, Z,=0) and
exits at M ¥ _=86.6, Y,= —11.0, Z_=0) with a*= —
30(a = —23.84), B= —50C, y=1.5,1t=1160 eV andw =
1000 eV ¢ = 1.16). Definitions of angles, g and @, are clearly
shown. Note in this figurex, g and @, are actually negative
following traditional sign convention [43,44]. The laboratory
coordinate systenXYZ is centered on the analyser center at O,
while the relative coordinate systexy’z’ is centered at particle
entry point P with bothXY and x'y’ planes identical corre-
sponding taZ =z’ = 0. Thex'y' axes are rotated bg, = —7.26
with respect to the fixecKY axes. Angleg is measured off the
Z'-axis in thex’ = 0 plane which is perpendicular to the nodal line
POM (intersection of orbit plane arifl= 0 plane) which also lies
along the entry position vectar,(OP). Anglea is measured off
the intersection of the orbit plane with thé =0 plane in the
direction of v,. Thus, the planex’ =0 and the orbit plane are
mutually perpendicular. Exit poir¥l also lies in theZ =0 plane
and corresponds to a deflection byin the plane of the orbit. Also
shown are the entry velocity, and the conserved eccentricity
vector e and angular momentum vectar. The length ofe has
been renormalized to,,, for better viewing. The radius of the
inner hemisphere is shown for clarity much smaller than its actual
size. The outer radius is shown to scale. For the calculation we
have used the parameters of Table 1.

We shall preserve the use of the term, ‘pass
energy’ w, to describe the kinetic energy of the
particle just prior to entry, even though as shown it is
not anymore constant through out its motion within
the HDA in the more general case of a paracentric
HDA. This, nominal pass-energy w will also be
referred to as the analysaming energy [45], since

only electrons within a certain energy acceptance
window aroundw will be analysed. For analysing
systems with deceleration, as in the present case, one
may also define an ‘undecelerated tuning enekyy’

(using Eqg. (1)):
W=w + gV, (4)

and the deceleration ratie:

W
F= (5)
so that a principal ray with kinetic energdy far from
the spectrometer (at ‘infinity’) undergoing decelera-
tion with factor F will have the energyw just prior
to entering the HDA. The ‘reduced’ pass enetgis
also defined as:

o= w-1)
=W F W 1)+1 (6)
expressed also in terms of the undecelerated quan-
tities, T, W and deceleration factoF. Finally, we
shall also introduce the parametér characterizing
the ‘asymmetry’ of the HDA:

R‘H’
R, (7)

£

A conventional HDA is seen to havg =1 and
y=1

Given that particles are usually decelerated to
improve their detected energy resolution [36—40], it
seems particularly surprising that a device which
would re-accelerate particles once inside the disper-
sive medium could be of any practical interest. In
principle, such a re-acceleration can only be ex-
pected to degrade the analyser resolution, annulling
the beneficial effects of the prior deceleration. How-
ever, on the positive side, dispersion at a higher pass
energy will increase the energy acceptance window
of the HDA thus providing increased throughput and
will also desensitize, to some extent, the energy
analysis from the deleterious effects of spurious
magnetic and electric fields usually of great concern
when working at low electron pass energies. It will
also lead to smaller time-of-flights with compressed
time distributions also an advantage in coincidence
work. That such a paracentric HDA can in fact also
improve the energy resolution, as we recently dem-
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monochromator based on an HDA. The choice of the

slit width and electron energy at a given energy
resolution for maximum current were investigated in
their paper. Their choice of equal size entrance and
exit round entrance apertures instead of slits, with
dimensions satisfying the restriction” =d,/(4R)
(wherea is the pencil anglew the aperture diameter
andR the analyser mean radius) became the standard
criteria for HDA design. Paolini and Theodoridis

onstrated in an ion-optics simulation [1], is certainly
unexpected.

3. Motion in an ideal 1/r potential
3.1. Earlier work on HDAs

The study of the trajectories of particles in ar1/

potential is a well known field in classical mechanics
treated as a special section in all standard classical
mechanics textbooks under motion in a central field
(see for example Refs. [46—48]). However, since the
emphasis in classical mechanics is primarily on
planetary motion, special aspects having to do with
the focusing of charged particles and its dependence
on the launching anglesr and 8 are not usually
treated. The advent of modern satellites with their
deployment for commercial and military purposes in
outer space has brought new interest to the field with
a change of emphasis in new text books (see for
example Ref. [49]). We shall adapt the treatment of
Ref. [49] for the development of HDA trajectory
investigations.

Many good reviews have been published in the
past on electrostatic spectrometers in general, includ-
ing to some extent trajectory theory, the most recent
to our knowledge by Roy and Tremblay [50]. There
are also many excellent books on charged particle
optics in general (see for example Ref. [22]) as well
as more specific books on electron spectroscopy that
cover much useful material (see for example Ref.
[51]). Some older but very useful reviews on HDAs
and dispersive devices in general include Refs.
[32,52-57].

Purcell [2] was the first to study the trajectories of

[43] and Kemeny et al. [59] developed some of the
early theory and reported on the transmission prop-
erties of spherical plate electrostatic analysers. Wol-
Inik [22,52] investigated the trajectories of charged
particles in electrostatic toroidal condensers includ-
ing the effect of refraction and fringing field correc-
tions on their motion. Roy and Carette [32,60]

included the hemispherical spectrometer in their

method of calculating the energy distribution of
electrons selected electrostatically. They presented
some of the first detailed work on the trajectory
equations which are obtained as a special case of the
more general motion in a toroidal spectrometer
treated by Wollnik [14,52,61]. Refraction at the

potential boundary, however, is ignored. It is in-

cluded later though in the study of the optimization
of the HDA by Poulin and Roy [62]. Heddle [58]
reported on the comparison aértthee of elec-
tron spectrometers including HDA'’s. Chase [42]
investigated the effects of the fringing fields on the
HDA response function in an HDA with large
interradial separation in a numerical perturbation
calculation. Polaschegg [38] reported on the features
of the spherical analysers with and without pre-
retardation. He also reported on the study of the

energy resolution and the intensity behavior of

spherical analysers as a function of the entrance

charged particles traversing a portion of an ideal 1/ parameters [63]. Skollermo and Wannberg [17] gave

potential, to demonstrate its special focusing prop-
erties and to actually construct a spherical condenser
for use in electron spectroscopy. Ever since, the
hemispherical version of the spherical condenser has
become extremely popular—primarily due to its
double focusing properties, its large luminosity [58]
and rugged construction—in electron spectroscopy,
and many HDAs have been studied and utilized in
experiments covering many fields of applications
including most of atomic and molecular physics,
condensed matter physics and surface science.
Kuyatt and Simpson [4] developed an electron

a detailed description of the influence of fringing
fields on the focusing properties of HDAs. They first
numerically calculated the electrostatic potential of
an HDA by solving Laplace’s equation and then
investigated the effects of the calculated fringing
fields on the electron trajectories and the focussing
effects of the HDA. Imhof et al. [64] studied the
energy resolution and transit time spread in hemis-
pherical analysers involved in coincidence experi-
ments. Draper and Ulloa [33] provided some useful
insight into the properties of Kepler orbits and their
dependence on the launching conditions. Some of
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their results are also used in our presentation. They

do also treat the potential discontinuity at entry and
discuss to some extent the effect of fringing fields
and the Herzog correction scheme [13]. Kevan [5]
reported on design criteria for a high-resolution
angle-resolving HDA. Hadjarab and Erskine [6]
reported on the imaging properties of an HDA used
with a position sensitive detector (PSD), replacing in
this way the commonly used exit slit with a large
area detector. Trajectory equations for conventional
HDAs are also obtained from first principles and
refraction at the potential boundary is also treated.
Boesten [65] investigated the shape and extent of
space-charge in an analytical treatment of the trajec-
tory parameters in an 188@pherical monochromator.
Nishigaki and Kanai [7] studied the effects of the
fringing fields on the trajectories in a numerical
calculation and showed that the focusing of a real
HDA is shifted to deflection angles within the HDA
(Aw < 180). They also showed how this could be
improved by optimizing the Herzog correction. A
double-stage spectrograph consisting of two HDAs is
reported by Mann and Linder [66], and Baraldi and
Dhanak [67] giving trajectory equations which in-
clude the effect of refraction. Page and Read [68]
investigated the energy non-linearity of an HDA
when used with a large area multi-detector anode or
PSD and showed that the fringing fields at the exit,
when left uncorrected, lead to improved energy
linearity if the detection plane is shifted slightly out
of the HDA. Thus, it is shown that fringing fields
may even have beneficial effects under certain

structed with the center of entry and exit apertures
placed at the mean radius of the analyser opening
(R, =R= (R, +R,)/2) at a potentialV,=V,

(see Fig. 2). In this conventional HDA arrangement
the principal raydsae. Recently, however, some
analysers whose exit, due to space limitations, could
not be placeR ahave been reported in the
literature [70].

In this work (paper 1), the more general case of an
HDA with entry at an arbitrary rdjjusand
potendigl is studied in detail.R, and V, are
considered as free parameters of the trajectory
motion which can be varied to investigate the general
focusing and dispersive properties of the HDA. The

generalized trajectory equations are compared to

well-known results from the literature, which arise as
special solutions to our more general results. Thus,

both the conventional RPA R, V, =V,) and the
paracentric HDR, ¢ R, V,#V,) are described
within the same analysis.

In our theoretical study, the electrostatic field is
considered ideal, i.e. fringing field effects, primarily
present at the HDA entry and exit, are not taken into

account. However, for HDAs used with large PSDs,
fringing field effects become important, resulting in
departures from the spectrograph properties predicted
for ideal fields theoretically. In the literature, differ-
ent schemes for treating the fringing field effects
have been reported [6,7,11,13,19,25,41,42,68,71]. We
shall be particularly concerned with the effects of the

fringing fields in papers Il and lll.

conditions. Finally, in Benis and Zouros [1], a way 3.2. General trajectory equations

to use the fringing fields to improve HDA resolution
is empirically found using SIMION simulation.

_ The trajectory of a charged particle in anrl/
In the past 30 years since the early days of ESCA o) has been presented in the literature (see for

[69], increased interest has focused on HDAS used g, o510 Refs, [2,6,32,43] for spherical sectors and

with large position sensitive detectors (PSD) in such Refs. [14,52,72,73] for toroidal sectors). Here we

dlveise f;}el?s Iast surface tanalyas,—.’éz measure- present a comprehensive treatment using vector
ments, pholoeiectron Spectroscopy and various Mmea-fq,majism [49] and we also explicitly include refrac-

surements involving synchrotron radiation. Thesg tion effects usually not included (for exceptions see
spectrometers have also become of great commerC|aIRefs [2,6,14,25,64,66])

interest as there are numerous high-tech companies The classical, non-relativistic equations of motion

increasingly selling expensive state-of-the-art devices for a particle of massn and charge in the potential
with FWHM energy resolutions of 2 meV or less and \7(r 9) are given by:

capable of data acquisition rates around 1 MHz and
more.

All studies to date, have basically treated the
specific case of a hemispherical spectrometer con- Assuming an ideal I/potential for the regiomnside

mi + qvV(r, 8) =0 (8)
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the HDA of the form\7(r, 0)= \7(r) = —k/r +c we
get:

T T
r+ﬁF:0 for 0§0<§ 9)

It is seen from Eq. (9) that the constamidoes not
enter the equations of motiomside the HDA. As
will be shown in the next section it is only used to
match the boundary conditions &= w/2. The
potential constantk andc will be fixed later through
the definition of the principal reference trajectory.
We retain the charge of the partiatp(for electrons
q= —e) for generality.

The angular momentum inside the HDA,=r X
mv =r X r is conserved for any central potential
V(r) and therefore motion is confined to a plane.

To solve Eq. (9) we take the cross product with

gk gk

FXL= - 5rXL=—-5rx{xr) (10)
:Eg[ﬂz—rﬂ-fﬂ (11)
o]

where we have used the vector identiti&s< (B X
C)=B(A-C)—C(A-B) and 1 d/d(r-r)=r-r=
rr.

Noting that
d/r re—rr
() =Tz (13)
we can write Eq. (12) as
d /. r
S (rxL—gkT) =0 (14)

which upon integration gives us a newector
constant of the motiore [49,74]:

r XL r tant
K r—consan

€ (15)
It is seen thate is proportional to the Runge—Lenz
vector A = gke [47] known to be conserved for
motion in a 1f potential. Clearly,e lies in the
orbital plane since from Eq. (15) it is seen to be
perpendicular to the angular momentum

Taking the dot product ofnr with Eqg. (15) and
using the vector identityA- (B X C)=C- (A X B)
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obtaining the equalitynr - ( X L) =L?, eliminates

the dependence anyielding the scalar equation of
motion forr:

P

r,=rl@)=r=777r7_ (16)
_ P
1+ ecosp — w,) (17)
with
L2
p= (18)
mak

Eq. (17) is seen to be the well-known equation of a
conic section in polar coordinates with the origin of
the coordinate frame at the focus of the conic section
and latus rectum p [46—-48]. For 0< € <1, the orbit
is an ellipse with eccentricitg = |e|. For e =0 the
orbit is a circle with radiusp, while for e =1 the
orbit is a parabola. Where > 1, the orbit is a
hyperbola [46,48]. The anglke — w, is just the angle
between the two vectorsande. Whenw = w,, it is
seen thar is a minimum and thug has the useful
property that italways points to periapse. In the case
of an ellipse, the general form given by Eq. (17) is
shown in Fig. 4 (left) for an arbitrary coordinate
systemxy.

Taking the dot product o€ with itself in Eq. (15)
we obtain the well known relation:

2EL?
e=\[1+ - (19)
with
1 K
E=5m’—F (20)

wherev = |r| is the speed of the particle. Since both
L and e are conserved, Eq. (19) shows tlaimust
also be conserved, making it theffective total
energy within the analyser. Whdhis negativee is
seen to be smaller than 1 and the quantity- &
CoS — w,) in Eq. (17) can never be zero leading in
general to bound elliptical orbits.

We also introduce the velocity angle in the orbital
plane,«,, (see also Figs. 4 and 7) so that:

V-r=ursina, (21)
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Fig. 4. Elliptical orbits in different coordinate systems. The eccentricity vec@ways points ta
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e =0

or periapse. For improved viewing it

min

is shown here with length, .. Also shown is the latus rectumand the position and velocity vectorsestry r ,, v, and anglex. Fora >0,
r always increases (particle moves away from periapse), while far<O, r always decreases (particle moves towards periapsey
coordinate systems: (left) arbitrary, (center) with=0 and (right) withw,_ = 0.

Then, in the orbital plane where=v,f +v o we
have:

v, =0 COSa, (22)
—ro=— 23
=16 =1 (23)

and

v, =vSsina, (24)
== e (25)

gke .
= sinfw — w,) (26)

with |a, | <m/2. We retain the traditional [43,44]
symbol o for the angleq, at entry w = w, (i.e.
a = ay,—see Fig. 4). Egs. (22) and (24) conform to
the usual sign convention far [32,44]. We note that
in realistic HDA usagew is rarely larger than IO
and usually smaller than°1

The speed is obtained directly from Eq. (20):

K
2(e+%)

b= =|——

(27)

In deriving the expression far, (Eq. (26)) we
have used the relation:

N € in(, — 2
b0 p sin(w — w)r (28)
readily obtained from the identity
i(é) _i@)i_ 1 or
dw \r/ " oar\r/ dw (20w
= — % sin — ) (29)

and direct differentiation of the equation of motion
Eq. (17).

Finally, a very useful property of the orbit [33]
can be obtained making use of Egs. (22), (24) and
(25):

_u _lor 30

tana, =5 =50 (30)
€ .

= 5 sinfw — w)r (31)

This information is particularly useful for visualizing
the orbit. At entry where forr <0 (or w, — w, <0),
Egs. (30) and (31) show thar/ow <0 and there-
fore the particle is moving towards decreasing.e.
towards the periapse to whighis pointing to), while
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for a>0 (or w, — w, >0) the particle is moving
away from periapse [33]. We may also obtain the
relation between the launching angle at eniryand
the exit anglea, after deflection by 180

;
tana, = —r—"tana
0

(32)
3.3. Initial conditions

To further define the trajectory we need to specify
the conserved energly, angular momentunt and
direction of e (w,). This can be done using the initial
values of positiorr , and velocityv, of the analysed

particle specified at the entrance of the spectrometer

in the plane of the orbit (see Fig. 4):

o =r(ro @) (33)
Vo = V(g @) =V(vy @) (34)
L=mry,Xv, (35)
L =|L|=mry,cosa (36)
1 gk
Ezimvg _r_o (37)
_ r'g XL To
€= kK T, (38)

The eccentricitye and latus rectump can be
written directly in terms of initial condition quan-
tities as:

p= 2r0(1 - ;—;) cofa (39)
¢ =\/sin2a +(1—%)2 coda (40)

where we have introduced theindependent quanti-
ty a:

gk
- 2E

known to be thesemi-major axis in the case of
elliptical motion.
The eccentricity vectoe can also be written as:

(41)

r

r
e=f0(1—go> —2\70(1—2—2) sina (42)
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explicitly showing that its direction depends on the

sigrepfvhile its magnitude (Eqg. (40)) does not.

Finally, to completely specify the elliptical trajec-
tory we also need to determine the angular quantity
w, — w, appearing in Eq. (17). This is the angle with
respect to periapse at which the particle starts its
trajectory as seen in Fig. 4. This can be directly
obtained from the initial conditions using Eqgs. (31)
and (17):

Sin(w, — ©,) = %tana (43)
r
2(1 — 2—;) sin & cosa
- —~ (44)
sin‘a +<1 - Z) cofa
Py
rO
rO
_ 2(1— Za) cofa — 1 )
. 2 M) 2
sina + (1 - E) cosa
tan
tan@, — w,) = ?[0 (46)
p
r
2(1 — 2—;) sina cosa
(47)

- =
2(1— Za) cofa—1

A useful constant ise/p which can be easily
shown from Eq. (43) to be:

€ tana 48

P rySin(w, — @) (48)
Using Egs. (39), (45) and (48), the ellipse of Eq.
(17) may finally be written as:

ro a tana

— = +—= cos —
o (2a—ry)cosa SN, — o) =)

(49)

thus expressing the orbit in terms of the initial value
quantitiesr,, v, (via &), and anglesy, w,— .. We
note that bothw, and w_ are functions of the entry
anglea. However, since only the differenag, — w,

is required we may chose, =0 or w, =0 at our
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convenience by choosing an appropriate coordinate
systemxy as shown in Fig. 4.

To fully determine the orbits we still need to
specify the potential constangk and gc. This is
usually done by setting the voltages on the HDA in
such a way that the principal rayr &0, ro =R,)
with energyt=w will exit at a convenient radius
R., usually chosen to be the mean radigs i.e.
r.=R_=R We do this only after choosing a
particular coordinate fram&y to work in as consi-
derable simplifications take place.

3.4. Description in w, = 0 coordinate system

If we set in Eqg. (49),w0, =0, i.e. orient ourxy
coordinate system so that the, lies along the
positive x-axis (see Fig. 4 (center)), we obtain:

r

Iy a(l-cosw)
rw

=———————+C0Sw — tana Sinw
(2a—r,) cos a

(50)
where we have also used Eq. (47) with = 0.

The vectorr can be obtained by the following
ansatz:

Mo (LXry)
r=Xw) [ Y(w) T, (51)
with
X(w) =r,, CcOSw (52)
Y(w)=r,Sinw (53)

The velocity vector =1 can be obtained by direct
differentiation of Eqg. (51).

It is instructive to study the polar plot of, shown
in Fig. 5 for different values ofta and the same
initial kinetic energy. It is seen that fax >0 (a <
0) the orbit is longer (shorter) as, has to increase
(decrease) due to condition Eqg. (30) evaluated at
entry. Thus, the two orbits corresponding to positive
and negative values of have to lie on identical
ellipses (same semi major axdsand semi minor axis
b), but with different orientations in th&y coordi-
nate system. The dependence of the anglef the
eccentricity vectore on the entry anglex is also
shown in Fig. 5 (lower right) obtained from con-
ditions of Eqgs. (44) and (45) evaluated fay, = 0.
Eq. (50) is the well-known form introduced by
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Purcel [2] and discussed in more detail by Rudd

[54], Hadjarab and Erskine [6] and Louette et al. [9].
Fer= m, Eqg. (50) is seen to be independent of the
sign ofa as required for first order focusing [2]. This
is demonstrated graphically in Fig. 5.
We also computey, using its definition Eq. (31)
and Egs. (39), (40), (44), (45) and (50):

a

(2]

;
sin(2 + w) — EO cosa sin(a + w)

arcta -
1+ cos( + w) — EO coSa cos@ + w)

(54)

We note thaty, is an odd function otxr at w = 0 and
w = . For acircular principal raya=r,=R, and
so a, = 0 for all values ofw. A typical plot of ¢, is
given in Fig. 6 forr=1 and « =0, =2° for the
paracentric case d®,=82.55,R_=R y=15@=
92.075) and for central entry witlRR,=R_=R=
101.6,y=1 (a=101.6).

The time-of-flight At_ for deflection through
Aw =, can be readily computed in analytic form
using:

dw

r 2
[1— EOCOSaf cos@ + o) + cos( + w)]

(55)
However, its expression is cumbersome in this
coordinate system. A simpler expression is given in
the next section in thes, =0 coordinate frame. A
more useful expansion in powers @fis given (valid
to better than 0.01% for the parameters of interest
here), which also shows that only odd powers

survive:
LY 22\ e
t, = K T+ ry +
(8L 1 144
&, ) Tzo\zm-r, 2
32
—r—>a5 + Ola] ] } (56)
0
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Fig. 5. Motion in thew, = 0 frame for various values of a. From left to right:e = =30, =10, 5, £2 and 0. The kinetic energy in all
cases was the same and equal to the tuning energy,=.e.= 1000 eV. Here we use the HDA parameters of Table 1rgne97.6 mm.
POM is the nodal line also shown in Fig. 3. The actual orbits fronto w, + = are shown in bold. All outer orbits (in upper half-plane)
have « > 0 with the corresponding lying in the lower half plane. Asx decreases the corresponding eccentricity vectors rapidly rotate
towards the positive-axis. Fora = 0 they overlap. Note that the magnitudeeohas been scaled to have length, for better viewing. The
lower right figure shows the dependence of the anglef the vectore on the entry angler.

Eq. (56) shows that the time-of-flight far <0 will circular orbit with radiusR, and for which it can
always be shorter than for orbits with> 0. This is easily be shown thak = 2R K. Thus, Eq. (50) is
consistent with Kepler's first law and Fig. 5 where it seen to be the generalization of Eq. (57) for the case
is clear that the areas swept out for< 0 are always of amlliptical principal ray with different entry and
smaller than the corresponding areas dor 0. exit radii (i.e.R,#R_).

We finally note that from the form of Eq. (50) one
can readily derive as a special case the more

traditional form (see for example Refs. [9,54]): 3.5. Description in @, = 0 coordinate system
ro RoK, (1—cosw) ) If we set in Eq. (49),w.=0, i.e. orient our
T, Ky coda | CoSe—tanasine (57)  coordinate system so that lies along the positive

x-axis, (see Fig. 4 (right)), we obtain:
where K, is the entry kinetic energy(oz%mvz=
t+qV(r,), while K, is the kinetic energy of the
reference principal  =0) ray that describes a

r

o _ T
rw

To tana
p

sinw,

;
cosw = FO (1+ € cosw) (58)
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Fig. 6. Plot ofa, (see Eq. (54)) forr =1 anda =0, =2° for the
paracentric case d®, =82.55 mm,R_=R=101.6 mm,y=1.5
(@=92.075 mm) and for central entry witR, = R_=R=101.6
mm, y=1 (@a=101.6 mm).

__a(1-cosw)
 (2a—r,) cofa

X [1+\/sin2 Y +(1—r—;)2 cos’ a] Cosw
(59)

This form is not very useful for obtaining focusing
characteristics that depend ansince the entry point
occurs at angley, obtained by setting, = 0 in Egs.
(44) and (45). However, the orientation of the orbit
in the coordinate system fap, = 0 leads to a vector
form of the orbit useful in tracking the particle in
three dimensions and obtaining its time of flight.

The vectorr can be obtained by the following
ansatz [47,75]

€ L Xe
r(t) =Xt -+ Y0~ ¢ (60)
wherer =0 is at the focus of the ellipse (point O in
Fig. 7) and

X(t) = a(cos{ — €) (61)

y(t) =a\/(1— € sin¢ (62)
ma® _

t= W({—esmg) (63)
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Fig. 7. Elliptical particle orbit in thexy (for w, = 0) coordinate
system showing th&ue anomaly «» and theeccentric anomaly {.

O is the center of attraction and focus of the ellipse. The
eccentricity vectole is seen to start from O and point to periapse.
It thus always lies along the semi major axis a of the ellipse. Its
length has been renormalized tq,, for better viewing. The
general velocity angley, is also shown.

with the particle being at periapse for tinhe= 0 and
{=w =0 [47].

Eqg. (60) may be directly differentiated with
respect to time to obtain the vector=r (remember-
ing thate andL are constants of the motion).

The new anglg introduced above is known as the
Kepler [75] or eccentric [49] anomaly and is related
to the anglew (also known as the true anomaly)
[49]:

€ + COSw

COS{ =1 ¢ cosw (64)

as can easily be derived with the help of Fig. 7. A
very useful conversion formula between the two
anomalies that also avoids quadrant ambiguiy2(
is always in the same quadrant a$2) is [49]:

4 l-e€ w

tanE =V11e tanE

(65)
We may also use Eq. (64) to directly express the

radius in terms of the eccentric anomaly [49]:

r=a(l— ecos{) (66)
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Eqg. (63) is also very useful since it gives directly
the time-of-flight as a function of the eccentric
anomaly/. Thus, for a particle entering &t= t, with
w,, o anduv, and exiting at an angle,+ 6 later,
we have using Egs. (44) and (45) with =0 to
define w, and Eq. (65):

At(wy, 8)td(w, + 6)) — 1(4o)

_ %{[{(wo +8) — e sin {(w, + 8)]
— (o —esiny)}

which for deflection by =« then gives the time of
flight At_ also computed in thevw, =0 coordinate
system above:

At = At(w,, 6 =)

e’ o (68)
=\ [~ &~ elsing, —sin )]

(67)

with ¢, = {(w,) and {, = {(w, + 7).

Using either Eq. (51) or Eg. (60), it is straight-
forward to describe the 3-D trajectory in any fixed
coordinate system XYZ in which the initial com-
ponents ofL and e are known. These are directly
computed from the initial position and velocity
vectorsr, and v, whose components in the XYZ
system can be readily obtained (see Appendix C). In
Fig. 3 we show such a 3-D plot made with the help
of the software programMathematica using the
vector form of Eq. (60).

4. Boundary conditions

In this analysis the region outside the analyser
(region ) (see Fig. 9) will be at constant potential
(free motion), while the region inside the analyser
(region II) will be governed by the potential given by
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0 for%< 0 <w Regionl
(70)

(3-0)-

while u(f — w/2) has the ranges of values 1 and 0
reversed.

In Appendix B, we prove mathematically that in
crossing this discontinuity, the potential energy is
indeed conserved (even though there is an infinite
force at the boundary due to the step) and the
particle is refracted at the potential boundary /2
both at the entry and the exit of the HDA.

Refraction is usually ignored in most treatments
having to do with narrow slit spectrometers since in
this case it is practically negligible (see below). In
cases, however, where narrow slits are not used, as
for example in the early work on HDAs [2], in the
description of two-stage tandem HDA spectrometers
[66] or spectrographs [25] and in treatments of
modern HDAs utilizing PSDs (see for example Refs.
[6,62]), refractive effects in crossing from region | to
region Il are usually important and have been treated
analytically within a step-potential model (as above).
Wollnik and collaborators [14,16] however, have
used more elaborate (albeit tedious) analytic and
numerical treatments by modeling the HDA fringing
fields in various approximations (for more details see
also the review [61] and book [22] by Wollnik).
Now-a-days, accurate trajectory calculations can be
readily performed on a PC using specialized ion-
optics programs such as SIMION [12]. We use this
approach in papers Il and lll, when more accurate
modeling of the fringing fields is required. It is
interesting to note, however, that even though the
solution of the potential distribution of the fringing
fields for both a shielded (th& = /2 potential
boundary is grounded) HDA [42] and an open (no
potential boundary assumed) spherical sector [41]
are known analytically, all studies to date have
preferred to actually solve Laplace’'s equation nu-

1 for0=¢6 s% Region Il

Eq. (2). Thus, the potential is seen to have a sharp merically (see for example Ref. [17]) for the po-

step going across the boundary of the two regions.
This can be represented mathematically by a
potential with step at = w/2:

Ve, 0) =vou(5 —0) (o= 3)

with V(r) given by Eqg. (2) andi(x) is the Heaviside
unit step function. Thenu(m/2 — @) is given by:

(69)

tential and then use this numerical solution to
investigate the effects of the fringing fields.

4.1. Energy conservation across potential
boundary

In region | (outside the analyser), the particle has a
kinetic energyt with
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t:irnv*z

> (71)

Thus, its total energyE* is equal to its kinetic
energy t plus potential energyqV, due to the
decelerating potentiat,, while inside the analyser it
has a total energy equal to the sum of its kinetic and
potential energie and gV. We reserve the symbol

* for marking quantities of region | that could
otherwise be confused with corresponding quantities
in region 1l. Applying the conservation of energy on
either side of the HDA boundary (as proved in
Appendix B.1) we obtain:

t+qV, = K(r) + qv(r)

= % mo® + gV(r) + oV, (72)
E*=E+qc+aqV, (73)
and thus,

E=t—qc=E*—-qc—aqy, (74)

where E is the effective total energy inside the
analyser found to be conserved in Eq. (20) and is
negative for bound motion. It is seen from Eq. (74)
that the two total energiels* and E just differ by a
constant. Energye* is referred to zero potential,
while E is referred to the potential(c +V,) as seen
from the definition of the potentidV(r) in Eq. (2).
Thus, the constant is seen to be needed only to
match the energieE and E* inside and outside the
HDA. It only comes into play when the outside
energies or E* are used in the trajectory equations.
Furthermore, we note that from Eq. (72) we obtain
the useful relation:

2mvzzt—q\N/(r)=t—(1—y)w20

(75)
which necessarily puts a lower bound on the value of
v for a particle to go through the HDA, i.e.
t—(l-yw=0ory=1-r

Using Eqg. (74) in the definition of the semi-major
axis a we also have the useful relation:

ak

T( )

(76)
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4.2. Particle refraction across potential boundary

In region | the potential is constant and the particle
thus feels zero force, its velocity remains constant
and therefore so does its angular momentutm=
mr v cos a*. In region Il, the force is central and
therefore the angular momentum= mr v, cos« is
also conserved. However, because of the finite step
potential at the boundary the two angular momenta
are in generahot equal.

Using Eqg. (74) of energy conservation across the
boundary we may relate and v*. It is shown in
Appendix B.2 that we obtain the following relation
between the angular momenta:

|

which expressed. in terms of the entry angle*
(instead ofa) and the potential/(r,). This relation
may also be expressed as:

qv(r,)

tcos a* (77

L2=L*2[1—

L tana = L*tan a* (78)

It then readily follows (see Appendix B.2) that:

v sina =v*sin a* (79)
or
v, =v¥ (80)
and

2qV(r
v2 —vr?= _ 2o (81)

m

From Eg. (80) it is seen that the radial velocity,
v, =T, is continuous across the boundary [6], as
opposed to the angular velocity,, =rw=L/mr
which is not. This has the consequence that since
only the magnitude ol is discontinuous and not
also its direction, the particle remains on the same
plane as it crosses the potential boundary. Thus, the
angleB, which defines the plane of the orbit will not
suffer any changes as the particle crosses the bound-
ary. Eq. (79) is seen to be the charged-particle
analog of Snell’s law of refraction in optics [76].
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4.3. Trajectory equations including refraction
Using Eqgs. (77) and (78) we can include the

refraction effects into the trajectory equation for the
w, =0 form (Eq. (50)) to obtain:

r

o

Z[PW@] a(1 - cosw)

v [1_ qV(r,) ](Za—ro)cosza*

t cos a*

—_ |

*
+ Cosw — tana* <T> Sin w (82)

k(1 — cos

= ak( w)\7( ) + Ccosw
qvir,
2r t cos a* [1—7]
0 “ t cos” a*
tana* sin

a w (83)

S
1_tCOSZa*

We may now specify the values of constaktand
c (via V(r,)) appearing in Eq. (83). This is usually
done by specifying a principal reference ray with
a =0 andnominal pass energy set to the tuning
energyw, i.e. t=w. Here, we define our principal
ray such that it enters at=R; (i.e. r,=R,) and
exits after a deflection by 18Gtr =R_ (i.e.r_ =
R.). Thus, using the trajectory equation Eqg. (50)
with r,=R,, r =R_, « =w, t =w and the potential
equation (Eq. (2)) at =R, we have:

R, RW—00)+ ok (84)
- qk
V=~ * (85)

Using the definition ofy from Eq. (3), we may now
solve Egs. (84) and (85) simultaneously foandc
yielding:

k= R<1+&>— R (1+ &)~ 86
o= iR 1+ 5* ) =WR,(1+ &) § (86)

T

qc=w<1+y§—:>=w<l+%) (87)
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we may also replacgc andgk above in Eq. (41) and
obtain a new equation for the semimajor agiss:

Ro(1+£) 7

o 2<1+%—7)

We now replace botlgk andqc (or equivalentlya
from Eq. (88)) in Egs. (50) and (83) to obtain the
final trajectory equation in terms of the entry angle
and/or a*.

From Eq. (50) we have:

(88)

ro gk(1 — cosw)
—= + cosw
o 2[gk —ry(gc —t)] cos’ a
—tana sinw (89)
1- cosw)
= ¥ + cosw
[ L 1) ]
2| 1-32———%% | co¢
Ro A1+ “
—tana sinw (90)
From Eq. (83) we have:
(1+3)
b 1yR, +§ (1—cosw)
w 27T |: qv(r,) :| cos a*
w
1 JN— A S
T cos a*
tana* .
+ Ccosw — = Sinw (91)
qV(ro)
w
1 JE—— . A—
7 cos a*

and after expanding\7(ro) using Egs. (86) and (87):

~ qk
Qo) = — 7+
0

oG 2]

we obtain:

(92)
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o 1 7&

r, 2r7r,

9]

(o
ol ]

7 co¥ a*

1_

(1—cosw)

+ coSw
cos a*

tana*

vol g (04

7 cos a*

1_

X sinw (93)

We may now also use the value gk to evaluate
E and p to determine the type of conic section the
particle follows. For the principal trajectory € w,
ro=R, and a« =0) we define theprincipal ray
parameters: energy, latus rectypnsemi major axis
and time-of-flightAt_. Directly from Egs. (74), (39),
(88) and (56) we have:

E=w-qc= —w% (94)
_ 2RW 2R,

P="ak T (98)
55% Ry(1+ ¢) =%(R0+ R.) (96)
O YL mé

At =7\ =2 R+ O\ /3, (97)

Thus, fory >0 we always havé& < 0 leading to
elliptical orbits. For elliptical orbits, the quantity
e+ T i = M0 = 0, + M) + 1 (0 = w,)| s the
semi-major axis, which is always aligned along the
eccentricity vectore and is given by Eq. (41), while
the semi minor axi® is given byb=av1— €. As
already seena only depends on the effective total
energyE and is independent of the entry angle, while
b does also depend on the entry anglevia the
eccentricitye (see Eq. (19)). Thus, in the case of the
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elliptical orbit Eq. (17) reduces to the well known
elliptical form:

B a(l— €%
© 14 ecosp— w,)

(98)

with a ande given by Egs. (41) and (19), respective-
ly.

4.4. Sectrograph basic equation

Since the HDA focusing properties can be studied
only from the ray trace on the exit plane, an
expression which gives the position of the particle at
the image (exit), as a function of its position and
direction at the object (entrance) and ieminal
(reduced) pass energyis needed. Directly from Eq.
(50) and using Eg. (76) we have:

rolak + 1ot — qc)]

qu:qktanza—ro(t—qc) (99)
IPO
= (100)
3
1+cosza{ro [1+;(1_T)] }
R, (@+g *

which is the form ofr _ expressed as a function of

If we now include the refraction and substitute for
tan a using Eq. (B.24) in Eqg. (83) we get the
surprisingly simple result:

. S (101)
T ° gc—tcos a*
R, (1 +
=Tt o1+ ¢) (102)
1+;(1—TCOSZC¥*)

Eqg. (101) is seen to be a much simpler expression
than Eq. (99). In fact, to our knowledge, this form of
the equation is new and has never appeared in the
literature to date. It expresses very simply the exit
point r_ after deflection by 180in terms of the
kinetic energyt (= T — gV, in the case of preretarda-
tion whenV, # 0—see Eq. (1)), entry angle* (prior
to refraction) and entry radius, for known potential
V()= —k/r +c.
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The relation between_ andr, (Egs. (99)—(102))
is known [77] as thebasic equation of the spec-
trograph. From this all further properties of the HDA

may be extracted (see paper Il). Eq. (101) expresses

the relation between_ andr in a very simple form
in terms of the potential/(r) parametergk and qc
and is conveniently independent of the particular
HDA parameters such &, R,, R, V, V, V, Eq.
(102) on the other hand is conveniently written in

terms of the spectrometer parameters. Both forms

will be used. For the case of a conventional HDA we
have y= ¢=1 and the basic equation in this case
may be rearranged into the usual form:

(r. —Ro) _ (ro—Ro)
Ry B Ro

_2[1_ 1 - ]
1+sin® a* — (7 — 1)(1—sin® a*)
(103)

Eq. (103) is seen to be identiéal with Eq. (8) of
Hadjarab and Erskine [6]. The results of Ref. [6] also
include the refraction correction at the entrance of
the HDA.

In Egs. (101) and (102), the surg_ =r_+r,is
the range of the trajectory. It is seen to have a few
interesting properties: Eq. (101) shows that for fixed
gk andqc (i.e. fixed voltage®/, andV, on the HDA)
the ranger, . is independent of the entry or exit
positions (for the same energlyand anglea*). This
is hidden in Eq. (99) sincer is not anymore and
independent variable but a function of the entry
variablesa* and r,. In other words, the distance
traveled in the plane of the orbit is always the same
(for the same energy and anglea*) no matter
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more detail in paper Ill. Here, our main goal was to
obtain Egs. (101) or (102).
Eqg. (102) also shows that the napngds a
universal function of the ‘reduced’ pass-energy
the incident angle*. This, universal scaling withr
is particularly useful during the energy calibration of
the spectrometer since different enérgiesl
deceleration factos must all fall on one universal
curve dependent, @voiding the tedious task of
calibrating the spectrometer for all combinations of
F, T andW utilized in a measurement. The energy
calibration is discussed in more detail in paper Il.
In Table 2 we present typical numerical values of
the trajectory parameters. A comparison between
central and paracentric parameters is made. In both
cases the parameters of the principal ray are given.
An example is also given where the energy of the
particle is slightly larger than the tuning energy. For
generality, for these cases the particle is made to
enter at an angle, # 0. This then defines the angle
@, given (@, = ¢,— ; see Fig. 3). The large value
aotf= =30 is used on purpose even though rather
exaggerated as it allows for bigger differences in the
numbers. The table gives a feeling for the magnitude
of the parameters involved and can also be used to
check formulas.
We also plot the effective potebkiglsthat
corresponds to the parameters of Table 2 defined as:

2

Ugye(r) = QV(r) + (104)

2mr?

in which the particles are moving as a functionrof
(see Fig. 8 top) and angle (see Fig. 8 bottom) a&
varies along the orbit fromw, t0 w,+ w. The

where the entry or exit is made. Clearly, this is not paracentric potential is seen to always be deefer (
so in Fig. 1, where it is seen that the central entry has js more negative) and for the example shown the
a much longer range than the paracentric entry. This particle trajectories withw = +30° are much closer
must be a manifestation of the fringing fields. In this to the a* =0 trajectory than in the case of the
light, it is also rather surprising that the exit poinfs central entry potential.
for both central and paracentric entries in Fig. 1 is
roughly the same. We shall discuss these points in

4.5. Analyser voltages

The voltage schem¥, andV, applied on the inner
and outer spherical shells of the analyser, respective-
ly, is a function of the tuning energy of the spec-
trograph. The determination of the voltages is based

*To see this we need to make the correspondence with the
symbols used in Ref. [6], i.€,. < (I, — R,)/R,, {o= (o~ RJ/R,
andAE/E=(t—w)/w=71—1.
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Table 2

Comparison of paracentric and conventional entry orbital parameters computed for elegtron- €) passage through aideal
hemispherical deflector analyser (HDA) of the foMir) = —k/r +c, with no preretardation (i.eF =1, W=w, V,=0) and planar
(unrefracted) launching angle* = 0° and +=30°°.

Parameters Reference Paracentric HDA Conventional HDA
H Ry, (mm) Fig. 2 82.55 82.55 82.55 82.55 101.6 101.6 101.6 101.6
i D b% Eqg. (3) 15 15 15 15 1 1 1 1
n A T (eV) Eq. (1) 1000 1020 1020 1020 1000 1020 1020 1020
p W (eV) Eq. (4) 1000 1000 1000 1000 1000 1000 1000 1000
u en ry,(mm) Fig. 2 82.55 79.184 79.184 79.184 101.6 98.3877 98.3877 98.3877
t oty @ (°) Fig. 3 0 —7.25515 —7.25515 —7.25515 0 —7.25515 —7.25515  —7.25515
a* (°) Fig. 2 0 0 -30 30 0 0 -30 30
p
o
t V, (V) Eqg. (3) 500 500 500 500 0 0 0 0
e V; (V) Eqg. (109) 881.151 881.151 881.151 881.151 806.63 806.63 806.63 806.63
n V, (V) Eqg. (109) —502.903 —502.903 —502.903 —502.903 —446.483 —446.483 —446.483  —446.483
t gk (eV-mm) Eqg. (86) 224 433 224 433 224 433 224 433 203 200 203 200 203 200 203 200
i qc (eV) Eq. (87) 2218.75 2218.75 2218.75 2218.75 2000 2000 2000 2000
a f Eg. (110) 1.38405 1.38405 1.38405 1.38405 1.25311 1.25311 1.25311 1.25311
|
a (%) Eq. (B.22) 0 0 —23.2568 23.2568 0 0 —28.9945 28.9945
E* (eV) Eq. (72) 1000 1020 1020 1020 1000 1020 1020 1020
E (eV) Eqg. (20) —-1218.75 —1198.75 —1198.75 —1198.75 —1000 -980 -980 —980
t vy (mm/ns) Eq. (71) 18.7553 18.9419 18.9419 18.9419 18.7553 18.9419 18.9419 18.9419
r v, (MmM/ns)  Eq. (75) 22.9704 23.9860 23.9860 23.9860 18.7553 19.5388 19.5388 19.5388
a L* (eV-ns) Eq. (B.15) 8802.86 8527.94 7385.41 7385.41 10834.3 10 596.1 9176.53 9176.53
i L (ev-ns) Eq. (B.16) 10781.3 10798.9 9921.41 9921.41 10834.3 10930.1 9560.15 9560.15
e p (mm) Eq. (39) 91.0897 91.3877 77.1395 77.1395 101.6 103.404 79.1083 79.1083
c € Eq. (19) 0.103448 0.154118 0.419474 0.419474 0 0.0509845 0.486772 0.486772
t a (mm) Eq. (41) 92.0750 93.6112 93.6112 93.6112 101.6 103.673 103.673 103.673
o b (mm) 91.5810 92.4928 84.9772 84.9772 101.6 103.539 90.5618 90.5618
r r. (mm) Eqg. (102) 101.600 108.038 75.198 75.198 101.6 108.959 66.1467 66.1467
y I min (MM) Eq. (17) 82.55 79.184 54.3438 54.3438 101.6 98.3877 53.2081 53.2081
I max (MM) Eqg. (17) 101.6 108.038 132.879 132.879 101.6 108.959 154.139 154.139
tof (ns) Eq. (68) 13.9705 14.3215 6.91405 21.729 17.0185 17.5421 7.75394 27.3302
tof (ns) Eq. (56) 13.9705 14.3215 7.20557 21.4375 17.0185 17.5421 8.39616 26.688

%In the Ref. column appear the equation (or figure) numbers that refer to the equation (or figure) in the text used to compute (or define) the
corresponding values. Some of the parameters refer to Fig. 3 and those given in Table 1. The mass of thenetcg188569 ev-né /mr
while in both casefR_ = R=101.6 mm. These results are independent of the launching #hgle

on the concept ofrincipal ray, in a straightforward spherical shells of the analyser, respectively, the
way. The entry and exit points are specified. For expressiong ford ¢ are obtained:

these points, the principal ray wida= 0 (or o* = 0) RV. — RV

and pass energl set to the analyser tuning energy c= % -V, (105)

w, i.e.t =w, is decided [55]. These conditions then

define the proper potential applied on the analyser. In | _ Av R.R (106)

this study, the principal ray is defined such that a AR 2

charged particle enters at=R, and exits after a Substitutingandc from the expressions above into
deflection byAw =m atr_=R=(R; + R,)/2. the spectrograph basic equation Eq. (101), the princi-

Applying voltagesV/, andV, on the inner and outer pal ray case reduces to:
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Fig. 8. Effective potential energy.(r(w)) plotted as a function of(w) (top) and as a function ofv (bottom) for the cases of
a* = =30°given in Table 2 with eithety = 1(left) or y = 1.5 (right). The horizontal line is the total effective enefgyn each caseJ(r)

is the same for both angles® = +30°(top curves). The turning points,,, andr .., are shown. It is seen (darker lines in bottom figures) that
for a* >0 we also haveir/dw >0, i.e. the particle follows an orbit in the direction of,, according to Eq. (31), while foa* <O it
follows a trajectory first going through,,,. The arrows (top) point in the direction of motion from the starting pojnt

R - _R gAV R|R,
T 0+Q(V2R2_V1R1)_WAR
whereAR=R, — R, andAV=V, —V,. Furthermore,

for a pre-specified entrance potent\ (y), after
substitution ofk andc, into Eq. (2),V, is written as:

(107)

. (R;—RYRV;+ (R,—R)RY,
V, = ARR, (108)

Solving Egs. (107) and (108) fov, andV,, and
using the definitions Eqgs. (3) and (7), the voltage
equations are obtained:




T.J.M. Zouros, E.P. Benis / Journal of Electron Spectroscopy and Related Phenomena 125 (2002) 221-248 241
o\ [ Ry(1+ &) refraction alvyays leads to smaller entry angles
Qv =W- W(E> [T - ] Useful analytical formulas are obtained for both the
' scalar and vector form of the orbits allowing for their
=12 (109)  convenient graphical representation in two and three
dimensions. The time-of-flight (tof) of the particles
is also obtained in closed analytical form and a
Taylor series expansion around: = Oexplicitly
shows that tofs withw <0 are always smaller than
those with « >0, since the path is also corre-
spondingly smaller. Clearly, wheg(V, —V,) <0 the
particles are accelerated at the potential boundary at
entry leading to smaller tofs. The basic equation of
the spectrograph is also obtained as a functiom of
and «* where a* is the entry angle prior to
q AV 0% AR refraction. The form written in terms af* is found
W :(E)< >R0(1+ £) (110) to have a surprisingly simple expression in terms of
the constantgk and qc (Eq. (101)). This form is
The spectrometer constant has been introduced in theqch simpler than the one obtained in termscof
past for convenience, since it uniquely defines the (Eq. (99)), arguing in favor of always including
appropriate potential difference across the analyser refraction corrections. In Il we use the basic spec-
AV as a function ofv (see for example Ref. [78]). In trometer equation derived here to investigate the
the more general paracentric HDA cadeis seen t0  gperation and optical properties of the ideal HDA
be proportional toy. and see how they are altered by the effects of the
fringing fields by comparing with ion-optics simula-
tions using SIMION and experimental results ob-
5. Summary and conclusions tained from laboratory measurements using our
paracentric HDA.

We have presented a general treatment of charged Finally, we have also stressed some particular
particle motion in theédeal potentialV(r) = — k/r + properties of Kepler orbits that relate to the launch-
¢ for more general launching conditions than what ing angle« and which are not so well known: (a)
have been considered to date. Specifically, we ob- The eccentricity vector € is conserved and always
tained general trajectory equations in analytic form points to periapse, (b) particles with entry angle

which uniquely determiné/; and V, in terms of
potentials \;, V,, the tuning energyw and the
‘principal ray’ positions of the entrancR, and the
exit R_, respectively. This is the most general
formula for the voltages from which all specific
cases may be derived. We note that the voltages
above are referenced tgound.

We also calculate the generalized spectrometer
constantf:
f=

R,R,

for r as a function of the deflection angiein which a<0 (@>0) wil move towards (away from)
the reference principal ray describes aitiptical periapse and will have correspondingly shorter
trajectory starting atR, at the arbitrary potential  (longer) time-of-flights for deflection through the
V, =V(R,) and exiting after deflection byr at R_ same angleAw, (c) the ranger, ., for deflection
(see Egs. (90) and (93)). Conventional trajectory throughAw = 180, is independent of the entry and
equations are recovered as the special dage exit pointsr, andr _ for the same entry angle* and

R, =R andV, =V, whereV, is the preretardation  kinetic energyt. In lll we shall investigate how these
plate voltage of the analyser. properties hold-up when strong fringing fields are

The finite potential at entry, causes refraction to  present at the entrance and exit of an HDA with large
be non-negligible. A formal treatment of refraction at interradial separation.
the potential boundary, assuming an idealized step
function potential V(r, #) to model the fringing
fields, is given showing that the magnitutleof the Acknowledgements
particle’s angular momentum suffers a finite change
even though its direction remains unchanged, while  We would like to acknowledge meaningful discus-
its total energy is conserved. Fay(V, —V,)<0 sions with J. Erskine, D. Roy, E. Sidky, H. Wollnik,
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V, nominal voltageV(R,)
Appendix A. Reference table of symbols Vi nominal voltageV(R,) on R,

V, nominal voltageV(R,) on R,

An alphabetical list of the most important symbols W HDA tuning energy after deceleration
used in this paper is given for convenience in Table W HDA tuning energy prior to deceleration
Al a launching angle in plane of orbit (Figs. 2

and 3)
Table A.1. List of symbols and short explanation A angle of orbital plane (Fig. 3)
0 control parameter to s&f, (Eq. (3))

a semi-major axis 8(x) o-function atx =0
b semi-minor axis € eccentricity

~ k € eccentricity vector
c V= -,+c ¢ eccentric anomaly (angle)
d diameter of HDA entry aperture f polar angle inr, ¢, ¢} system
desp diameter of PSD fractional pass energyr,:i
E conserved total energy w
f spectrometer constant,zw ¢ azimuthal angle ir, 6, ¢} system

W bo azimuthal angle at entry
. W R
F deceleration ratioF = W ¢ HDA parameterg = ?ﬁ
0

~ k
k V= -7+c ) angular coordinate in orbital plane

o w, omega at entry of HDA
K kinetic energy o, w at periapse
L angular momentum ) particle angular speed
m mass of particle * designates quantities prior to
P latus rectum HDA entry (before refraction)
q particle charge @ = — e for electron)
r radius of orbit
M in minimum radius
I max maximum radius Appendix B. Boundary conditions
lo radius at HDA entry
R, principal ray entry radius B.1. Energy conservation across potential
R, principal ray exit radius boundary
R, HDA inner radius
R, HDA outer radius In the absence of a time-dependent magnetic field
R HDA mean radius Maxwell's equations require that X & = 0. Equiva-
t particle kinetic energy lently, this is satisfied if there exists a potential

(before refraction)f = K* such that the electric fiel& can be obtained from its
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gradient, i.e.&= —VV. That the potentiaV/(r, ¢) of
Eqg. (69) is indeed such a potential at all points W, 4era= 3€ F-ds (B.2)
including the boundary = /2, might not be imme- abcdefa
diately obvious since the force at the boundary is e t b
infinite involving a delta-function, i.e.
=|+]| +| F-ds (B.3)
F(r1 01 ¢): —qV\/(I’,H) ¢ € f
s av(r) with W,. = 0 (force is zero) and
-—au(z-0) G :
é v ™ ch :j Ferl do
+aq V(5 - 0) (B.1) /
w2—6q
. . - T (B.4)
However, it can be easily shown that the total =qv(r,) 5(3-0) de
energy is conserved in crossing the potential bound- w246,
ary by direct integration of the world/,, .., along - —qV(r,)
an arbitrary closed path abcdefa (see Fig. 9) made up .
of two arcs of constant radius,(andr,) and two similarly
straight sections along the radial directions of con- b
stanté (6 = w/2+6,). The sharp boundary separating
region | and Il is atd = w/2. Thus, we have: b :j For, do
f
2+ 6,
. - (B.5)
=¥y | o(5-6)ds
OFm/2 72— 0
al 3 ~
b £ = —qV(r,)
90 and finally
f
Region Region
g1o &l W, = f F, dr
o d e i
. . = —quV(r,e)dr
\ 1 ry
\ [}
V=% e V=V z
M = —qIEV(r) dr
0512 Y /2565=0 E ) )
O = —qV(ry) —V(r)l = —aV(ry) — V(r ]
(B.6)

Fig. 9. Integration path (bold line) abcdefa used to show energy which when added up givé&/,, ....,= 0. Any closed
conservation across the potential stepdat w/2 (see text). The path joining regions | and Il can always be repre-

total wz_)rk performed tp g'o around the cI_osgd patr_l abcc!efa |s_ zero. ganted by integrals of this type which cancel out. We
In Region | the potential is constant, while in Region Il it is given

by V(r) of the analyser. Oe Od=0c=r, and Of=0Oa=0Ob=r, shall use the potentidd(r, 0) of E_q. (69) to compute
(see text). In this model, the potential boundary is sharp and the the refraction of charged particles at tifle= w/2
force at the boundary is infinite (delta-function). boundary.
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B.2. Particle refraction across potential boundary

The change in angular momentum in crossing the
potential boundary is given by:

——=rxF (B.7)

—r X gWv(r, 6)
= v)5( 5 - 0)(F x )

which shows that the change will be along the
directionf x 6= ¢ = —sin ¢pX + cos¢>Y (see Fig.
3).

Taking the dot product of both sides of Eq (B.8)

(B.8)

with L and using the identity - (f X 0) mr 6 and
2d(L -L)=LdL we obtain:
dL?) = 2mr*vn)s( 5 — 0) do (B.9)

This may be directly integrated in th&€YZ frame
along the path of the trajectory. Equivalently Eg.
(B.9) maybe transformed to the plane of the trajec-
tory by using the connection between the §, ¢)
and ¢, w) variables shown in Appendix C. From Eq.
(C.13) we have co¥) =cos B sin w. Using the
transformation of variables properties of delta-func-
tions we have:

™ .
6(7 - 6) dé = sin65(cosh) do (B.10)
= — C0SB Coswd(cosB sinw) dw (B.11)
= — §(w) dow (B.12)
Then we may transform Eq. (B.9) to:
d(L?) = — 2mr %gV(r)6(w) dw (B.13)

Both Egs. (B.9) and (B.13) can be directly integrated 2
across the bounday= /2 or v = 0 from region |
to region Il along the trajectory to yield:

w 2"

L2~ %% = 2my f 1O ONs(5 — 60) do

w2t

—2mq f r(w)*V(r (w))8(w) dw

— 2mr3qV(r )
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(B.14)

At the entry radiusr =r, the angular momenta
must clearly be given by:

. w
L* = mrovgsm<§ + a*)

=r,V2mt cosa* (B.15)

and

. v
L=mry, sm(i + a)

gk
=Try\/2m E+r— Ccosa
0

= rg\/2m[t — qV(r,)] cosa

wherev,, v§ and «, a* are the entry velocities and
angles inside (region IlI) and outside (region I) the

(B.16)

analyser.
Using Egs. (B.14) and (B.15) we obtain:
aV(ro) ]
L2=L*2[1—7 B.17
tcos a* (B.17)

which expressed. in terms of the entry angle*
(instead ofa) and the potentiaW/(r,).

From Egs. (B.14)—(B.16) it is straightforward to
show that:

v Sina =v*sin a* (B.18)

v, =vf (B.19)
20\V(r

v2—vx?= —% (B.20)

and sinceK =1mv®=1mp?+v?2) and t=K* =
lmv*2 we may also erte the change in kinetic
energyAK*, when crossing the boundary &§ as:

AK* =K — K* = — qV(r,) (B.21)

From Eqg. (B.19) it is seen that the radial velocity,
v, =T, is continuous across the boundary [6], as
opposed to the angular velocity,, =rw=L/mr
which is not. This has the consequence that since
only the magnitude ol is discontinuous and not
also its direction, the particle remains on the same
plane as it crosses the potential boundary. Thus, the
angleB, which defines the plane of the orbit will not
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suffer any changes as the particle crosses the bound-
ary. Eq. (B.18) is seen to be the charged-particle
analog of Snell's law of refraction in optics [76].

Summarizing the relations betweenand a* we
have:

. vt sin a*
sina =—-sina* = ———= (B.22)
A/, _ Qo)
1 L
t
V()
cosa = tciqsza* cosa* (B.23)
qV(ro)
1 - 7
t
tana* L*
° (B.24)

tana = —————==T"tana*
1/1_ qV(ro)
t cos a*

It is evident from Eq. (B.22) that wheﬁ(ro) =0
then « = a*. The relation betweernn* and « is
shown in Fig. 10 for the case of paracentric entry
with y = 1.5 and for conventional entry witl = 1.

In both cases we have chosen the entry paint
R,. Clearly, the effect of refraction is non-negligible
for paracentric entry andf, # 0 (y # 1).

We note that a similar refraction takes place at the
exit of the HDA where the particle now crosses from
region Il back out to region I. Using the same
treatment but applied at the exit poiat=m andr_,
Egs. (B.14)—(B.24) can been seen to hold also when
the subscript 0 indicating entry is substituted for
indicating exit. Now using Eg. (32), it can be readily
shown thataf = — o, i.e. the particle’s entry
angle af(=a*) and exit anglea* are equal to
within a sign contrary to the relation betweep and
a, which are only equal if,=r_ (see Eq. (32)).

In the majority of the literature treating HDAs the
transition effects in crossing the potential boundaries
at entry and exit have either been ignored, by
treating the motion strictly inside the HDA or have
been neglected. This primarily has to do with the fact
that most treatments deal with conventional HDAs
havingV, =V, and use very small slits or apertures
with sizes typically ~0.5 mm or smaller so that
V(ro,) =V, =0 making a* = a. This can be readily
seen by expandin&l(ro) in Eq. (B.22) around the
entrance aperture &, by settingr,=R,+ Ar

0.10
r=Ry,
. 12 . *
sino=[t/(t+y-1)] * sina
0.08 A
£
- ":
[7)) 7
C o
o ]
[e} =]
@ 0.06 1
— "I
3 £
® il
2 A
© .
o 0.04- i
9] o
- '.
& 4
= o
£ i s 1=1.0,4=1.5
0.02 .’ ----1=09y=15
4 —1=1.0,y=1.0
/4 —-—1=0.9,4=1.0
4
0.00 —
0.00 0.02 0.04 0.06 0.08 0.10

Incident angle o (radians)

Fig. 10. Relation between the entry angi& prior to refraction
(angle of incidence) and angler after refraction (angle of
refraction) for two cases: (ay = 1(\70 =0), R,=R (b) y=
1.5(\70 =0.50), R, =82.55 (paracentric entry). In both casgs:
— e(electrons), w=1000 eV, r,=R, and R, =R with other

parameters as given in Table 1. Clearly, the effect of refraction is

non-negligible for paracentric entry arfq #0 (y #1).

sina _\/ ~ aV(R, + Ar,)

sina* t

D P PR (E 1)&

= —+ 27- -y — §+ RO + ...
(B.25)

which for y=1, ¢ =1 gives:

i — (1420 in o

sina={1+ R, + - - )sina (B.26)

Clearly, Ar, /7R, will always be very small since
7~1 and Ar, < <R,, especially for narrow slit
spectrometers. However, wh&f# 0 (y # 1) as for
paracentric entry, even withr, =0, the first order
term will be important:

sina~[1+%(1—7)] sin a* (B.27)
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gives sina = 0.75 sina*, a measurable effect. The sin®, cos®, O
exact relation is shown in Fig. 10 for some typical 0 0
examples. In general, foy >1 we havea < a*, . .

while for y <1 we havea > a*. As already dis- This then gives:
cussedy >1 results in the acceleration of the v, =
particle right after entry which tends to minimize the e .
spread ina. Smaller variation ine means smaller = X o[(—cosa sin B sin ¢, + sin ar COS o)X
variation in the time-of-flight resulting in improved
time resolution in coincidence measurements (e.g. .
e—2e measurements). Smaller variation dn also + cosa cosBZ] (C.7)
means smaller variation in the range of the trajec-

tories implying decreased dispersion and larger Givenr, andv, in the XYZ system we can easily
energy acceptance window, as discussed in morecompute the entry angular momentum =r, X v,
detail in paper Il. andL,Xr,:

For example withy=1.5 andr=1, Eq. (B.27) cos®, —sind, 0
R(D,) = (C.6)

Vo

+ (sina sin ¢, + cosa sin B cos¢,)Y

L, = Mr v, COSa(cos B sin ¢ X

Appendix C. Relation between (6, ¢) and w in — 0SB COSh,Y + sin BZ) (C.8)

the w, =0 coordinate system ) ) A _ -
LoXro=Lg(—sinBsingX +sinB cose Y

As the particle moves along its trajectory on the + cos,BZ) (C.9)
orbital plane as a function ob the corresponding
spherical coordinate angleg, () must also change. In the orbital plane framey we have using Eq.

The relation between the two sets of coordinates is (51):
derived here.

In the laboratory fram&YZ (see Fig. 3) we have: |, _ r<h - LoXTro sinw> (C.10)
3 .
. 0 o'o
rr. 6 é) = I’(SII’-1¢9 CO_S¢XA . (C.1) Taking the dot product of in either frame with
+sind sin Y + cosozZ) each one of theXYZ unit vectors and equating we
have:

with the entry vector , given by:
Sin@ cos¢ = coS¢, COSw — Sin ¢, Sin B sin w

K
to=1 (10 0="5. 6 =) (c2) (C.11)
=1,(COSPX + Sind,Y) (C.3)  sinf sing =sin g, cosw + cos¢, sin B sinw
. . . (C.12)
Furthermore, it is readily seen from Fig. 3 that
Vouy, = Vo(—SiNaX’ — cosa sin By’ cosf = cosp sinw (C.13)
+ cosa cosBZ') (C.4) Eliminating sing from Egs. (C.11) and (C.12) we

which can be transformed to théYZ system by a obtain:

simple rotation around the comm@h= 2’ direction ¢ _ tang, +sinftanw
by the angle®, = ¢, — = (see Fig. 3): ang = 1-sinBtang,tanw

(C.14)

Vs = Z( PV, (C.5) Thus, giveng, and 8 which are defined at entry,
s e Egs. (C.13) and (C.14) determireand ¢, respec-
with tively, as a function ofw.
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Finally, we can also compute the angular momen- [21] C. Oshima, R. Franchy, H. Ibach, Rev. Sci. Instrum. 54

tum L, using Eq. (51). Directly from the definition
of Ly=r,Xm', we get:

L, = mre(cosB sin ¢, X — coSB CoSp,Y

+5sinpZ) (C.15)
from which it can be directly shown that
Lo=\L, L,=mr’w (C.16)

as expected for a central field where the motion is
confined to a plane. Equating the different expres-
sions forL, above we get:

L, =mr,v,Ccosa
=mrio
from which we directly obtain Egs. (22) and (23):

lo® =0, COSa

References

[1] E.P. Benis, T.J.M. Zouros, Nucl. Instrum. Meth. Phys. Res.
Sect. A 440 (2000) 462.
[2] E. Purcell, Phys. Rev. 54 (1938) 818.
[3] C.P. Browne, D.S. Craig, R.M. Williamson, Rev. Sci. In-
strum. 22 (1951) 952.
[4] C. Kuyatt, J.A. Simpson, Rev. Sci. Instrum. 38 (1967) 103.
[5] S. Kevan, Rev. Sci. Instrum. 54 (1983) 1441.
[6] F. Hadjarab, J. Erskine, J. Electr. Spectr. Rel. Phenom. 36
(1985) 227.
[7] S. Nishigaki, S. Kanai, Rev. Sci. Instrum. 57 (1986) 225.
[8] E.-J. Jeong, J. Erskine, Rev. Sci. Instrum. 60 (1989) 3139.
[9] P. Louette et al., J. Electr. Spectr. Rel. Phenom. 52 (1990)
867.
[10] P. Baltzer, B. Wannberg, M.C. Gothe, Rev. Sci. Instrum. 62
(1991) 643.
[11] D. Hu, K. Leung, Rev. Sci. Instrum. 66 (1995) 2865.
[12] D.A. Dahl, SIMION 3D v6.0, Idaho National Engineering
Laboratory, Idaho Falls, 1996.
[13] R. Herzog, Z. Phys. 97 (1935) 596.
[14] H. Wollnik, H. Ewald, Nucl. Instrum. Meth. 36 (1965) 93.
[15] U. Czok, K. Euler, M. Rauscher, H. Wollnik, Nucl. Instrum.
Meth. 92 (1971) 365.
[16] H. Matsuda, Nucl. Instrum. Meth. 91 (1971) 637.
[17] A. Skollermo, B. Wannberg, Nucl. Instrum. Meth. 131
(1975) 279.
[18] J.N.H. Brunt, F.H. Read, G.C. King, J. Phys. E: Sci. Instrum.
10 (1976) 134.
[19] K. Jost, J. Phys. E: Sci. Instrum. 12 (1979) 1001.
[20] K. Jost, J. Phys. E: Sci. Instrum. 12 (1979) 1006.

(1983) 1042.

[22] H. Wollnik (Ed.), Optics of Charged Particles, Academic
Press, London, 1987, pp. pp. 1-291.

[23] B. Gurney, W. Ho, L.J. Richter, J. Villarrubia, Rev. Sci.
Instrum. 59 (1988) 22.

[24] J. Osterwalder et al., J. Electr. Spectr. Rel. Phenom. 48
(1989) 55.

[25] A. Baraldi, V.R. Dhanak, G.C. King, Meas. Sci. Technol. 3
(1992) 778.

[26] PW. Lorraine, B.D. Thoms, W. Ho, Rev. Sci. Instrum. 63
(1992) 1652.

[27] E.P. Benis et al., Nucl. Instrum. Meth. Phys. Res. Sect. B 146
(1998) 120.

[28] E.P. Benis, T.J.M. Zouros, P. Richard, Nucl. Instrum. Meth.
Phys. Res. B 154 (1999) 276.

[29] E.P. Benis, T.J.M. Zouros, H. Aliabadi, P. Richard, Phys.
Scripta T80B (1999) 529.

[30] T.J.M. Zouros, D.H. Lee, in: S.M. Shafroth, J.C. Austin
(Eds.), Accelerator-based atomic physics techniques and
applications, American Institute of Physics Conference
Series, New York, 1997, pp. 426-79.

[31] T.J.M. Zouros, E.P. Benis, J.E. Schauer, in: J.L. Duggan, I.L.
Morgan (Eds.), Application of Accelerators in Research and
Industry, American Institute of Physics, AIP Conference
Proceedings, New York, 2001, Vol. 576, pp. 76—79.

[32] D. Roy, J.-D. Carette, Can. J. Phys. 49 (1971) 2138.

[33] J.E. Draper, G.A. Ulloa, Nucl. Instrum. Meth. 157 (1978)

315.

[34] E.P. Benis, T.J.M. Zouros, J. Electr. Spectr. Rel. Phenom.
(2002).

[35] T.J.M. Zouros, E. Benis, J. Electr. Spectr. Rel. Phenom.
(2002).

[36] V. Ballu, Revue de Physique Appliquee 3 (1968) 46.

[37] E.SV.P. Afanas’ev, S.. Yavor, Sov. Phys. Tech. Phys. 18
(1974) 1072, [Translation of zZh. Tekh. Fiz. 43, 1703-7
(21973)].

[38] H. Polaschegg, Appl. Phys. 4 (1974) 63.

[39] B. Wannberg, A. Skollermo, J. Electr. Spectr. Rel. Phenom.
10 (1977) 45.

[40] D. Dube, D. Roy, Y. Ballu, Rev. Sci. Instrum. 52 (1981)
1497.

[41] M. Minkov, Sov. Phys. Tech. Phys. 5 (1971) 1285.

[42] L.M. Chase, Rev. Sci. Instrum. 44 (1973) 998.

[43] F. Paolini, G. Theodoridis, Rev. Sci. Instrum. 38 (1967) 579.

[44] G. Theodoridis, F. Paolini, Rev. Sci. Instrum. 40 (1969) 621.

[45] V. Afanas’ev, S.Y. Yavor, Sov. Phys. Tech. Phys. 20 (1975)
296, [Translation of Zh. Tekh. Fiz. 45, 471-80 (1975)].

[46] H. Goldstein, Classical Mechanics, Addison-Wesley, Read-
ing, Massachussets, 1965.

[47] D.L. Landau, E.M. Lifschitz, Mechanics, Pergamon Press,
Addison-Wesley Publishing Company, Reading, Massachu-
setts, 1969.

[48] V. Barger, M. Olsson, Classical Mechanics: A Modern
Perspective, 2nd Edition, McGraw—Hill Inc, New York,
1995.

[49] J.E. Prussing, B.A. Conway, Orbital Mechanics, Oxford
University Press, Oxford, 1993.



248

[50] D. Roy, D. Tremblay, Rep. Progr. Phys. 53 (1990) 1621.

[51] V. Schmidt, Electron Spectrometry of Atoms using Synchrot-
ron Radiation, Cambridge, Cambridge, 1997.

[52] H. Wollnik, Nucl. Instrum. Meth. 52 (1967) 250.

[53] C.E. Kuyatt, in: B. Bederson, W.L. Fite (Eds.), Methods of
Experimental Physics, Atomic and Electron Physics—
Atomic Interactions, Vol. 7A, Academic Press, New York,
1968, pp. 1-43.

[54] D. Roy, J. Carette, in: H. Ibach (Ed.), Electron Spectroscopy
For Surface Analysis, Springer—Verlag, Berlin, 1977, pp.
13-58.

[55] V.P. Afanas’ev, S.Y. Yavor, Sov. Phys. Tech. Phys. 20 (1976)
715, [Translation of Zh. Tekh. Fiz. 45, 1137-70 (1975)].

[56] D. Roy, J. Carette, in: H. Ibach (Ed.), Electron Spectroscopy
For Surface Analysis, Springer—\Verlag, Berlin, 1977, pp.
13-58.

[57] Y. Ballu, in: A. Septier (Ed.), Applied Charged Particle
Optics, Vol. Part B, Academic, New York, 1980, pp. 257—
381.

[58] D. Heddle, J. Phys. E: Sci. Instrum. 4 (1971) 589.

[59] P. Kemeny et al., Rev. Sci. Instrum. 44 (1973) 1197.

[60] D. Roy, J.-D. Carette, Appl. Phys. Lett. 16 (1970) 413.

[61] H. Wollnik, in: A. Septier (Ed.), Focusing of Charged
Particles, Vol. 1l, Academic Press, New York, 1967, pp.
163-201.

[62] A. Poulin, D. Roy, J. Phys. E: Sci. Instrum. 11 (1978) 35.

[63] H. Polaschegg, Appl. Phys. 9 (1976) 223.

T.J.M. Zouros, E.P. Benis / Journal of Electron Spectroscopy and Related Phenomena 125 (2002) 221-248

[64] R.E. Imhof, A. Adams, G. King, J. Phys. E: Sci. Instrum. 9
(1976) 138.

[65] L. Boesten, J. Phys. E: Sci. Instrum. 18 (1985) 232.

[66] A. Mann, F. Linder, J. Phys. E: Sci. Instrum. 21 (1988) 805.

[67] A. Baraldi, V.R. Dhanak, J. Electr. Spectr. Rel. Phenom. 67
(1994) 211.

[68] S.C. Page, F.H. Read, Nucl. Instrum. Meth. Phys. Res. Sect.
A 363 (1995) 249.

[69] K. Siegbahn et al., ESCA—Atomic, Molecular and Solid
State Structure Studied by Means of Electron Spectroscopy,
Vol. 20, Almgvist and Wiksell, Uppsala, 1967.

[70] V.D. Belov, M.I. Yavor, Rev. Sci. Instrum. 71 (2000) 1651.

[71] F. Mariani, Rev. Sci. Instrum. 41 (1970) 807.

[72] H. Ewald, H. Liebl, Z. Naturforsch. 10a (1955) 872.

[73] R. Albrecht, Z. Naturforsch. 11a (1956) 156.

[74] V. Barger, M. Olsson, Classical Mechanics: A Modern
Perspective, 1st Edition, McGraw—Hill, New York, 1973.

[75] E.A. Solov’ev, Sov. Phys. JETP 55 (1982) 1017.

[76] J.H. Moore, C.C. Davis, M.A. Coplan, Building Scientific
Apparatus, Addison-Wesley, London, 1983.

[77] B. Sulik, N. Stolterfoht, in: S.M. Shafroth, J.C. Austin,
Accelerator-Based Atomic Physics Techniques and Applica-
tions, American Institute of Physics Conference Series, New
York, 1997, pp. 377-425.

[78] D.H. Lee et al., Nucl. Instrum. Meth. Phys. Res. B 40/41
(1989) 1229.



	The hemispherical deflector analyser revisited. I. Motion in the ideal 1/r potential, genera
	Introduction
	Definitions and basic considerations
	Motion in an ideal 1/r potential
	Earlier work on HDAs
	General trajectory equations
	Initial conditions
	Description in  omega 0=0 coordinate system
	Description in  omega ?=0 coordinate system

	Boundary conditions
	Energy conservation across potential boundary
	Particle refraction across potential boundary
	Trajectory equations including refraction
	Spectrograph basic equation
	Analyser voltages

	Summary and conclusions
	Acknowledgements
	Energy conservation across potential boundary
	Particle refraction across potential boundary
	Appendix
	Reference table of symbols
	Boundary conditions
	Relation between ( theta,  phi ) and  omega  in the  omega 0=0 coordinate system

	References


