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Abstract

We re-examine the orbits of non-relativistic charged particles in a hemispherical deflector analyser (HDA) assuming an
ideal 1/r potential. The particles start their trajectory within the HDA at the arbitrary entry radiusr , within a circular entry0

aperture centered atR at an arbitrary potentialV 5V(R ). We present a vector treatment of the trajectories deriving many0 0 0

useful relations expressed as a function of the launching anglea. Refraction at the potential boundary at the entry of the
HDA (modelled by an idealized step potential) is also considered and found to be important whenV ±V , whereV is the0 p p

plate voltage used for preretardation. We derive the analyser’s generalized basic equation for deflection through 1808 for
which the principal reference ray is anellipse rather than a circle as in the conventional HDA treatment. Both the

¯ ¯ ¯conventional HDA, for whichR 5R andV 5V , as well as theparacentric HDA for which R ±R andV ±V , whereR is0 0 p 0 0 p

the mean radius, are thus described as special cases of the same trajectory equation. Our results are expected to be of interest
to all fields of electron spectroscopy, but particularly to those utilizing modern spherical sector analysers with sizeable
interradial separation for accommodating large area position-sensitive detectors. This investigation is part of a concerted
effort to investigate the refocusing properties of the paracentric HDA recently reported by Benis and Zouros [Nucl. Instr. &
Meth. A 440 (2000) 462].
   2002 Elsevier Science B.V. All rights reserved.
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1 . Introduction hemispherical deflector analyser (HDA) [2–6] with a
¯large interradial separation (DR /R |50%) depend

In a recent article [1] we demonstrated by ray critically on the placement of the analyser entrance
tracing analysis that the focusing properties of a position (entry aperture centered atR ) and the value0

of the HDA potentialV at R . It is well known0 0

[7–11] that for HDAs with such large interradial
*Corresponding author. Tel.:130-81-394-117; fax:130-810- separations, fringing field effects shift the first order
394-101.

focus of anideal HDA, found at a deflection angle ofE-mail address: tzouros@physics.uoc.gr(T.J.M. Zouros).
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Fig. 1. SIMION simulation of HDA with parameters given by Table 1. Electrons within an emittance cone angle of 68 are flown through a
lens and focused into an HDA with a principal ray pass energy ofw 51000 eV. The voltages on the HDA are thesame in both cases and set

¯according to Eq. (109) usingR 5R 5R 5102 mm andV ;V(R )5 0 V. [Left] central entry withR 5 102 mm. The focus point is seen0 p 0 0 0

to have moved inside the spectrometer resulting in a wide traceDr in the 1808 detection plane. [Right] Entry and lens were moved to
R 5 82 mm in the vicinity of which SIMION showsV(82 mm) to be approximately 500 V. The first order focus is seen to be restored back0

to the 1808 detection plane reducing the width of the traceDr. Equipotential lines show the strong fringing fields at both entry and exit. The
entry radius at which the focus is restored is shown in Ref. [1] to be a function ofV , the nominal potential at entry.0

[12] simulation of Fig. 1 (left). This shift results in a position sensitive detector (PSD). This HDA has an
badly focused image at the 1808 detection plane entry aperture centered atR 582.55 mm with0

adversely affecting the energy resolution of the HDA diameterd 56 mm and is operated withV 5 0.5w,i 0

(see Fig. 1 left). It was shown in Ref. [1] that for wherew is the nominal tuning energy. A FWHM
¯particular combinations ofR ( ,R ) and V the resolution of| 0.11% has been attained using pre-0 0

focuscan be shifted back to the 1808 detection plane, retardation by a factorF 58 without the use of any
practically restoring the 1808 first order focusing fringing field correction electrodes. The spectrograph
properties of the HDA (see Fig. 1 right)without the is used to study the excitation mechanisms of highly
use of any additional fringing field correction scheme

Table 1
[11,13–26]. Paracentric HDA parameters

This rather remarkable property of thenon-ideal
R 72.4 mm inner radius1paracentric HDA, seemingly unnoticed in almost 60
R 82.55 mm principal ray entry radius0years of intense HDA development, should be of R 130.8 mm outer radius2
¯particular interest to all fields utilizing modern high R 101.6 mm mean radius

¯R R principal ray exit radiusresolution HDAs, having sizeable interradial sepa- p

d 40 mm active PSD diameterPSDrations for accommodating large area position sensi-
d 6 mm diameter of entry apertureitive detectors for high detection efficiency. Particu-

centered onR0larly so, if cumbersome fringing field electrodes can V 0.5w nominal voltage atV(R )0 0

be shown not to be necessary. g 1.5 see Eq. (3)
We are presently using such a paracentric HDA Rp

]j 1.2308 5[27–29] with parameters as given in Table 1 oper- R0

ated with a four-element zoom lens and a 2-D
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charged ions in atomic collisions with gas targets optimum lens magnification, energy calibration,
using the technique of Zero-degree Auger electron energy acceptance window and time-of-flight. We
Projectile Spectroscopy (ZAPS) [30]. then compare these results to SIMION simulations

To use our paracentric HDA, we had to derive the and experimental measurements taken with our
spectrometer basic equation from first principles for paracentric HDA, thus also including possible effects
the ideal HDA [31] since no such treatment was due to the strong fringing fields at the entrance and
found in the literature. To further understand thereal exit.
HDA, the effects of the strong fringing fields were Finally, in paper III [35], we compare particle
investigated by simulation using the ion-optics soft- trajectories to simulations obtained with SIMION for
ware package SIMION [12]. The refocusing of the motion including the effect of the fringing fields for
particle trajectories back onto the 1808 image plane both conventional and paracentric cases. Basic tra-
has already been briefly described [1]. Here, we give jectory parameters (position, velocity, electric fields,
a more detailed presentation in a series of three kinetic and potential energy, etc.) that change along
papers, providing further insight into this refocusing the trajectory are compared for motion in the ideal
effect, while at the same time giving a brief up-to- 1/r and in the strong fringing fields of the SIMION
date review of the field. simulated HDA. A much better insight is obtained on

In this paper (paper I) we present details about the importance of the fringing fields and their
Kepler orbits (i.e. closed trajectories in anideal 1/r focusing properties.
potential). We first derive the trajectory equations In our presentation (papers I–III), the convention-
r(v) (v is the deflection angle in the orbital plane) al HDA is just a special case of the more general

¯for arbitrary entryR andV including the effect of paracentric HDA directly obtained forR 5R and0 0 0

charged particle refraction at the HDA entry po- V 5V . In each paper we present a brief history of0 p

tential boundary, usually ignored in conventional relevant results and investigations to date.
HDA treatments, but here shown to be a non-negli-
gible effect. Such a generalized treatment requires
the use of anelliptical principal reference ray rather
than the circular one traditionally used in most 2 . Definitions and basic considerations
conventional applications [2,4–6,32,33]. This does
not alter the known double focusing properties of the The schematic of the HDA model under study is
ideal HDA, but shows that the refocusing effects in a shown in Fig. 2. The spherical polar coordinate
real paracentric analyser is clearly due to the fringing system (r, u, f) centered at O is adopted to take
fields at the entry and exit of the HDA. We then advantage of the rotational symmetry of the HDA
obtain the basic equation of the ideal spectrograph aroundu 5 0 (Z-axis). The analyser consists of two
which relates the exit positionr in the first order concentric hemispherical plates of inner and outerp

focusing plane to the entrance positionr as a radii R and R , respectively. The center of the0 1 2

function of entry energy and angle. From this hemispheres is set as the origin of the coordinate
equation we also derive the electrode voltages neces- system. The paracentric entry is located at distance
sary for its operation. We develop many useful R , while a PSD is placed at the HDA exit centered0

¯formulas and discuss some interesting properties of at distanceR ;R 5 (R 1R ) /2. The use of such ap 1 2

Kepler orbits related to the ideal HDA’s first order PSD allows for the detection of a whole energy
focusing properties. In the appendices much of the range of particles simultaneously, reducing substan-
details of the various derivations are given. In tially the acquisition time of the spectrum. A cylin-
Appendix A a convenient list of symbol definitions is drical lens system is mounted with its optical axis
given. centered at the paracentric entry for focusing and

In a follow-up paper (paper II) [34], we use the deceleration purposes. A particle of chargeq, massm
basic spectrometer equation derived in I to investi- and initial kinetic energyT is ejected at zero
gate the operation and optical properties of theideal potential far from the spectrograph. Prior to entering
HDA. These include dispersion, energy resolution, the analyser it passes through the deceleration/ focus-
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˜where V(r)5 2 k /r 1 c. The symbolsV ;V(R ),1 1
˜ ˜V ;V(R ) and the correspondingV , V are reserved2 2 1 2

for the inner and outer hemispheres, respectively.
˜Also the symbolV ;V(R ) and the correspondingV0 0 0

is reserved for the value of the potential at the center
of the entry aperture atR . We note that our voltage0

definitions give theactual voltages applied to the
electrodes as supplied by the high voltage power
supplies which are referenced to ground.

The particle enters the HDA crossing theu 5p /2
boundary plane at a pointr (within the entrance0

aperture centered atR ) with kinetic energyt, polar0

anglea and azimuthal angleb. The angular momen-
tum L is conserved as is well-known for motion in a
central potential and thus the trajectory will lie in a
plane perpendicular toL. Thus, b just rotates the
motional plane around the axis defined by the

Fig. 2. Schematic of HDA geometry. The charged particle initial- entrance pointr and the center of the analyser (see0
ly enters the lens assembly with kinetic energyT and is then Fig. 3). The particle then follows a trajectory
focused and decelerated by the lens and plate at potentialV downp specified byr(v), wherev is the deflection angle
to an energyt just prior to entering the interior region (region II

within the orbital plane, and exits atr after beingpsee text) of the analyser (shaded area) with anglea*. The
deflected throughDv 5p.deflection angle in the plane of the orbit isv. Upon crossing the

sharp (step-potential model) potential boundary atu 5p /2(v 5 0) In a conventional HDA,V 5V and thus the0 p
at r and potentialV(r ), it is refracted to an anglea, follows the0 0 particle entering atr will not feel any substantial0
trajectory specified byr(v)and exits atr after being deflectedp change of kinetic energy in going fromV to V(r ),p 0through an anglep. The center of the entrance aperture is

since the variation betweenV(r ) andV(R ), will in¯ 0 0paracentric atR ,R. Fixing the principal trajectory (a* 50) to0

general be small within the limited diameter of thean ellipse such that for t 5w and r 5R the exit occurs at0 0

r 5Rp, fixes the analyser voltages. spectrometer’s aperture. Furthermore, in a conven-p

tional HDA, theprincipal ray (particle entering with
¯kinetic energy t 5w, a 50 and r 5 r 5R ) will0 p

ing stage which can change its kinetic energy tot describe a circular trajectory and go through the
such that: HDA with the constant pass energyw. Similarly, in a

paracentric HDA with, however,V 5V , the princi-0 pt 5 T 2 qV (1)p pal ray (t 5w, a 5 0 andr 5R , r 5R ) will also0 0 p p

not feel any large change in its kinetic energy atby applying a potentialV on the last electrode of thep
entry. However, sinceR ±R (e.g. it is required todeceleration stage. Electrons (q 5 2 e) are typically 0 p

exit at a different radius) it will necessarily follow andecelerated to improve their energy resolution [36–
elliptical trajectory and its pass energy will therefore40] by applying a negativeV . When deceleration isp
not be constant.not required,V is set to zero (V 50).p p

However, whenV is substantially different fromThe potential V(r, u, f) is expected to have 0

V , then in both cases above, the particle is refractedazimuthal symmetry with the generic form given by p

and its kinetic energy at entry changes. If we defineV(r, u )5o f (r, R , R )P (cos u ) [41,42] withl l 1 2 l
the parameterg so that:V(R )5V and V(R )5V specifying the boundary1 1 2 2

conditions. In our theoretical analysis to follow
˜q(V 2V )5 qV ; (12g )w (3)(paper I) it is assumed thatinside the HDA we have 0 p 0

an ideal 1/r potential, given by:
then any principal ray will be accelerated when

˜˜V(r,u )5V(r )5V(r)1V (2) q(V 2V ), 0 (g .1) to a new energyw95gw.p 0 p
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only electrons within a certain energy acceptance
window aroundw will be analysed. For analysing
systems with deceleration, as in the present case, one
may also define an ‘undecelerated tuning energy’W
(using Eq. (1)):

W;w 1 qV (4)p

and the deceleration ratioF :

W
]F ; (5)w

so that a principal ray with kinetic energyW far from
the spectrometer (at ‘infinity’) undergoing decelera-
tion with factor F will have the energyw just prior
to entering the HDA. The ‘reduced’ pass energyt is
also defined as:

t T
] ]S Dt ; 5F 21 11 (6)

Fig. 3. A 3-D orbit in an HDA obtained with the use of Eq. (60). w W
Charged particle enters at P (X 5 2 78.6, Y 5 10, Z 5 0) and0 0 0

expressed also in terms of the undecelerated quan-exits at M (X 5 86.6, Y 5 211.0, Z 5 0) with a* 5 2p p p

308(a 5 2 23.848), b 5 2 508, g 5 1.5, t 51160 eV andw 5 tities, T, W and deceleration factorF. Finally, we
1000 eV (t 51.16). Definitions of anglesa, b andF are clearly0 shall also introduce the parameterj, characterizing
shown. Note in this figurea, b and F are actually negative0 the ‘asymmetry’ of the HDA:
following traditional sign convention [43,44]. The laboratory
coordinate systemXYZ is centered on the analyser center at O, Rpwhile the relative coordinate systemx9y9z9 is centered at particle ]j ; (7)Rentry point P with bothXY and x9y9 planes identical corre- 0

sponding toZ 5 z95 0. Thex9y9 axes are rotated byF 5 2 7.2680
A conventional HDA is seen to havej 51 andwith respect to the fixedXY axes. Angleb is measured off the
g 5 1.z9-axis in thex950 plane which is perpendicular to the nodal line

POM (intersection of orbit plane andZ 5 0 plane) which also lies Given that particles are usually decelerated to
along the entry position vectorr (OP). Anglea is measured off0 improve their detected energy resolution [36–40], it
the intersection of the orbit plane with thex950 plane in the

seems particularly surprising that a device whichdirection of v . Thus, the planex95 0 and the orbit plane are0
would re-accelerate particles once inside the disper-mutually perpendicular. Exit pointM also lies in theZ 5 0 plane
sive medium could be of any practical interest. Inand corresponds to a deflection byp in the plane of the orbit. Also

shown are the entry velocityv and the conserved eccentricity principle, such a re-acceleration can only be ex-0

vector e and angular momentum vectorL. The length ofe has pected to degrade the analyser resolution, annulling
been renormalized tor for better viewing. The radius of themin the beneficial effects of the prior deceleration. How-inner hemisphere is shown for clarity much smaller than its actual

ever, on the positive side, dispersion at a higher passsize. The outer radius is shown to scale. For the calculation we
energy will increase the energy acceptance windowhave used the parameters of Table 1.

of the HDA thus providing increased throughput and
will also desensitize, to some extent, the energy

We shall preserve the use of the term, ‘pass analysis from the deleterious effects of spurious
energy’ w, to describe the kinetic energy of the magnetic and electric fields usually of great concern
particle just prior to entry, even though as shown it is when working at low electron pass energies. It will
not anymore constant through out its motion within also lead to smaller time-of-flights with compressed
the HDA in the more general case of a paracentric time distributions also an advantage in coincidence
HDA. This, nominal pass-energy w will also be work. That such a paracentric HDA can in fact also
referred to as the analysertuning energy [45], since improve the energy resolution, as we recently dem-
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onstrated in an ion-optics simulation [1], is certainly monochromator based on an HDA. The choice of the
unexpected. slit width and electron energy at a given energy

resolution for maximum current were investigated in
their paper. Their choice of equal size entrance and

3 . Motion in an ideal 1 /r potential exit round entrance apertures instead of slits, with
2 ¯dimensions satisfying the restrictiona # d /(4R )i

3 .1. Earlier work on HDAs (wherea is the pencil angle,w the aperture diameter
¯andR the analyser mean radius) became the standard

The study of the trajectories of particles in a 1/r criteria for HDA design. Paolini and Theodoridis
potential is a well known field in classical mechanics [43] and Kemeny et al. [59] developed some of the
treated as a special section in all standard classical early theory and reported on the transmission prop-
mechanics textbooks under motion in a central field erties of spherical plate electrostatic analysers. Wol-
(see for example Refs. [46–48]). However, since the lnik [22,52] investigated the trajectories of charged
emphasis in classical mechanics is primarily on particles in electrostatic toroidal condensers includ-
planetary motion, special aspects having to do with ing the effect of refraction and fringing field correc-
the focusing of charged particles and its dependence tions on their motion. Roy and Carette [32,60]
on the launching anglesa and b are not usually included the hemispherical spectrometer in their
treated. The advent of modern satellites with their method of calculating the energy distribution of
deployment for commercial and military purposes in electrons selected electrostatically. They presented
outer space has brought new interest to the field with some of the first detailed work on the trajectory
a change of emphasis in new text books (see for equations which are obtained as a special case of the
example Ref. [49]). We shall adapt the treatment of more general motion in a toroidal spectrometer
Ref. [49] for the development of HDA trajectory treated by Wollnik [14,52,61]. Refraction at the
investigations. potential boundary, however, is ignored. It is in-

Many good reviews have been published in the cluded later though in the study of the optimization
past on electrostatic spectrometers in general, includ- of the HDA by Poulin and Roy [62]. Heddle [58]

´ing to some extent trajectory theory, the most recent reported on the comparison of theetendue of elec-
to our knowledge by Roy and Tremblay [50]. There tron spectrometers including HDA’s. Chase [42]
are also many excellent books on charged particle investigated the effects of the fringing fields on the
optics in general (see for example Ref. [22]) as well HDA response function in an HDA with large
as more specific books on electron spectroscopy that interradial separation in a numerical perturbation
cover much useful material (see for example Ref. calculation. Polaschegg [38] reported on the features
[51]). Some older but very useful reviews on HDAs of the spherical analysers with and without pre-
and dispersive devices in general include Refs. retardation. He also reported on the study of the
[32,52–57]. energy resolution and the intensity behavior of

Purcell [2] was the first to study the trajectories of spherical analysers as a function of the entrance
¨charged particles traversing a portion of an ideal 1/r parameters [63]. Skollermo and Wannberg [17] gave

potential, to demonstrate its special focusing prop- a detailed description of the influence of fringing
erties and to actually construct a spherical condenser fields on the focusing properties of HDAs. They first
for use in electron spectroscopy. Ever since, the numerically calculated the electrostatic potential of
hemispherical version of the spherical condenser has an HDA by solving Laplace’s equation and then
become extremely popular—primarily due to its investigated the effects of the calculated fringing
double focusing properties, its large luminosity [58] fields on the electron trajectories and the focussing
and rugged construction—in electron spectroscopy, effects of the HDA. Imhof et al. [64] studied the
and many HDAs have been studied and utilized in energy resolution and transit time spread in hemis-
experiments covering many fields of applications pherical analysers involved in coincidence experi-
including most of atomic and molecular physics, ments. Draper and Ulloa [33] provided some useful
condensed matter physics and surface science. insight into the properties of Kepler orbits and their

Kuyatt and Simpson [4] developed an electron dependence on the launching conditions. Some of
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their results are also used in our presentation. They structed with the center of entry and exit apertures
do also treat the potential discontinuity at entry and placed at the mean radius of the analyser opening

¯discuss to some extent the effect of fringing fields (i.e.R 5R 5 (R 1R ) /2) at a potentialV 5V0 1 2 0 p

and the Herzog correction scheme [13]. Kevan [5] (see Fig. 2). In this conventional HDA arrangement
reported on design criteria for a high-resolution the principal ray is acircle. Recently, however, some
angle-resolving HDA. Hadjarab and Erskine [6] analysers whose exit, due to space limitations, could

¯reported on the imaging properties of an HDA used not be placed atR have been reported in the
with a position sensitive detector (PSD), replacing in literature [70].
this way the commonly used exit slit with a large In this work (paper I), the more general case of an
area detector. Trajectory equations for conventional HDA with entry at an arbitrary radiusR and0

HDAs are also obtained from first principles and potentialV is studied in detail.R and V are0 0 0

refraction at the potential boundary is also treated. considered as free parameters of the trajectory
Boesten [65] investigated the shape and extent of motion which can be varied to investigate the general
space-charge in an analytical treatment of the trajec- focusing and dispersive properties of the HDA. The
tory parameters in an 1808 spherical monochromator. generalized trajectory equations are compared to
Nishigaki and Kanai [7] studied the effects of the well-known results from the literature, which arise as
fringing fields on the trajectories in a numerical special solutions to our more general results. Thus,

¯calculation and showed that the focusing of a real both the conventional HDA (R 5R, V 5V ) and the0 0 p
¯HDA is shifted to deflection angles within the HDA paracentric HDA (R ±R, V ±V ) are described0 0 p

(Dv ,1808). They also showed how this could be within the same analysis.
improved by optimizing the Herzog correction. A In our theoretical study, the electrostatic field is
double-stage spectrograph consisting of two HDAs is considered ideal, i.e. fringing field effects, primarily
reported by Mann and Linder [66], and Baraldi and present at the HDA entry and exit, are not taken into
Dhanak [67] giving trajectory equations which in- account. However, for HDAs used with large PSDs,
clude the effect of refraction. Page and Read [68] fringing field effects become important, resulting in
investigated the energy non-linearity of an HDA departures from the spectrograph properties predicted
when used with a large area multi-detector anode or for ideal fields theoretically. In the literature, differ-
PSD and showed that the fringing fields at the exit, ent schemes for treating the fringing field effects
when left uncorrected, lead to improved energy have been reported [6,7,11,13,19,25,41,42,68,71]. We
linearity if the detection plane is shifted slightly out shall be particularly concerned with the effects of the
of the HDA. Thus, it is shown that fringing fields fringing fields in papers II and III.
may even have beneficial effects under certain
conditions. Finally, in Benis and Zouros [1], a way 3 .2. General trajectory equations
to use the fringing fields to improve HDA resolution
is empirically found using SIMION simulation. The trajectory of a charged particle in an 1/r

In the past 30 years since the early days of ESCA potential has been presented in the literature (see for
[69], increased interest has focused on HDAs used example Refs. [2,6,32,43] for spherical sectors and
with large position sensitive detectors (PSD) in such Refs. [14,52,72,73] for toroidal sectors). Here we
diverse fields as surface analysis, e22e measure- present a comprehensive treatment using vector
ments, photoelectron spectroscopy and various mea-formalism [49] and we also explicitly include refrac-
surements involving synchrotron radiation. These tion effects usually not included (for exceptions see
spectrometers have also become of great commercialRefs. [2,6,14,25,64,66]).
interest as there are numerous high-tech companies The classical, non-relativistic equations of motion
increasingly selling expensive state-of-the-art devices for a particle of massm and chargeq in the potential
with FWHM energy resolutions of 2 meV or less and Ṽ(r, u ) are given by:
capable of data acquisition rates around 1 MHz and
more. ˜¨mr 1 q=V(r,u )50 (8)

All studies to date, have basically treated the
specific case of a hemispherical spectrometer con- Assuming an ideal 1/r potential for the regioninside
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2˜ ˜ ~the HDA of the formV(r, u )5V(r)5 2 k /r 1 c we obtaining the equalitymr ? (r 3L)5 L , eliminates
~get: the dependence onr yielding the scalar equation of

motion for r:qk r p
]] ]r̈ 1 50 for 0#u , (9)3 pm 2r ]]]r ; r(v)5 r 5 (16)v ˆ11 r ? e

It is seen from Eq. (9) that the constantc does not
penter the equations of motioninside the HDA. As

]]]]]5 (17)
will be shown in the next section it is only used to 11e cos(v 2v )e
match the boundary conditions atu 5p /2. The

withpotential constantsk andc will be fixed later through
the definition of the principal reference trajectory. 2L
We retain the charge of the particleq (for electrons ]]p ; (18)mqkq 5 2 e) for generality.

The angular momentum inside the HDA,L; r3 Eq. (17) is seen to be the well-known equation of a
~mv 5 r3 r is conserved for any central potential conic section in polar coordinates with the origin of

V(r) and therefore motion is confined to a plane. the coordinate frame at the focus of the conic section
To solve Eq. (9) we take the cross product withL: and latus rectum p [46–48]. For 0,e , 1, the orbit

is an ellipse with eccentricitye 5 ue u. For e 5 0 theqk qk
]] ]¨ ~r 3L5 2 r3L5 2 r3 (r3 r ) (10) orbit is a circle with radiusp, while for e 5 1 the3 3mr r

orbit is a parabola. Whene . 1, the orbit is a
qk hyperbola [46,48]. The anglev 2v is just the angle2 e] ~ ~5 [rr 2 r(r ? r )] (11)3 between the two vectorsr ande. Whenv 5v , it isr e

seen thatr is a minimum and thuse has the useful~ ~r rr
] ] property that italways points to periapse. In the case5 qk 2 (12)F G2r r of an ellipse, the general form given by Eq. (17) is

where we have used the vector identitiesA3 (B 3 shown in Fig. 4 (left) for an arbitrary coordinate
1
] ~C);B(A ?C)2C(A ?B) and d/dt(r ? r); r ? r 5 systemxy.2

~rr. Taking the dot product ofe with itself in Eq. (15)
Noting that we obtain the well known relation:

]]]~ ~d r rr 2 rr 22EL] ] ]]S D5 (13)2dt r ]]e 5 11 (19)r 2 2mq kœ
we can write Eq. (12) as

with
d r
] ]~Sr 3L2 qk D50 (14) 1 qkdt r 2] ]E 5 mv 2 (20)2 rwhich upon integration gives us a newvector
constant of the motione [49,74]: ~wherev 5 ur u is the speed of the particle. Since both

L and e are conserved, Eq. (19) shows thatE must~r 3L r
]] ]e ; 2 5 constant (15) also be conserved, making it theeffective totalqk r

energy within the analyser. WhenE is negative,e is
It is seen thate is proportional to the Runge–Lenz seen to be smaller than 1 and the quantity 11e
vector A5 qke [47] known to be conserved for cos(v 2v ) in Eq. (17) can never be zero leading ine
motion in a 1/r potential. Clearly,e lies in the general to bound elliptical orbits.
orbital plane since from Eq. (15) it is seen to be We also introduce the velocity angle in the orbital
perpendicular to the angular momentumL. plane,a , (see also Figs. 4 and 7) so that:v

Taking the dot product ofmr with Eq. (15) and
v ? r5 vr sina (21)using the vector identityA ? (B3C);C ? (A3B) v
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Fig. 4. Elliptical orbits in different coordinate systems. The eccentricity vectore always points tor or periapse. For improved viewing itmin

is shown here with lengthr . Also shown is the latus rectump and the position and velocity vectors atentry r , v and anglea. Fora . 0,min 0 0

r always increases (particle moves away from periapse), while fora , 0, r always decreases (particle moves towards periapse).xy
coordinate systems: (left) arbitrary, (center) withv 5 0 and (right) withv 5 0.0 e

ˆˆThen, in the orbital plane wherev5 v r 1 v v we In deriving the expression forv (Eq. (26)) wer v r

have: have used the relation:

≠r e 2v ; v cosa (22) ] ]v v 5 sin(v 2v )r (28)e≠v p

L readily obtained from the identity]~; rv5 (23)mr
≠ 1 ≠ 1 ≠r 1 ≠r
] ] ] ] ] ]]S D S D; 5 2 2and ≠v r ≠r r ≠v ≠vr

ev ; v sina (24) ]5 2 sin(v 2v ) (29)r v ep

v ≠rv and direct differentiation of the equation of motion]]~; r 5 (25)r ≠v Eq. (17).
Finally, a very useful property of the orbit [33]qke

] can be obtained making use of Eqs. (22), (24) and5 sin(v 2v ) (26)eL
(25):

with ua u,p /2. We retain the traditional [43,44] v 1 ≠rv r
] ]]tana 5 5 (30)vsymbol a for the anglea at entry v 5v (i.e.0 0 v r ≠vv

a ;a —see Fig. 4). Eqs. (22) and (24) conform to0
ethe usual sign convention fora [32,44]. We note that ]5 sin(v 2v )r (31)epin realistic HDA usagea is rarely larger than 108

and usually smaller than 18. This information is particularly useful for visualizing
The speedv is obtained directly from Eq. (20): the orbit. At entry where fora , 0 (or v 2v , 0),0 e

]]]] Eqs. (30) and (31) show that≠r /≠v , 0 and there-
qk

fore the particle is moving towards decreasingr (i.e.]S D2 E 1 r
]]]] towards the periapse to whiche is pointing to), whilev 5 uvu5 (27)œ m
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for a . 0 (or v 2v . 0) the particle is moving explicitly showing that its direction depends on the0 e

away from periapse [33]. We may also obtain the sign ofa, while its magnitude (Eq. (40)) does not.
relation between the launching angle at entrya and Finally, to completely specify the elliptical trajec-
the exit anglea after deflection by 1808: tory we also need to determine the angular quantityp

v 2v appearing in Eq. (17). This is the angle with0 erp
]tana 5 2 tana (32) respect to periapse at which the particle starts itsp r0 trajectory as seen in Fig. 4. This can be directly

obtained from the initial conditions using Eqs. (31)3 .3. Initial conditions
and (17):

pTo further define the trajectory we need to specify
]sin(v 2v )5 tana (43)0 e erthe conserved energyE, angular momentumL and 0

direction ofe (v ). This can be done using the initiale r0
]values of positionr and velocityv of the analysed 2 12 sina cosaS D0 0 2a

]]]]]]]]5 (44)particle specified at the entrance of the spectrometer ]]]]]]]2r02 2in the plane of the orbit (see Fig. 4): ]sin a 1 12 cos aS Dœ a
r 5 r(r ,v ) (33) p0 0 0

]2 1r0
]]cos(v 2v )50 ev 5 v(v , a ); v(v , a) (34) e0 0 0 0

r0 2]2 12 cos a 21S DL5mr 3 v (35) 2a0 0 ]]]]]]]]5 (45)]]]]]]]2r02 2]sin a 1 12 cos aS Dœ aL 5 uLu5mr v cosa (36)0 0

tana1 qk ]]tan(v 2v )5 (46)2 0 e r] ]E 5 mv 2 (37) 002 r ]120 p
~r 3L r r0 0 0]] ]e 5 2 (38) ]2 12 sina cosaS Dqk r 2a0

]]]]]]]5 (47)r0 2]2 12 cos a 2 1S DThe eccentricitye and latus rectump can be 2a
written directly in terms of initial condition quan-

A useful constant ise /p which can be easilytities as:
shown from Eq. (43) to be:

r0 2]p 5 2r 12 cos a (39)S D0 e tana2a
] ]]]]]5 (48)p r sin(v 2v )0 0 e]]]]]]]2r02 2]e 5 sin a 1 12 cos a (40)S D Using Eqs. (39), (45) and (48), the ellipse of Eq.œ a
(17) may finally be written as:

where we have introduced thea-independent quanti-
r a tana0ty a:
] ]]]]] ]]]]5 1 cos(v 2v )2 er sin(v 2v )(2a 2 r ) cos av 0 e0qk

]a ; 2 (41) (49)2E

thus expressing the orbit in terms of the initial valueknown to be thesemi-major axis in the case of
quantitiesr , v (via a), and anglesa, v 2v . Weelliptical motion. 0 0 0 e

note that bothv andv are functions of the entryThe eccentricity vectore can also be written as: 0 e

anglea. However, since only the differencev 2v0 er r0 0ˆ ] ] is required we may chosev 50 or v 5 0 at oure 5 r 12 2 2v̂ 12 sina (42)S D S D 0 e0 0a 2a
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convenience by choosing an appropriate coordinate Purcel [2] and discussed in more detail by Rudd
systemxy as shown in Fig. 4. [54], Hadjarab and Erskine [6] and Louette et al. [9].

To fully determine the orbits we still need to Forv 5p, Eq. (50) is seen to be independent of the
specify the potential constantsqk and qc. This is sign ofa as required for first order focusing [2]. This
usually done by setting the voltages on the HDA in is demonstrated graphically in Fig. 5.
such a way that the principal ray (a 5 0, r 5R ) We also computea using its definition Eq. (31)0 0 v

with energy t 5w will exit at a convenient radius and Eqs. (39), (40), (44), (45) and (50):
¯R , usually chosen to be the mean radiusR, i.e.p a 5v¯r 5R 5R. We do this only after choosing ap p r0

]sin(2a 1v)2 cosa sin(a 1v)particular coordinate framexy to work in as consi- a
]]]]]]]]]]]arctanderable simplifications take place. r03 4]11 cos(2a 1v)2 cosa cos(a 1v)a

3 .4. Description in v 5 0 coordinate system0 (54)
We note thata is an odd function ofa atv 5 0 andvIf we set in Eq. (49),v 50, i.e. orient ourxy0 v 5p. For acircular principal raya 5 r 5R and0 0coordinate system so that ther lies along the0 soa 5 0 for all values ofv. A typical plot ofa isv vpositive x-axis (see Fig. 4 (center)), we obtain: given in Fig. 6 for t 5 1 and a 5 0, 628 for the

¯paracentric case ofR 5 82.55,R 5R, g 5 1.5 (a 50 pr a(12 cosv)0 ¯] ]]]]]5 1 cosv 2 tana sinv (50) 92.075) and for central entry withR 5R 5R 52 0 pr (2a 2 r ) cos av 0 101.6,g 5 1 (a 5101.6).
The time-of-flight Dt for deflection throughwhere we have also used Eq. (47) withv 50. p0

Dv 5p, can be readily computed in analytic formThe vector r can be obtained by the following
using:ansatz:

]]]]]32ar (L3 r ) 60 0 p ]mr 212] ]]] S Dr5 x(v) 1 y(v) (51) 0mr rr Lr v 0 30 0 ]] ]]]]]Dt 5E dv 5 cos ap 3L qkaœ
0with

p

x(v)5 r cosv (52) dvv
]]]]]]]]]]]]]3E 2r0

]12 cosa cos(a 1v)1 cos(2a 1v)F G0y(v)5 r sinv (53) av

(55)~The velocity vectorv 5 r can be obtained by direct
However, its expression is cumbersome in thisdifferentiation of Eq. (51).
coordinate system. A simpler expression is given inIt is instructive to study the polar plot ofr shownv the next section in thev 5 0 coordinate frame. Aein Fig. 5 for different values of6a and the same
more useful expansion in powers ofa is given (validinitial kinetic energy. It is seen that fora .0 (a ,
to better than 0.01% for the parameters of interest0) the orbit is longer (shorter) asr has to increasev here), which also shows that only odd powers(decrease) due to condition Eq. (30) evaluated at
survive:entry. Thus, the two orbits corresponding to positive

]] ]]]3and negative values ofa have to lie on identical ma 2a
]] ]Dt 5 p1 21 4a 1ellipses (same semi major axisa and semi minor axis S DHp Fqk rœ œ 0b), but with different orientations in thexy coordi-

8a 1 1 144anate system. The dependence of the anglev of the 3e ] ] ]] ]]2 2 2 1 a 1 1S D 2S3r 30 2a 2 reccentricity vectore on the entry anglea is also r0 0 0

shown in Fig. 5 (lower right) obtained from con-
32 5 7ditions of Eqs. (44) and (45) evaluated forv 5 0. ]2 a 1O[a ] (56)0 JD Gr0Eq. (50) is the well-known form introduced by
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Fig. 5. Motion in thev 5 0 frame for various values of6a. From left to right:a 5630,610,65, 62 and 08. The kinetic energy in all0

cases was the same and equal to the tuning energy, i.e.t 5w 51000 eV. Here we use the HDA parameters of Table 1 andr 597.6 mm.0

POM is the nodal line also shown in Fig. 3. The actual orbits fromv to v 1p are shown in bold. All outer orbits (in upper half-plane)0 0

havea . 0 with the correspondinge lying in the lower half plane. Asa decreases the corresponding eccentricity vectors rapidly rotate
towards the positivex-axis. Fora 5 0 they overlap. Note that the magnitude ofe has been scaled to have lengthr for better viewing. Themin

lower right figure shows the dependence of the anglev of the vectore on the entry anglea.e

Eq. (56) shows that the time-of-flight fora , 0 will circular orbit with radiusR and for which it can0

always be shorter than for orbits witha .0. This is easily be shown thatqk 52R K . Thus, Eq. (50) is0 (

consistent with Kepler’s first law and Fig. 5 where it seen to be the generalization of Eq. (57) for the case
is clear that the areas swept out fora , 0 are always of anelliptical principal ray with different entry and
smaller than the corresponding areas fora .0. exit radii (i.e.R ±R ).0 p

We finally note that from the form of Eq. (50) one
can readily derive as a special case the more

3 .5. Description in v 5 0 coordinate systemtraditional form (see for example Refs. [9,54]): e

If we set in Eq. (49),v 5 0, i.e. orient ourr R K (12 cosv) e0 0 a
] ]]]]]]5 1 cosv 2 tana sinv (57)2 coordinate system so thate lies along the positiver r K cos av 0 0

x-axis, (see Fig. 4 (right)), we obtain:
21

]where K is the entry kinetic energyK 5 mv 50 0 2 r r rtana˜ 0 0 0t 1 qV(r ), while K is the kinetic energy of the0 ( ] ] ]] ]5 1 cosv 5 (11e cosv) (58)r p sinv preference principal (a 5 0) ray that describes a v 0
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Fig. 6. Plot ofa (see Eq. (54)) fort 5 1 anda 5 0, 628 for thev

¯paracentric case ofR 5 82.55 mm,R 5R 5 101.6 mm,g 5 1.50 p

Fig. 7. Elliptical particle orbit in thexy (for v 5 0) coordinate¯(a 5 92.075 mm) and for central entry withR 5R 5R 5 101.6 e0 p

system showing thetrue anomaly v and theeccentric anomaly z.mm, g 5 1 (a 5101.6 mm).
O is the center of attraction and focus of the ellipse. The
eccentricity vectore is seen to start from O and point to periapse.

a(12 cosv) It thus always lies along the semi major axis a of the ellipse. Its
]]]]]5 2 length has been renormalized tor for better viewing. Themin(2a 2 r ) cos a0 general velocity anglea is also shown.v

]]]]]]]]2r02 2F ] G3 11 sin a 1 12 cos a cosvS Dœ a
with the particle being at periapse for timet 5 0 and(59)
z 5v 50 [47].

Eq. (60) may be directly differentiated withThis form is not very useful for obtaining focusing
~respect to time to obtain the vectorv 5 r (remember-characteristics that depend ona since the entry point

ing that e and L are constants of the motion).occurs at anglev obtained by settingv 5 0 in Eqs.0 e
The new anglez introduced above is known as the(44) and (45). However, the orientation of the orbit

Kepler [75] or eccentric [49] anomaly and is relatedin the coordinate system forv 5 0 leads to a vectore
to the anglev (also known as the true anomaly)form of the orbit useful in tracking the particle in
[49]:three dimensions and obtaining its time of flight.

The vector r can be obtained by the following e 1 cosv
]]]]cosz 5 (64)ansatz [47,75] 11e cosv

e L3 e as can easily be derived with the help of Fig. 7. A] ]]r(t)5 x(t) 1 y(t) (60)
e Le very useful conversion formula between the two

anomalies that also avoids quadrant ambiguity (z /2wherer 5 0 is at the focus of the ellipse (point O in
is always in the same quadrant asv /2) is [49]:Fig. 7) and

]]
z 12e vx(t)5 a(cosz 2 e) (61)
] ]] ]tan 5 tan (65)œ2 11e 2

]]]2y(t)5 a (12e ) sin z (62)œ We may also use Eq. (64) to directly express the
]]3 radius in terms of the eccentric anomaly [49]:ma
]]t 5 (z 2 e sin z ) (63)qk r 5 a(12e cosz ) (66)œ



234 T.J.M. Zouros, E.P. Benis / Journal of Electron Spectroscopy and Related Phenomena 125 (2002) 221–248

p
Eq. (63) is also very useful since it gives directly ]0 for ,u ,p Region Ip 2

]the time-of-flight as a function of the eccentric uS 2uD5 (70)p2 5 ]1 for 0#u # Region IIanomalyz. Thus, for a particle entering att 5 t with0 2
v , r and v and exiting at an anglev 1d later,0 0 0 0

while u(u 2p /2) has the ranges of values 1 and 0we have using Eqs. (44) and (45) withv 5 0 toe
reversed.definev and Eq. (65):0

In Appendix B, we prove mathematically that in
Dt(v , d )tz(v 1d ))2 t(z ) crossing this discontinuity, the potential energy is0 0 0

]] indeed conserved (even though there is an infinite3ma force at the boundary due to the step) and the]]5 h[z(v 1d )2e sin z(v 1d )]0 0qkœ particle is refracted at the potential boundaryu 5p /2
both at the entry and the exit of the HDA.2 (z 2 e sin z )j (67)0 0

Refraction is usually ignored in most treatments
which for deflection byd 5p then gives the time of having to do with narrow slit spectrometers since in
flight Dt also computed in thev 50 coordinatep 0 this case it is practically negligible (see below). In
system above: cases, however, where narrow slits are not used, as

for example in the early work on HDAs [2], in the
Dt ;Dt(v , d 5p)p 0 description of two-stage tandem HDA spectrometers]]3 (68)ma [66] or spectrographs [25] and in treatments of

]]5 [z 2 z 2e(sin z 2 sin z )]p 0 p 0qk modern HDAs utilizing PSDs (see for example Refs.œ
[6,62]), refractive effects in crossing from region I to

with z ; z(v ) and z ; z(v 1p).0 0 p 0 region II are usually important and have been treated
Using either Eq. (51) or Eq. (60), it is straight- analytically within a step-potential model (as above).

forward to describe the 3-D trajectory in any fixed Wollnik and collaborators [14,16] however, have
coordinate system XYZ in which the initial com- used more elaborate (albeit tedious) analytic and
ponents ofL and e are known. These are directly numerical treatments by modeling the HDA fringing
computed from the initial position and velocity fields in various approximations (for more details see
vectors r and v whose components in the XYZ0 0 also the review [61] and book [22] by Wollnik).
system can be readily obtained (see Appendix C). In Now-a-days, accurate trajectory calculations can be
Fig. 3 we show such a 3-D plot made with the help readily performed on a PC using specialized ion-
of the software programMathematica using the optics programs such as SIMION [12]. We use this
vector form of Eq. (60). approach in papers II and III, when more accurate

modeling of the fringing fields is required. It is
interesting to note, however, that even though the
solution of the potential distribution of the fringing4 . Boundary conditions
fields for both a shielded (theu 5p /2 potential
boundary is grounded) HDA [42] and an open (noIn this analysis the region outside the analyser
potential boundary assumed) spherical sector [41](region I) (see Fig. 9) will be at constant potential
are known analytically, all studies to date have(free motion), while the region inside the analyser
preferred to actually solve Laplace’s equation nu-(region II) will be governed by the potential given by
merically (see for example Ref. [17]) for the po-Eq. (2). Thus, the potential is seen to have a sharp
tential and then use this numerical solution tostep going across the boundary of the two regions.
investigate the effects of the fringing fields.This can be represented mathematically by a

potential with step atu 5p /2:
4 .1. Energy conservation across potential

p p
boundary] ]V(r,u )5V(r)uS 2uD1V uSu 2 D (69)p2 2

In region I (outside the analyser), the particle has awith V(r) given by Eq. (2) andu(x) is theHeaviside
kinetic energyt withunit step function. Then,u(p /22u ) is given by:
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4 .2. Particle refraction across potential boundary1 2]t 5 mv* (71)2
In region I the potential is constant and the particle

thus feels zero force, its velocity remains constantThus, its total energyE* is equal to its kinetic
and therefore so does its angular momentumL* 5energy t plus potential energyqV due to thep
mr v* cos a*. In region II, the force is central anddecelerating potentialV , while inside the analyser it 0 0p
therefore the angular momentumL 5mr v cosa ishas a total energy equal to the sum of its kinetic and 0 0

also conserved. However, because of the finite steppotential energies,K andqV. We reserve the symbol
potential at the boundary the two angular momenta* for marking quantities of region I that could
are in generalnot equal.otherwise be confused with corresponding quantities

Using Eq. (74) of energy conservation across thein region II. Applying the conservation of energy on
boundary we may relatev and v*. It is shown ineither side of the HDA boundary (as proved in
Appendix B.2 that we obtain the following relationAppendix B.1) we obtain:
between the angular momenta:

t 1 qV 5K(r)1 qV(r)p

˜qV(r )01 2 22 ˜ ]]]L 5 L* F12 G (77)]5 mv 1 qV(r)1 qV (72) 2p t cos a*2

which expressesL in terms of the entry anglea*E* 5E 1 qc 1 qV (73)p
˜(instead ofa) and the potentialV(r ). This relation0

may also be expressed as:and thus,

E 5 t 2 qc 5E* 2 qc 2 qV (74) L tana 5 L* tana* (78)p

where E is the effective total energy inside the
It then readily follows (see Appendix B.2) that:analyser found to be conserved in Eq. (20) and is

negative for bound motion. It is seen from Eq. (74) v sina 5 v* sin a* (79)
that the two total energiesE* and E just differ by a
constant. EnergyE* is referred to zero potential, or
while E is referred to the potentialq(c 1V ) as seenp

from the definition of the potentialV(r) in Eq. (2). v 5 v* (80)r r
Thus, the constantc is seen to be needed only to
match the energiesE and E* inside and outside the and
HDA. It only comes into play when the outside

˜energiest or E* are used in the trajectory equations. 2qV(r )02 2 ]]]v 2 v* 5 2 (81)Furthermore, we note that from Eq. (72) we obtain v v m
the useful relation:

From Eq. (80) it is seen that the radial velocity,1 2 ˜ ~] v 5 r, is continuous across the boundary [6], asmv 5 t 2 qV(r)5 t 2 (12g )w $0 (75) r2
~opposed to the angular velocity,v 5 rv5L /mrv

which is not. This has the consequence that sincewhich necessarily puts a lower bound on the value of
only the magnitude ofL is discontinuous and notg for a particle to go through the HDA, i.e.
also its direction, the particle remains on the samet 2 (12g )w $ 0 or g $ 12t.
plane as it crosses the potential boundary. Thus, theUsing Eq. (74) in the definition of the semi-major
angleb, which defines the plane of the orbit will notaxis a we also have the useful relation:
suffer any changes as the particle crosses the bound-

qk ary. Eq. (79) is seen to be the charged-particle]]]a 5 (76)
2(qc 2 t) analog of Snell’s law of refraction in optics [76].
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4 .3. Trajectory equations including refraction we may also replaceqc andqk above in Eq. (41) and
obtain a new equation for the semimajor axisa as:

Using Eqs. (77) and (78) we can include the
grefraction effects into the trajectory equation for the
]R (11j )0 jv 50 form (Eq. (50)) to obtain:0 ]]]]a 5 (88)g

]2 11 2tS D˜ jqV(r )0F G]]12r a(12 cosv)0 t
] ]]]]]]]]]]5 We now replace bothqk andqc (or equivalentlya2r ˜ (2a 2 r ) cos a*v qV(r ) 00 from Eq. (88)) in Eqs. (50) and (83) to obtain the]]]F12 G2t cos a* final trajectory equation in terms of the entry anglea

L* and/ora*.
]S D1 cosv 2 tana* sin v (82) From Eq. (50) we have:L

qk(12 cosv) r qk(12 cosv)0]]]]]]]]]5 1 cosv ] ]]]]]]]5 1 cosv2˜qV(r ) r 2[qk 2 r (qc 2 t)] cos a0 v2 0]]]2r t cos a* F12 G0 2t cos a*
2 tana sinv (89)

tana* sin v
]]]]]2 (83)]]]]

˜ 12 cosv)qV(r )0 ]]]]]]]]]]5 1 cosv]]]12 g2œ t cos a* ]j 11 2tS Dr j0 2]]]]]2 12 cos a3 4RWe may now specify the values of constantsk and g(11j )0
˜c (via V(r )) appearing in Eq. (83). This is usually0

2 tana sinv (90)done by specifying a principal reference ray with
a 50 and nominal pass energyt set to the tuning

From Eq. (83) we have:
energyw, i.e. t 5w. Here, we define our principal
ray such that it enters atr 5R (i.e. r 5R ) and0 0 0 1
exits after a deflection by 1808 at r 5R (i.e. r 5 ]11p p S Dr R1 g j (12 cosv)0 0R ). Thus, using the trajectory equation Eq. (50) ] ]]]]]]]]]]]]]p 5 2r 2 t r ˜ cos a*v 0 qV(r )with r 5R , r 5R , a 5p, t 5w and the potential 00 0 p ]]equation (Eq. (2)) atr 5R we have: w0 3 4]]]12 2

t cos a*
R qk0
] ]]]]]5 21 (84) tana*R R (w 2 qc)1 qk ]]]]]1 cosv 2 sinv (91)p 0 ]]]]

˜qV(r )0
]]qk w˜ ]qV 5 2 1 qc (85) ]]]120 2R œ0 t cos a*

Using the definition ofg from Eq. (3), we may now ˜and after expandingqV(r ) using Eqs. (86) and (87):0solve Eqs. (84) and (85) simultaneously fork and c
yielding: qk˜ ]qV(r )5 2 1 qc0 r0R g0

] ]qk 5gwR 11 5wR (11j ) (86)S D0 0R j R1 1p 0
] ] ]5w 11g 2 1 1 (92)S DH F GJj j r0

R g0
] ]qc 5w 11g 5w 11 (87)S D S DR jp we obtain:
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elliptical orbit Eq. (17) reduces to the well knownr R1 g0 0
] ]]]5 elliptical form:r 2 t rv 0

2a(12e )1
]]]]]r 5 (98)]11S D v 11e cos(v 2v )j e

]]]]]]]]]]3 R1 10
] ] ]11g 2 11 with a ande given by Eqs. (41) and (19), respective-S DF Gj r j0 ly.]]]]]]]]312 42
t cos a*

(12 cosv)
]]]] 4 .4. Spectrograph basic equation3 1 cosv2cos a*

tana* Since the HDA focusing properties can be studied
]]]]]]]]]]2 ]]]]]]]]] only from the ray trace on the exit plane, anR1 10

] ] ]11g 2 11S DF G expression which gives the position of the particle atj r j0
]]]]]]]]12 the image (exit), as a function of its position and2œ t cos a*

direction at the object (entrance) and itsnominal
3 sinv (93) (reduced) pass energyt is needed. Directly from Eq.

(50) and using Eq. (76) we have:
We may now also use the value ofqk to evaluate

r [qk 1 r (t 2 qc)]E and p to determine the type of conic section the 0 0
]]]]]]r 5 (99)p 2particle follows. For the principal trajectory (t 5w, qk tan a 2 r (t 2 qc)0

r 5R and a 5 0) we define theprincipal ray0 0
r¯ 0parameters: energy, latus rectump, semi major axis

]]]]]]]]]]]]5 (100)¯ jand time-of-flightDt . Directly from Eqs. (74), (39),p ]11 (12t)2 F Gr g(88) and (56) we have: 11 cos a 0
]]]]]]215 6R (11j )0g¯ ]E ;w 2 qc 5 2w (94)

j which is the form ofr expressed as a function ofa.p

If we now include the refraction and substitute for22R w 2R0 p tan a using Eq. (B.24) in Eq. (83) we get the¯ ]] ]]]p ; 5 (95)qk g(11j ) surprisingly simple result:

1 1 qk¯ ] ]a ; R (11j )5 (R 1R ) (96) ]]]]r 5 2 r 1 (101)0 0 p p 0 22 2 qc 2 t cos a*
]] ]]3¯ma p mj R (11j )¯ 0]] ] ]]Dt ;p 5 R (11j ) (97)p 0 ]]]]]]5 2 r 1 (102)qk 2 2wg 0œ œ j 2]11 (12t cos a*)

g¯Thus, forg .0 we always haveE ,0 leading to
elliptical orbits. For elliptical orbits, the quantity Eq. (101) is seen to be a much simpler expression
1
] ur 1 r u5 ur(v 5v 1p)1 r(v 5v )u is the than Eq. (99). In fact, to our knowledge, this form ofmax min e e2

semi-major axisa, which is always aligned along the the equation is new and has never appeared in the
eccentricity vectore and is given by Eq. (41), while literature to date. It expresses very simply the exit]]2Œ point r after deflection by 1808 in terms of thethe semi minor axisb is given byb 5 a 12e . As p

kinetic energyt (5T 2 qV in the case of preretarda-already seen,a only depends on the effective total p

tion whenV ± 0—see Eq. (1)), entry anglea* (priorenergyE and is independent of the entry angle, while p

to refraction) and entry radiusr for known potentialb does also depend on the entry anglea via the 0

Ṽ(r)5 2 k /r 1 c.eccentricitye (see Eq. (19)). Thus, in the case of the
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The relation betweenr and r (Eqs. (99)–(102)) more detail in paper III. Here, our main goal was top 0

is known [77] as thebasic equation of the spec- obtain Eqs. (101) or (102).
trograph. From this all further properties of the HDA Eq. (102) also shows that the ranger is a0,p

may be extracted (see paper II). Eq. (101) expresses universal function of the ‘reduced’ pass-energyt and
the relation betweenr andr in a very simple form the incident anglea*. This, universal scaling withtp 0

˜in terms of the potentialV(r) parametersqk and qc is particularly useful during the energy calibration of
and is conveniently independent of the particular the spectrometer since different energiesT and
HDA parameters such asR , R , R , V , V , V . Eq. deceleration factorsF must all fall on one universal1 2 0 0 1 2

(102) on the other hand is conveniently written in curve dependent ont, avoiding the tedious task of
terms of the spectrometer parameters. Both forms calibrating the spectrometer for all combinations of
will be used. For the case of a conventional HDA we F, T and W utilized in a measurement. The energy
haveg 5j 5 1 and the basic equation in this case calibration is discussed in more detail in paper II.
may be rearranged into the usual form: In Table 2 we present typical numerical values of

the trajectory parameters. A comparison between
(r 2R ) (r 2R )p 0 0 0 central and paracentric parameters is made. In both]]] ]]]5 2R R0 0 cases the parameters of the principal ray are given.

1 An example is also given where the energy of the
]]]]]]]]]]2 2 12F 2 2 G particle is slightly larger than the tuning energy. For11 sin a* 2 (t 21)(12 sin a*)

generality, for these cases the particle is made to
(103)

enter at an anglef ±0. This then defines the angle0
2Eq. (103) is seen to be identical with Eq. (8) of F given (F 5f 2p; see Fig. 3). The large value0 0 0

Hadjarab and Erskine [6]. The results of Ref. [6] also ofa* 56308 is used on purpose even though rather
include the refraction correction at the entrance of exaggerated as it allows for bigger differences in the
the HDA. numbers. The table gives a feeling for the magnitude

In Eqs. (101) and (102), the sumr ; r 1 r is of the parameters involved and can also be used to0,p p 0

the range of the trajectory. It is seen to have a few check formulas.
interesting properties: Eq. (101) shows that for fixed We also plot the effective potentialsU thateff

qk andqc (i.e. fixed voltagesV andV on the HDA) corresponds to the parameters of Table 2 defined as:1 2

the ranger is independent of the entry or exit0,p
2positions (for the same energyt and anglea*). This L˜ ]]U (r); qV(r)1 (104)eff 2is hidden in Eq. (99) sincea is not anymore and 2mr

independent variable but a function of the entry
variablesa* and r . In other words, the distance in which the particles are moving as a function ofr0

traveled in the plane of the orbit is always the same (see Fig. 8 top) and anglev (see Fig. 8 bottom) asv
(for the same energyt and anglea*) no matter varies along the orbit fromv to v 1p. The0 0
where the entry or exit is made. Clearly, this is not paracentric potential is seen to always be deeper (E
so in Fig. 1, where it is seen that the central entry has is more negative) and for the example shown the
a much longer range than the paracentric entry. This particle trajectories witha 56308 are much closer
must be a manifestation of the fringing fields. In this to the a* 50 trajectory than in the case of the
light, it is also rather surprising that the exit pointsr central entry potential.p

for both central and paracentric entries in Fig. 1 is
roughly the same. We shall discuss these points in

4 .5. Analyser voltages

The voltage schemeV andV applied on the inner1 2

2 and outer spherical shells of the analyser, respective-To see this we need to make the correspondence with the
ly, is a function of the tuning energy of the spec-symbols used in Ref. [6], i.e.z ⇔(r 2R ) /R , z ⇔(r 2R ) /Rp p 0 0 0 0 0 0

andDE /E⇔(t 2w) /w 5t 2 1. trograph. The determination of the voltages is based
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Table 2
Comparison of paracentric and conventional entry orbital parameters computed for electron (q 5 2 e) passage through anideal
hemispherical deflector analyser (HDA) of the formV(r)5 2 k /r 1 c, with no preretardation (i.e.F 5 1, W5w, V 5 0) and planarp

a(unrefracted) launching anglea* 5 08 and6308 .

Parameters Reference Paracentric HDA Conventional HDA

H R (mm) Fig. 2 82.55 82.55 82.55 82.55 101.6 101.6 101.6 101.60

i D g Eq. (3) 1.5 1.5 1.5 1.5 1 1 1 1

n A T (eV) Eq. (1) 1000 1020 1020 1020 1000 1020 1020 1020

p W (eV) Eq. (4) 1000 1000 1000 1000 1000 1000 1000 1000

u en r (mm) Fig. 2 82.55 79.184 79.184 79.184 101.6 98.3877 98.3877 98.38770

t try F (8) Fig. 3 0 27.25515 27.25515 27.25515 0 27.25515 27.25515 27.255150

a* ( 8) Fig. 2 0 0 230 30 0 0 230 30

p

o

t V (V) Eq. (3) 500 500 500 500 0 0 0 00

e V (V) Eq. (109) 881.151 881.151 881.151 881.151 806.63 806.63 806.63 806.631

n V (V) Eq. (109) 2502.903 2502.903 2502.903 2502.903 2446.483 2446.483 2446.483 2446.4832

t qk (eV-mm) Eq. (86) 224 433 224 433 224 433 224 433 203 200 203 200 203 200 203 200

i qc (eV) Eq. (87) 2218.75 2218.75 2218.75 2218.75 2000 2000 2000 2000

a f Eq. (110) 1.38405 1.38405 1.38405 1.38405 1.25311 1.25311 1.25311 1.25311

l

a (8) Eq. (B.22) 0 0 223.2568 23.2568 0 0 228.9945 28.9945

E* (eV) Eq. (72) 1000 1020 1020 1020 1000 1020 1020 1020

E (eV) Eq. (20) 21218.75 21198.75 21198.75 21198.75 21000 2980 2980 2980

t v* (mm/ns) Eq. (71) 18.7553 18.9419 18.9419 18.9419 18.7553 18.9419 18.9419 18.94190

r v (mm/ns) Eq. (75) 22.9704 23.9860 23.9860 23.9860 18.7553 19.5388 19.5388 19.53880

a L* (eV-ns) Eq. (B.15) 8802.86 8527.94 7385.41 7385.41 10 834.3 10 596.1 9176.53 9176.53

j L (eV-ns) Eq. (B.16) 10 781.3 10 798.9 9921.41 9921.41 10 834.3 10 930.1 9560.15 9560.15

e p (mm) Eq. (39) 91.0897 91.3877 77.1395 77.1395 101.6 103.404 79.1083 79.1083

c e Eq. (19) 0.103448 0.154118 0.419474 0.419474 0 0.0509845 0.486772 0.486772

t a (mm) Eq. (41) 92.0750 93.6112 93.6112 93.6112 101.6 103.673 103.673 103.673

o b (mm) 91.5810 92.4928 84.9772 84.9772 101.6 103.539 90.5618 90.5618

r r (mm) Eq. (102) 101.600 108.038 75.198 75.198 101.6 108.959 66.1467 66.1467p

y r (mm) Eq. (17) 82.55 79.184 54.3438 54.3438 101.6 98.3877 53.2081 53.2081min

r (mm) Eq. (17) 101.6 108.038 132.879 132.879 101.6 108.959 154.139 154.139max

tof (ns) Eq. (68) 13.9705 14.3215 6.91405 21.729 17.0185 17.5421 7.75394 27.3302

tof (ns) Eq. (56) 13.9705 14.3215 7.20557 21.4375 17.0185 17.5421 8.39616 26.688

a In the Ref. column appear the equation (or figure) numbers that refer to the equation (or figure) in the text used to compute (or define) the
2 2corresponding values. Some of the parameters refer to Fig. 3 and those given in Table 1. The mass of the electronm 55.68569 eV-ns /mm ,

¯while in both casesR 5R 5 101.6 mm. These results are independent of the launching angleb.p

on the concept ofprincipal ray, in a straightforward spherical shells of the analyser, respectively, the
way. The entry and exit points are specified. For expressions fork and c are obtained:
these points, the principal ray witha 5 0 (ora* 5 0) R V 2R V2 2 1 1and pass energyt, set to the analyser tuning energy ]]]]c 5 2V (105)pDR
w, i.e. t 5w, is decided [55]. These conditions then

DVdefine the proper potential applied on the analyser. In ]k 5 R R (106)1 2DRthis study, the principal ray is defined such that a
charged particle enters atr 5R and exits after a Substitutingk andc from the expressions above into0

¯deflection byDv 5p at r 5R ; (R 1R ) /2. the spectrograph basic equation Eq. (101), the princi-p 1 2

Applying voltagesV andV on the inner and outer pal ray case reduces to:1 2
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Fig. 8. Effective potential energyU (r(v)) plotted as a function ofr(v) (top) and as a function ofv (bottom) for the cases ofeff

a* 56308given in Table 2 with eitherg 5 1(left) org 5 1.5 (right). The horizontal line is the total effective energyE in each case.U (r)eff

is the same for both anglesa* 56308(top curves). The turning pointsr andr are shown. It is seen (darker lines in bottom figures) thatmin max

for a* . 0 we also have≠r /≠v . 0, i.e. the particle follows an orbit in the direction ofr according to Eq. (31), while fora* , 0 itmax

follows a trajectory first going throughr . The arrows (top) point in the direction of motion from the starting pointr .min 0

q DV R R (R 2R )R V 1 (R 2R )R V1 2 2 0 1 1 0 1 2 2
]]]]]]] ]]]]]]]]]R 5 2R 1 (107) V 5 (108)p 0 0 DR Rq(V R 2V R )2w DR 02 2 1 1

whereDR;R 2R andDV;V 2V . Furthermore, Solving Eqs. (107) and (108) forV and V , and2 1 2 1 1 2

for a pre-specified entrance potentialV (g ), after using the definitions Eqs. (3) and (7), the voltage0

substitution ofk andc, into Eq. (2),V is written as: equations are obtained:0
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refraction always leads to smaller entry anglesa.R (11j )g 0
] ]]]qV 5W2w 2 1 Useful analytical formulas are obtained for both theF GS Di j Ri scalar and vector form of the orbits allowing for their

i 5 1, 2 (109) convenient graphical representation in two and three
dimensions. The time-of-flight (tof) of the particles

which uniquely determineV and V in terms of1 2 is also obtained in closed analytical form and a
potentials V , V , the tuning energyw and the0 p Taylor series expansion arounda 5 0explicitly
‘principal ray’ positions of the entranceR and the0 shows that tofs witha , 0 are always smaller than
exit R , respectively. This is the most generalp those with a .0, since the path is also corre-
formula for the voltages from which all specific

spondingly smaller. Clearly, whenq(V 2V ),0 the0 pcases may be derived. We note that the voltagesVi particles are accelerated at the potential boundary at
above are referenced toground.

entry leading to smaller tofs. The basic equation of
We also calculate the generalized spectrometer

the spectrograph is also obtained as a function ofa
constantf :

and a*, where a* is the entry angle prior to
q DV g DR refraction. The form written in terms ofa* is found
]] ] ]]f ; 5 R (11j ) (110)S DS D 0 to have a surprisingly simple expression in terms ofw j R R1 2

the constantsqk and qc (Eq. (101)). This form is
The spectrometer constant has been introduced in themuch simpler than the one obtained in terms ofa
past for convenience, since it uniquely defines the (Eq. (99)), arguing in favor of always including
appropriate potential difference across the analyser refraction corrections. In II we use the basic spec-
DV as a function ofw (see for example Ref. [78]). In trometer equation derived here to investigate the
the more general paracentric HDA case,f is seen to operation and optical properties of the ideal HDA
be proportional tog. and see how they are altered by the effects of the

fringing fields by comparing with ion-optics simula-
tions using SIMION and experimental results ob-
tained from laboratory measurements using our5 . Summary and conclusions
paracentric HDA.

Finally, we have also stressed some particularWe have presented a general treatment of charged
˜ properties of Kepler orbits that relate to the launch-particle motion in theideal potentialV(r)5 2 k /r 1

ing anglea and which are not so well known: (a)c for more general launching conditions than what
The eccentricity vector e is conserved and alwayshave been considered to date. Specifically, we ob-
points to periapse, (b) particles with entry angletained general trajectory equations in analytic form
a ,0 (a . 0) will move towards (away from)for r as a function of the deflection anglev in which
periapse and will have correspondingly shorterthe reference principal ray describes anelliptical
(longer) time-of-flights for deflection through thetrajectory starting atR at the arbitrary potential0

same angleDv, (c) the ranger , for deflectionV 5V(R ) and exiting after deflection byp at R 0,p0 0 p

throughDv 51808, is independent of the entry and(see Eqs. (90) and (93)). Conventional trajectory
exit pointsr andr for the same entry anglea* andequations are recovered as the special caseR 5 0 p0

¯ kinetic energyt. In III we shall investigate how theseR 5R and V 5V , whereV is the preretardationp 0 p p

properties hold-up when strong fringing fields areplate voltage of the analyser.
present at the entrance and exit of an HDA with largeThe finite potential at entryV causes refraction to0

interradial separation.be non-negligible. A formal treatment of refraction at
the potential boundary, assuming an idealized step
function potential V(r, u ) to model the fringing

A cknowledgementsfields, is given showing that the magnitudeL of the
particle’s angular momentum suffers a finite change

We would like to acknowledge meaningful discus-even though its direction remains unchanged, while
sions with J. Erskine, D. Roy, E. Sidky, H. Wollnik,its total energy is conserved. Forq(V 2V ), 00 p
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˜Sciences, Geosciences and Biosciences Division, V(r) HDA potential,V(r)5V(r)1Vp

Office of Basic Energy Sciences, Office of Science, k˜ ˜US Department of Energy. ]V(r) V(r)5 2 1 cr

V nominal voltageV(R )0 0

V nominal voltageV(R ) on R1 1 1A  ppendix A. Reference table of symbols
V nominal voltageV(R ) on R2 2 2

w HDA tuning energy after decelerationAn alphabetical list of the most important symbols
W HDA tuning energy prior to decelerationused in this paper is given for convenience in Table
a launching angle in plane of orbit (Figs. 2A.1

and 3)
b angle of orbital plane (Fig. 3)Table A.1. List of symbols and short explanation
g control parameter to setV , (Eq. (3))0

a semi-major axis d(x) d-function atx 5 0
b semi-minor axis e eccentricity

e eccentricity vectork˜ ]c V(r)5 2 1 c z eccentric anomaly (angle)r
u polar angle inhr, u, fj system

d diameter of HDA entry aperturei t td diameter of PSDPSD ]fractional pass energy,t 5 wE conserved total energy

q DV f azimuthal angle inhr, u, fj system]]f spectrometer constant,f 5 w f azimuthal angle at entry0

W Rp]F deceleration ratio,F 5 ]j HDA parameterj 5w R0
k˜ ]k V(r)5 2 1 c v angular coordinate in orbital planer

v omega at entry of HDA0
K kinetic energy v v at periapsee
L angular momentum ~v particle angular speed
m mass of particle * designates quantities prior to
p latus rectum HDA entry (before refraction)
q particle charge (q 5 2 e for electron)
r radius of orbit
r minimum radiusmin

r maximum radius A ppendix B. Boundary conditionsmax

r radius at HDA entry0

R principal ray entry radius  B.1. Energy conservation across potential0

R principal ray exit radius boundaryp

R HDA inner radius1

R HDA outer radius In the absence of a time-dependent magnetic field2

R̄ HDA mean radius Maxwell’s equations require that=3%%%% 50. Equiva-
t particle kinetic energy lently, this is satisfied if there exists a potentialV

(before refraction),t 5K* such that the electric field%%%% can be obtained from its
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gradient, i.e.%%%%52=V. That the potentialV(r, u ) of
Eq. (69) is indeed such a potential at all points W 5 R F ?ds (B.2)abcdefa

including the boundaryu 5p /2, might not be imme- abcdefa

diately obvious since the force at the boundary is e f b

infinite involving a delta-function, i.e.
5E1E1E F ? ds (B.3)

c e fF(r,u,f)5 2 q=V(r,u )
with W 5 0 (force is zero) andbcp ≠V(r)

ˆ ] ]]52 qruS 2uD
e2 ≠r

ˆ W 5E F r duu p ce u 1˜] ]1 q V(r)dS 2uD (B.1) cr 2
p / 22u0

(B.4)p˜ ]However, it can be easily shown that the total 5 qV(r ) E dS 2uD du1 2
energy is conserved in crossing the potential bound- p / 21u0

ary by direct integration of the workW along ˜abcdefa 5 2 qV(r )1an arbitrary closed path abcdefa (see Fig. 9) made up
of two arcs of constant radius (r and r ) and two similarly1 2

straight sections along the radial directions of con-
b

stantu (u 5p /26u ). The sharp boundary separating0
W 5E F r dufb u 2region I and II is atu 5p /2. Thus, we have:

f

p / 21u0 (B.5)p˜ ]5 qV(r ) E dS 2uD du2 2
p / 22u0

˜5 2 qV(r )2

and finally
f

W 5E F dref r

e

r2

≠
]5 2 q E V(r,u ) dr
≠r

r1

r2

≠
]5 2 q E V(r) dr
≠r

r1

˜ ˜5 2 q[V(r )2V(r )] 5 2 q[V(r )2V(r )]2 1 2 1

(B.6)

Fig. 9. Integration path (bold line) abcdefa used to show energy which when added up giveW 5 0. Any closedabcdefa
conservation across the potential step atu 5p /2 (see text). The path joining regions I and II can always be repre-
total work performed to go around the closed path abcdefa is zero. sented by integrals of this type which cancel out. We
In Region I the potential is constant, while in Region II it is given

shall use the potentialV(r, u ) of Eq. (69) to computeby V(r) of the analyser. Oe5Od5Oc5r and Of5Oa5Ob5r1 2
the refraction of charged particles at theu 5p /2(see text). In this model, the potential boundary is sharp and the

force at the boundary is infinite (delta-function). boundary.



244 T.J.M. Zouros, E.P. Benis / Journal of Electron Spectroscopy and Related Phenomena 125 (2002) 221–248

 B.2. Particle refraction across potential boundary (B.14)

The change in angular momentum in crossing the At the entry radiusr 5 r the angular momenta0

potential boundary is given by: must clearly be given by:

pdL
]] L* 5mr v * sinS 1a*D5 r3F (B.7) 0 0 2dt

]Œ5 r 2mt cosa* (B.15)5 2 r3 q=V(r,u ) 0

p (B.8)˜ ˆ] ˆ and5 qV(r)dS 2uD(r 3u )2
p
]which shows that the change will be along the L 5mr v sinS 1aD0 0 2ˆ ˆ ˆ ˆˆdirectionr 3u;f5 2 sin fX 1 cosfY (see Fig. ]]]]

qk3). ]5 r 2m E 1 cosaS D0 rTaking the dot product of both sides of Eq. (B.8) œ 0
2ˆ ~ ]]]]ˆwith L and using the identityL ? (r 3 u )5mr u and ˜5 r 2m[t 2 qV(r )] cosa (B.16)1 0œ 0

]d(L ?L); LdL we obtain:2

wherev , v * and a, a* are the entry velocities andp 0 02 2 ˜ ]d(L )5 2mr qV(r)dS 2uD du (B.9) angles inside (region II) and outside (region I) the2
analyser.

This may be directly integrated in theXYZ frame Using Eqs. (B.14) and (B.15) we obtain:
along the path of the trajectory. Equivalently Eq.

˜(B.9) maybe transformed to the plane of the trajec- qV(r )02 2 ]]]L 5 L* F12 G (B.17)tory by using the connection between the (r, u, f) 2t cos a*
and (r, v) variables shown in Appendix C. From Eq.

which expressesL in terms of the entry anglea*(C.13) we have cosu 5 cos b sin v. Using the
˜(instead ofa) and the potentialV(r ).transformation of variables properties of delta-func- 0

From Eqs. (B.14)–(B.16) it is straightforward totions we have:
show that:p

]dS 2uD du 5 sinud(cosu ) du (B.10)2 v sina 5 v* sin a* (B.18)

5 2 cosb cosvd(cosb sinv) dv (B.11)
v 5 v* (B.19)r r

5 2d(v) dv (B.12) ˜2qV(r )02 2 ]]]v 2 v * 5 2 (B.20)v vThen we may transform Eq. (B.9) to: m
2 2 2 2 21 1˜ ] ]d(L )5 22mr qV(r)d(v) dv (B.13) and since K 5 mv 5 m(v 1 v ) and t ;K* 5r v2 2

21
]mv* we may also write the change in kinetic2Both Eqs. (B.9) and (B.13) can be directly integrated
energyDK*, when crossing the boundary atr as:0across the boundaryu 5p /2 or v 50 from region I

˜to region II along the trajectory to yield: DK* ;K 2K* 5 2 qV(r ) (B.21)0

2p / 2 From Eq. (B.19) it is seen that the radial velocity,
p2 2 2 ˜ ] ~v 5 r, is continuous across the boundary [6], asL 2 L* 5 2mq E r(u ) V(r(u ))dS 2uD du r2

~opposed to the angular velocity,v 5 rv5L /mr1 vp / 2

1 which is not. This has the consequence that since0

only the magnitude ofL is discontinuous and not2 ˜5 2 2mq E r(v) V(r(v))d(v) dv also its direction, the particle remains on the same
20 plane as it crosses the potential boundary. Thus, the

2 ˜5 2 2mr qV(r ) angleb, which defines the plane of the orbit will not0 0
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suffer any changes as the particle crosses the bound-
ary. Eq. (B.18) is seen to be the charged-particle
analog of Snell’s law of refraction in optics [76].

Summarizing the relations betweena anda* we
have:

v* sin a*
] ]]]]sina 5 sina* 5 (B.22)]]]v ˜qV(r )0

]]12œ t
]]]]

˜qV(r )0
]]]12 2t cos a*

]]]]cosa 5 cosa* (B.23)˜qV(r )0
]]12œ t

tana* L*
]]]]] ]tana 5 5 tana* (B.24)]]]] L˜qV(r )0
]]]12 2œ t cos a*

˜It is evident from Eq. (B.22) that whenV(r )5 00

then a 5a*. The relation betweena* and a is
shown in Fig. 10 for the case of paracentric entry
with g 5 1.5 and for conventional entry withg 5 1.

Fig. 10. Relation between the entry anglea* prior to refractionIn both cases we have chosen the entry point,r 50
(angle of incidence) and anglea after refraction (angle ofR . Clearly, the effect of refraction is non-negligible0 ˜ ¯refraction) for two cases: (a)g 5 1(V 5 0), R 5R, (b) g 50 0˜for paracentric entry andV ±0 (g ± 1).0 ˜1.5(V 5 0.5w), R 5 82.55 (paracentric entry). In both casesq 50 0We note that a similar refraction takes place at the ¯2 e(electrons), w 5 1000 eV, r 5R and R 5R with other0 0 p

exit of the HDA where the particle now crosses from parameters as given in Table 1. Clearly, the effect of refraction is
˜non-negligible for paracentric entry andV ± 0 (g ±1).region II back out to region I. Using the same 0

treatment but applied at the exit pointv 5p andr ,p
]]]]]Eqs. (B.14)–(B.24) can been seen to hold also when ˜qV(R 1Dr )sina 0 0the subscript 0 indicating entry is substituted forp ]] ]]]]5 12œsina* t

indicating exit. Now using Eq. (32), it can be readily
Dr1 1 0shown that a* 5 2a *, i.e. the particle’s entry0 p ] ] ]5 11 12g 12 11 1 ? ? ?S DH H F GJ J2t j R0angle a*( ;a*) and exit anglea * are equal to0 p

within a sign contrary to the relation betweena and (B.25)0

a which are only equal ifr 5 r (see Eq. (32)).p 0 p which for g 5 1, j 51 gives:In the majority of the literature treating HDAs the
transition effects in crossing the potential boundaries Dr0

]sina 5 11 1 ? ? ? sina* (B.26)S Dat entry and exit have either been ignored, by tR0
treating the motion strictly inside the HDA or have

Clearly,Dr /tR will always be very small sincebeen neglected. This primarily has to do with the fact 0 0

t ¯1 and Dr , ,R , especially for narrow slitthat most treatments deal with conventional HDAs 0 0
˜spectrometers. However, whenV ± 0 (g ±1) as forhavingV 5V and use very small slits or apertures 00 p

paracentric entry, even withDr 5 0, the first orderwith sizes typically | 0.5 mm or smaller so that 0
˜ ˜ term will be important:V(r )¯V 5 0 makinga* ¯a. This can be readily0 0

˜seen by expandingV(r ) in Eq. (B.22) around the0 1
]F Gentrance aperture atR by settingr 5R 1Dr : sina ¯ 11 (12g ) sina* (B.27)0 0 0 0 2t
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cosF 2 sinF 0For example withg 5 1.5 and t 5 1, Eq. (B.27) 0 0

gives sina ¯ 0.75 sina*, a measurable effect. The 5(F )5 sinF cosF 0 (C.6)0 0 01 2
exact relation is shown in Fig. 10 for some typical 0 0 1
examples. In general, forg .1 we havea ,a*,

This then gives:
while for g , 1 we havea .a*. As already dis-
cussed g . 1 results in the acceleration of the v ; v0 0(XYZ )
particle right after entry which tends to minimize the

ˆ53 [(2cosa sinb sinf 1 sina cosf )Xspread ina. Smaller variation ina means smaller 0 0 0

variation in the time-of-flight resulting in improved ˆ1 (sina sinf 1 cosa sinb cosf )Y0 0time resolution in coincidence measurements (e.g.
ˆ1 cosa cosbZ ] (C.7)e22e measurements). Smaller variation ina also

means smaller variation in the range of the trajec-
Given r andv in the XYZ system we can easilytories implying decreased dispersion and larger 0 0

compute the entry angular momentumL 5 r 3 venergy acceptance window, as discussed in more 0 0 0

and L 3 r :detail in paper II. 0 0

ˆL 5mr v cosa(cosb sinf X0 0 0 0

ˆ ˆ2 cosb cosf Y 1 sinbZ ) (C.8)0A ppendix C. Relation between (u, f) and v in
the v 5 0 coordinate system0 ˆ ˆL 3 r 5L r (2sinb sinf X 1 sinb cosf Y0 0 0 0 0 0

As the particle moves along its trajectory on the ˆ1 cosbZ ) (C.9)
orbital plane as a function ofv the corresponding
spherical coordinate angles (u, f) must also change. In the orbital plane framexy we have using Eq.
The relation between the two sets of coordinates is (51):
derived here.

r L 3 r0 0 0In the laboratory frameXYZ (see Fig. 3) we have: ] ]]]r5 r cosv 1 sinv (C.10)S Dr L r0 0 0
ˆr(r,u,f)5 r(sinu cosfX

Taking the dot product ofr in either frame with(C.1)ˆ ˆ1 sinu sinfY 1 cosuZ ) each one of theXYZ unit vectors and equating we
have:with the entry vectorr given by:0

sinu cosf 5 cosf cosv 2 sinf sinb sinv0 0p
]r ; rSr ,u 5 ,f 5f D (C.2) (C.11)0 0 02

ˆ ˆ5 r (cosf X 1 sinf Y ) (C.3) sinu sinf 5 sinf cosv 1 cosf sinb sinv0 0 0 0 0

(C.12)
Furthermore, it is readily seen from Fig. 3 that

cosu 5 cosb sinv (C.13)ˆ ˆv 5 v (2sinax 92 cosa sinby 90 0(x9 y9z9)

ˆ1 cosa cosbz 9) (C.4) Eliminating sinu from Eqs. (C.11) and (C.12) we
obtain:

which can be transformed to theXYZ system by a
ˆ tanf 1 sinb tanvˆsimple rotation around the commonZ 5 z 9 direction 0

]]]]]]tanf 5 (C.14)by the angleF 5f 2p (see Fig. 3): 12 sinb tanf tanv0 0 0

Thus, givenf andb which are defined at entry,v 55(F )v (C.5) 00 0 0(XYZ ) (x9 y9z9)
Eqs. (C.13) and (C.14) determineu andf, respec-
tively, as a function ofv.with
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