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Abstract

Using the basic spectrometer trajectory equation for motion in an ideal 1/r potential derived in Eq. (101) of part I [T.J.M. Zouros, E.P. Benis,
J. Electron Spectrosc. Relat. Phenom. 125 (2002) 221], the operational characteristics of a hemispherical deflector analyser (HDA) such as
dispersion, energy resolution, energy calibration, input lens magnification and energy acceptance window are investigated from first principles.
These characteristics are studied as a function of the entry point R, and the nominal value of the potential V(R,) at entry. Electron-optics simulations
and actual laboratory measurements are compared to our theoretical results for an ideal biased paracentric HDA using a four-element zoom lens
and a two-dimensional position sensitive detector (2D-PSD). These results should be of particular interest to users of modern HDAs utilizing a

PSD.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

This article is the second part of an in depth investigation
focusing on the study of the orbits of non-relativistic charged
particles inside a hemispherical deflector analyser (HDA), as
well as on the electron-optical properties and optimal operation
characteristics of the HDA. The general case of a biased para-
centric HDA, i.e., an HDA whose entry is biased at a nominal
voltage V(Ryp) # 0 and is paracentric lying at a radial position
Ro # R = (Ry + R»)/2, where R and R» are the inner and outer
radii of the HDA, respectively, is considered. The conventional
HDA treated in the literature to date has typically V(Rp) =0
and Ry = R. Interest in such a biased paracentric HDA has been
prompted by recent articles [1-9] in which electron-optical sim-
ulations demonstrated improved focusing and therefore energy
resolution for such an HDA. The nature of the effect is attributed
to the strong fringing fields at entry. Towards the investigation
of this effect, we initially proceed with studying the trajectories
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of a charged particle in an ideal biased paracentric HDA, i.e, an
HDA free of fringing fields.

Thus, in the first review article [10,11] (from here on referred
to as paper I), we gave a general treatment of charged parti-
cle motion in the ideal potential V(r) = —k/r + c. The general
trajectory equations were obtained in analytic form for r as a
function of the deflection angle w and the launching angle «.
In our treatment, the reference (or principal) ray describes an
elliptical trajectory starting at r(w = 0) = Ry biased at V =
V(r(w = 0) = Rp) and exiting after deflection through Aw = 7
atr(w = m) = Ry (see Fig. 3 and Egs. (90) and (93) in paper I).
Conventional HDA trajectory equations [12—18] can be readily
recovered as the special case where Ry = R; = Rand Vo = Voo
where V}, is the pre-retardation plate voltage of the analyser. The
finite potential at the HDA entry V{y was also found to introduce
non-negligible refraction. Thus, a formal treatment of refraction
at the idealized sharp potential boundary, represented by a step
function potential V(r, 6), was also included and the basic equa-
tion of the analyser was obtained as a function of either o or
a*, the entry angle after or prior to refraction, respectively. The
form written in terms of o* (see Eq. (I101)) was found to be sur-
prisingly simple, much simpler than the one obtained in terms
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of o (Egs. (I99) and (I100) in Ref. [10,11]), arguing in favor of
using the form with o*.

In this paper we use the basic analyser trajectory equation
for motion in an ideal potential obtained in Eq. (I101) to investi-
gate the electron-optical properties of the generalized HDA such
as dispersion, energy resolution, energy calibration and energy
acceptance window. We again parameterize our results in terms
of the entry radius » = Ry and the nominal bias at entry V. Our
results are also compared to electron-optics simulations using
the popular ion optics package SIMION [19-21] and to actual
laboratory measurements using our own biased paracentric HDA
[22-24]. Both SIMION results and real measurements include
the effects of the strong fringing fields, whose effects on the
electron-optical properties of the HDA are further discussed.

The reader is referred to paper I for the detailed definitions
and descriptions of the various variables and parameters intro-
duced. Here we maintain the same notation. For convenience, a
definition list of the symbols used here along with their values
for our own HDA are given in Table A.1 of the Appendix A.

2. Focusing and dispersive properties of an ideal 1/r
potential

The focusing properties of an ideal HDA have already been
discussed in many excellent treatments [12—18]. Here we give
a brief but generalized [14] approach. A basic optical layout of
the spectrograph is shown in Fig. 1. A beam of charged particles
emanates from a source of dimension ds at a pencil angle A«
defined by the lens pupil entry dp and its distance / from the
source. The source (object) is focused by the lens onto the HDA
entry plane having a dimension Arg (image) smaller than the
physical opening dj of the HDA entry aperture (for 100% trans-
mission). Pre-retardation changes the energy of the central ray
from T at the source to ¢ just prior to HDA entry. The image Ary,
which s associated with the maximum HDA entry half-angle o},
and oy, (after refraction), is finally imaged after dispersion at the
exit plane of the HDA and is detected by a 2D-PSD.

Vp

Source Entry  Lens
pupil reference
plane

Arnirk-""

PSD I

Fig. 1. Schematic geometry of typical HDA spectrograph equipped with a focus-
ing/deceleration lens system and a 2D-PSD. The drawing has been simplified
by approximating the (thick) lens by a thin lens. The vertical dimensions are
particularly enhanced.

Since the HDA focusing properties can be studied from the
ray trace on the exit plane [8,9,25], an expression which gives
the position of the particle at the exit, as a function of its position
and direction at the entry and its reduced pass energy 7 is needed.
This equation was derived in detail in paper I [10,11] (see Eq.
(I102)) to be:

Ro(1+8)

T+ &) (I =t ooty (dealHDA) (1)

g = —ro+

where (from I) g and 7 are the entry and exit radii, respectively,
of the particle trajectory. £ = R /Ry is the paracentricity of the
HDA, with Ry and R the entry and exit radius of the principal
trajectory, respectively. In practice, we shall always take R to
be the mean radius of the HDA, i.e., Ry = R = (R| + R»)/2,
however the symbol R;; is maintained throughout for generality.
A charged particle having an initial energy T is decelerated prior
to dispersion through the HDA to a pass energy of ¢, so that
t =T — q Vp. wis the nominal “tuning” energy, i.e., the energy
of the principal trajectory, after preretardation. Thus, the reduced
pass energy is defined as t = t/w. Finally, y is defined such
that ¢ V(Ry) = (1 — y) w. Note that, for a conventional HDA,
V(Ro) =0 and Ry = Ry, so that £ = 1 and y=1.Eq. (1) is
known [26] as the basic equation of the spectrograph.

For an ideal biased HDA one also needs to consider parti-
cle refraction at the HDA entry, as discussed in detail in I. In
our step potential model presented in I, refraction was found
to result in a change of both kinetic energy (Eq. (I B.21)) and
angle (Eq. (I B.22)) as the particle crosses the entry plane from
a potential V = 0 to one of V = V(rp). Thus, a particle with
kinetic energy K* = r and angle «* prior to refraction at entry,
will have after refraction, an energy K =t — g V(o) and angle
given by sina = +/t/K sina*. For t = w and ry = Ry, we note
that K = w — ¢ Vo = y w and therefore «* ~ y « in the small
angle approximation. Thus, for y > 1, K > K* and o < o, the
particle will in general be accelerated to larger kinetic ener-
gies and refracted to smaller angles within the HDA. These
changes will influence somewhat the overall performance of the
HDA.

Next, we study the basic focusing and dispersion properties
of an ideal hemispherical spectrograph based on Eq. (1). The
effects of the strong fringing field [1,6-9] are only discussed in
as much as the results obtained for the ideal HDA disagree with
comparisons to SIMION simulations and laboratory measure-
ments.

2.1. Magnification, dispersion and angular aberrations

In general, the Taylor expansion of the change in exit radial
position Arexjt up to first order in energy change and up to sec-
ond order in the angular terms takes the unique form for an
electrostatic analyser given by [12-14,26]:

At
Arexit EMArentry+DT + Pia* + Pya*? + ... 2)

In particular, using the symbols introduced here for the HDA
and after a deflection of 180° we may identify rexj with r and
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Fentry With rq [2]:
Ary = 1r7(ro + Arg, T+ AT, ) — rp(rg, T, o = 0)
AT
= MArg+ D— + Pia* + Pa*?, ©)
T

where it can be readily shown using Eq. (1) that for an ideal
HDA

M=-1 (@)
(1 +§)

= 54 5

YL+ E/y) A - D)2 ®)

P =0 (©6)

P, =—D. )

Here M is the HDA linear magnification, D the characteristic
dispersion length and P, the polar angular aberration or trace
width [12]. It is seen that the magnification M is always a con-
stant, inverting the image, while the polar aberration term P
is always equal and opposite to the dispersion length D. These
properties are thus seen to be generic of any ideal HDA, being
independent of the type of central trajectory chosen (this includes
both conventional and paracentric HDAs).

In cases where the spectrum is obtained at constant tuning
energy (a part of the spectrum is recorded simultaneously over
the PSD area) the dispersion length D can be defined [13,14,27]
as the magnitude of the image displacement caused by a slight
change in the initial pass energy ¢, divided by the relative energy
change, for the same initial pass energy:

D=t [Brﬂ}

ot re, T,o*=0
from which Eq. (5) is obtained directly by differentiation of r,
as given by Eq. (1).

In Fig. 2, the dispersion D is plotted as a function of the
reduced pass energy t and the biasing parameter y for different
values of €. The dispersion length D is seen to be a universal func-
tion of the reduced pass energy t and thus will vary across the
length of the PSD with energy. In more detail, an increase in the
particle’s reduced pass energy 7, corresponds to an increase in
the magnitude of the semi-major axis of its elliptical orbit inside
the HDA (see Egs. (I76) and (I88)) and therefore to an increase
of the dispersion length. The increase of D with increasing para-
centricity £ at constant y (Vj) directly reflects the geometrical
increase of the dispersion length (increase in Ry). Finally, an
increase in y is equivalent to a further acceleration of the par-
ticles inside the HDA which directly leads to a decrease of the
dispersion length D.

D is not affected neither by the quality of focusing at the
entry of the HDA nor by the refraction corrections since it is
defined for trajectories with «* = o = 0 [28,10,11]. The above
affect only the focusing properties of the HDA and therefore
its energy resolution which, however, primarily depends on the
dispersion length. Thus, the energy resolution can be optimized
by controlling the dispersion through the electrostatic field and
geometry parameters y and &, respectively.

; ®)

Dispersion D (in units of R )

Fig. 2. The characteristic dispersion length D in units of R, as a function of
the reduced pass energy t and the biasing parameter y for different values of
&. It is seen that for the same y(Vp) the dispersion D marginally increases with
increasing & (increasing paracentricity).

2.2. Energy resolution

A hemispherical spectrograph with PSD will have a minimum
spatial resolution Ar, along the dispersion direction. For a slit
spectrograph, Ary is the exit slit width along the dispersion
direction. Thus, the spectrograph base energy resolution R will
be the maximum energy spread, in the energy of the analysed
particles that make it into Ar,, centered at r,, from anywhere
within Arg, for any permissible angle «*. Using Eq. (3), the base
resolution Rp is written as [29,30]:

gzg: AFU—I-AF() +Ol*2.

Rp =
B t T D

©))
Depending on the HDA parameters, the analysed line shape
very often will have a long tail, and thus the resolution at FWHM
is usually smaller or equal to half the base width [15,30], i.e.,
RerwuMm < Rp/2. In systems with a preretardation stage, it is
the overall base resolution 9ig = (AT/T) of the spectrograph
that is of primary importance. Using Eq. (I6), g is written:

gR_AT_AI T (10)
R N A I

A focusing and deceleration system of lenses is usually added
at the entry of a spectrograph to provide control over the optical
properties of the charged particle beam prior to energy analysis
[31,16,32]. In this case, for conjugate object-image pairs, the
Helmbholtz—Lagrange law requires [33,27]:

T T+ F—1
|ML| ' |Ma| = 7 = f’ (11

where |My | = Arg/ds and |[My| = o}, / Aas are the linear and
angular lens magnification terms, respectively.

For paraxial optics, Aag = dp/(21), where [ is the mean dis-
tance of the object (target) to the entry of the lens and dp, is the
diameter of the lens entry aperture (see Fig. 1). The entry angle
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Fig. 3. Overall base-resolution as a function of the reduced pass energy 7 and
y, for different £ values. In all three plots, the lens linear magnification and the
deceleration factor were set to unity, i.e., |Mp| = 1, F = 1, respectively. Note
the small improvement in energy resolution at constant y for increasing values
of &.

* 1 .
oy, may be written as:

dp T+ F—1
* _ \/ , 12
“m = T My T (12)

Using Egs. (5), (9), (12) and (10) gives:

|My|ds + Ary T ( dp
N =

2
: ) . (13)
D t+F-1 21 |My|

Eq. (13) shows that the resolution for fixed lens magnifica-
tion |My| cannot be improved indefinitely by increasing the
deceleration factor F, but is eventually limited by the term
[dp/(21 IMLD]? due to the angular term (x;nz in the resolution
expression (Eq. (9)).

In Fig. 3, a three-dimensional graph shows the overall base
resolution as a function of the reduced pass energy 7 and y, for
different values of & (see Eq. (13)). The lens linear magnification
and the deceleration factor were set to unity. Fig. 3 clearly shows
the slight improvement in resolution with increasing values of
paracentricity £. This of course is a direct result of the increase
of the dispersion D with increasing values of &, already noted
previously. Clearly, it is unrelated to the reported improvement of
resolution in a real paracentric HDA [1,6,7] due to the improved
focusing effects introduced by the strong fringing fields of a real
paracentric HDA, affecting the angular aberration term (second
term in Eq. (9)).

2.2.1. Optimum lens magnification for highest resolution

The dependence of the energy resolution on the quality of the
focusing at the HDA entry, described so far by the term | M1 |, is
not straightforward as can be clearly seen in Eq. (13). However,
it is evident that there should be an optimum value for | M | that
minimizes Rp [2]. Thus, since the lens voltages are usually set
with respect to the principal trajectory, we set T = 1 in Eq. (13)

20 . ——r . ;

1.0 F

M| =0.19

3
a5 L IM,| = |M,|.=0.19F"

Mean Overall Base Resolution Rg (%)

0.0 1 L L L P | " L
1 2 4 6 810 20 40

Deceleration Factor F

Fig. 4. Plot of the mean overall base resolution Sig (Eq. (14)) as a function of the
deceleration factor for lens magnification | My | values of 1, 0.5, 0.75, 0.19 and
optimum value |My,|, = 0.19 F173, Clearly, for small values of F it is important
to be near the optimum lens magnification. The data points are from measured
resolution values taken in the laboratory with our HDA.

defining the mean overall base resolution Mg as:

My |ds + A d 2
(Mulds +Arn) | (dy N
DF 21My|1

where D = D(t = 1) = (1 + §) R;/y is the mean dispersion.
Setting the first derivative of Np with respect to | My | to zero we
obtain after some straightforward algebra, the optimum value
for | M| [2]:

ng EmB(‘L’Z 1) =

_ 1/3
1 (DFY\ (dp)\2]" 1)
2\ d l ’
Substituting | M1 |, back into Eq. (14) the mean overall optimum
base resolution is found to be [2]:

IML|0 =

Ary

R o = Rp(IMLlo) = + 3 (s )P (16)
Bo = SBUTLI) =B F " 223\21DF)

In Fig. 4, the mean overall base resolution is plotted as a
function of the deceleration factor F. For the parameters of
our particular setup it was found that |M |, = 0.19 F1/3. A
comparison between the above cases, indicates that substantial
gains can be made in energy resolution by initially fine tuning
|My] at F = 1. At higher values of F the resolution becomes
increasingly insensitive to changes in | My |. Also, it is evident
that optimum resolution does not only depend on the quality of
the focusing at the entrance of the HDA, i.e., a constant value
of |My |, but on the deceleration factor as well. Thus, for each
deceleration factor F' the value of | My | for the optimum reso-
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lution should be attained, as it is clearly seen for the cases of
M| =0.19 and |My |, = 0.19 F1/3.

A possible overestimation in the above study is that the energy
resolution is seen to keep improving with increasing F, assuming
that the lens magnification is also adjusted according to Eq. (15).
At this point we shall consider the lens as an ideal lens allowing
the magnification to be treated as a free parameter. However,
when |My| > dy/ds (see Fig. 1), the virtual aperture size Argy
will exceed the real size aperture of the HDA entry dy. Thus,
charged particle transmission losses through the lens begin to
occur, setting a limit to the maximum useful value of My, and
therefore to the minimum possible resolution attainable at 100%
transmission. However, for virtual entry HDAs, dp is usually
much larger than Arp, so an attenuation in the transmission will
occur only at very high F values at which however, other limiting
parameters not considered in our ideal HDA treatment could
become important (e.g., aberrations, external magnetic fields,
etc.). The experimental data points shown are from measured
resolution values taken in the laboratory with our paracentric
HDA and will be further discussed below.

2.2.2. Spectrograph design criterion

An important feature in designing a spectrograph in general,
is that the shape of the transmission function not be significantly
affected by the angular abberation term in Eq. (9). In order to
reduce the tailing of the line shape, Kuyatt and Simpson pro-
posed the following criterion for the ratio x of the angular term
to the dispersion term [17].

* 2
an 1

_— < - a7
(Arg + Arg)/D

X =
This value seems to have been adopted as the standard [16] in
the design of HDAs with slits operating in the non-deceleration
mode. Using the optimized conditions for the energy resolu-
tion described above, i.e, | M1 | = |ML|, with Eq. (17), the mean
optimized ratio o = x(r = 1, |ML| = |ML|,) is written as [2]:

-1
U (., 2072/ D /071"
2 (Ary/DF)

Xo = (13)

In Fig. 5, x is plotted as a function of F for various linear
magnifications | My |, including the case of resolution-optimized
condition | My | = |ML |, that corresponds to the mean optimized
ratio . We note that x, always fulfills the Kuyatt—Simpson cri-
terion contrary to other choices of constant linear magnification.
Therefore, the long standing design criterion standard for spec-
trometers is seen to be valid for HDA systems incorporating
a focusing/deceleration lens system, allowing for maintaining
the imaging properties at large deceleration factors. Finally, the
seemingly adhoc value of 1/2 in the Kuyatt—Simpson criterion
is seen to arise naturally as the limit of ¥ for F — oo [2].

2.3. Energy calibration

The energy calibration of a spectrograph establishes the rela-
tion between exit particle position and its initial kinetic energy.

1.0

T T T
IM| =0.25

IM|=05

Kuyatt-Simpson limit

- 13
M|, = 0.19F

IM | =0.75 /

M| =1

0.0 L 1 . 1 . I . ! .
0 20 40 60 80 100

Deceleration Factor F

Fig. 5.  ratio of angular to dispersion resolution terms plotted as a function of
the decelerating factor F for various values of the linear magnifications |My,|.
Note that for the resolution optimized conditions |My| = |ML o, Xo is always
below the Kuyatt—Simpson limit, shown by the dashed line.

In the laboratory, the particle position is known from the chan-
nel number i on the PSD where the particle hits. Therefore a
relation between the initial kinetic energy and the channel num-
ber i, rather than the exit position, must be established. Here,
the above relationship is derived theoretically, for a generalized
spectrograph. Initially, it is assumed that the position along the
PSD, ry,, depends linearly on the channel number i

re =G+ Hi. (19)

Constants G and H will in general depend on the electronic setup.
Assuming, n to be the total number of channels available, there
will always be channels ipi, and iymax Which will correspond to
the limiting positions along the PSD of r(min) = R; — dpsp/2
and rp(max) = Ry + dpsp/2, respectively, such that

1
Ry — EdPSD =G + Himn (20)

1
Ry + EdPSD =G + Himax, 2D

where dpsp is the diameter of the active PSD area centered at
Ry. Egs. (20) and (21) are solved for the parameters G and H
and upon substituting back into Eq. (19), the position calibration
equation reads

1 Imin [
I =Ry — | =+ dpsp + — dpsp, (22)
2 n n
where it was assumed that the center of the PSD at R, cor-
responds to the center of the channel range (e.g. n/2), and
N = imax — imin- Lhen, assuming the averages («*) =0 and
(ro) = Ro, the averaged reduced pass energy (t) of the anal-
ysed particles can be related to the channel number via Eq. (1)
as:
rz)/Ro) + (1 —y+ ({rz)/R
(1) = y({rz)/Ro) + (1 — y + ({rx)/ o))? 23)
(I 4+ ({rz)/Ro))§

Upon substitution of (r;) with rz, from Eq. (22) and () with
7; gives the exact energy versus channel number calibration
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relation for an ideal HDA
o 1 +&+ (s/Ro)(y + &) —io)
" 141+ (/R —i0)] &

where iy = (imax + imin)/2 is the center channel and s =
(dpsp/n) is the effective “slit” width of a single channel.

It is seen that the relationship between the reduced pass
energy t and the channel number i is in general not linear.
When the quantity é; = (s/Ry)(i — ip) is smaller than 1, as in
most cases, a power expansion of the denominator of Eq. (24)
is justified yielding

, (24)

i~ A+ Bi+C#, (25)
where
A—1— Sioy[sioé:-f—Rn(lz‘f‘éf)] (26)
[Rr (1 +8)]
_ sy[2sioé+ R(1 +8)] (27)
[Rr(1 + &)1
Sy§ (28)

TR+ B

2.4. Energy acceptance window

For an exit slit spectrometer the energy acceptance window is
just the base energy width. For the case of a spectrograph using a
PSD instead with effective diameter dpsp the energy acceptance
window A Tyindow 18 defined [18] as the energy range which can
be simultaneously recorded on the PSD.

Using Eq. (1) and assuming the averaged entrance angle
(a*y = 0 and (rg) = Ry, the reduced pass energy is related to
position relation via:

o re(y +8 — Rz (y — 1)
B Ry +71y & .

Assuming that the end points of the PSD are at R, & dpsp/2
achieved at the energy acceptance limits Tpyax and Ty, the

(29)

reduced energy acceptance window ATyindow = Tmax — Tmin 1S
obtained from Eq. (29):
[dpsp/(Ry (1 +8)]y
ATyindow = 2/ = 3 (30)
1 —(5/2)"ldpsp/ (R (1 + §))]
d
~ Y apsD 31)

T1+E Ry

In systems with a deceleration stage, it is the quantity
ATyindow = Tmax — Tmin Which is of importance, since it
depends on the deceleration factor F. Using Eq. (I6), A Tyindow
is written as:

w
ATyindow = ATwindow F . (32)

The energy acceptance window ATyindow 18 inversely propor-
tional to the deceleration factor F, as is the energy resolution to
first order in o* (see Eq. (9)).

The dependence of Atyindow ON ¥ may be explained directly
from the fact that y acts as an acceleration/deceleration factor.

From conservation of energy the central ray must have a new
energy w’ at Ro such that w’ + ¢Vp = w 4 ¢V, = W. Using the
definition of y from Eq. (I3), we obtain w’/w = y. Thus, for
y > 1, the particle is further accelerated, so that a central ray
with initial energy W ends up having a pass energy w’ at Ry
such that w’ = (y/F)W. The ratio y/F is thus seen to be the
overall deceleration/acceleration factor instead of 1/F.

3. The paracentric HDA: measurements and SIMION
simulations

This study of the focusing and dispersive properties of the
paracentric HDA was primarily prompted by the use of such
a spectrograph in zero-degree Auger projectile spectroscopy
(ZAPS) [34-36]. ZAPS is a well known technique in fast
ion—atom collisions allowing for high resolution measurements
by utilizing the minimization of the kinematic broadening at
zero-degrees with respect to the beam direction. Recent reviews
of the technique can be found in [34,36]. An example of high res-
olution ZAPS spectrum taken with our ZAPS setup is shown in
Fig. 6 for the collision system of 17.97 MeV N** + He. A decel-
eration factor of F = 4 was adequate to resolve the N3+ KLL
lines. The ZAPS setup, a schematic of which is shown in Fig. 7,
has already been described to a certain extent [37,22,23].

The experimental study of the spectrograph’s focusing and
dispersive properties was performed using the 21.6 MeV F3+ +
H, collision system. The advantage of this system is that the
spectrum consists of a broad Binary Encounter electron (BEe)
peak [38,22,23,36] with a single Auger (the 2p® 'D) lying on
top of it, as illustrated in Fig. 8. The Auger peak was used for
studying the energy resolution, by recording the FWHM of the
peak at different experimental conditions. The BEe was used for
the energy window study and also for cross section normaliza-
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Fig. 6. High resolution Auger spectra for the collision system of 17.97 MeV
N** + He obtained with the paracentric spectrograph. The data were recorded
at zero-degrees with respect to the beam direction. A deceleration factor of
F = 4 was adequate to resolve the N>*KLL lines.
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=Ll

Ion Beam
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Fig. 7. Schematic of the ZAPS experimental setup. Note the asymmetric (para-
centric) position of the entry aperture on the HDA. The voltage notation
corresponds to the different electrodes.

tion purposes [39,40,36,22,23]. In addition, an electron gun was
used to obtain the energy calibration.

The study of a realistic HDA including fringing fields was
also performed using the electron-optics package SIMION [20].
Thus, the whole experimental setup was designed in SIMION.
Special care was given to maintain the ratio of the distance
between the lens elements to lens diameter at 1/10. This value
corresponds to our lens geometry and is also very common in
lens design [33]. A detailed design of our lens is shown in Fig. 9.
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Fig. 9. Detailed design of the lens used with the HDA.

The analyser was tuned to each electron energy, using the volt-
ages given by Eq. (1109). The lens voltages were adjusted close
to the experimental values so that minimum energy resolution
conditions were achieved. A small number of electrons (70) were
flown from the target (gas cell) area at appropriate energies, cov-
ering the whole solid angle, thus simulating the experimental
conditions. The electron-optical properties of the HDA could
then be studied from their trace on the PSD.

The present experimental arrangement did not allow for
mounting the lens at different entry values Ry and therefore
for comparing the resolutions at different values of Rp, which
limited the experimental study to just Ry = 82.6 mm and
& = 1.230. Thus, all subsequent SIMION or ideal theoretical
calculations presented here were performed with these values.
Moreover, the focusing lens optimum voltage values were empir-
ically determined in all cases, since the focusing quality (i.e.,
|Mp|) could only be indirectly inferred from the trace width of
the 2p® 'D electron Auger peak on the PSD area. Thus, a study
based primarily on the minimization of the energy resolution
gave for the optimal lens voltages the empirical values presented
in Table 1 for various deceleration factors F. An example of the
study is shown in Fig. 10 for the case of F = 4.

In the above studies, the value of y used was 1.5. This is also
the value for the data presented below unless otherwise stated.
This value was determined by experimental studies of the opti-
mization of the energy resolution. In Fig. 11, the mean overall
base resolution is plotted as a function of y along with the cor-
responding SIMION simulations and theoretical predictions for

Table 1
Optimum lens voltages determined empirically and mean overall base energy
resolution Ny for different deceleration factors

2100 2200 2300 2400 2500 2600 2700 2800
Laboratory Electron Energy (eV)

Fig. 8. Typical zero-degree electron spectrum of the 21.6MeV F3t 4 Hj, col-
lision system obtained with the paracentric spectrograph. Deceleration factor
F = 1. The 2p*> 'D Auger peak superimposed on the broad Binary Encounter
electron (BEe) peak [22,23] is well pronounced. The abrupt reduction of the
electron yield at the sides corresponds to the limits of the PSD detector.

F Vo)W Via/ W Vis/W Mg (%)

1 0 —0.45 0.92 0.88 + 0.04
2 —0.50 —0.49 0.82 0.56 % 0.02
4 —0.75 —0.45 0.88 0.30 +0.01
6 —0.83 —0.57 0.49 0.27 £ 0.01
8 —0.88 —0.24 0.65 0.22 +0.01

The value of V1, was set equal to that of Vi4.
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Fig. 10. Experimental energy resolution at FWHM study for deceleration factor
F = 4. Lens voltages V15 and V14 were scanned over a wide range appropriate
for minimizing the FWHM of the 2p? 'D Auger line, which was produced in
collisions of 21.6 MeV F¥* + H,.

the ideal 1/r field HDA. A reasonable agreement in the general
behavior but not in the absolute values between measurements
and SIMION calculations is evident. This behavior is solely due
to the fringing fields which alter the monotonically increasing
mean overall base resolution with increasing field strength as
predicted for the ideal 1/r field. A clear minimum is evident
both in data and simulations. Thus, certain values of y are seen
to be preferable for the optimization of the energy resolution,
justifying the choice of y = 1.5. Actually, as already reported
[1,6,7], the paracentric entry (§ > 1) along with the non-zero
entry potential (y # 1) can provide improved quality focusing
conditions due to the presence of the large fringing fields.

It should be noted here that in realistic HDAs the biasing
parameter y refers to the nominal value of V;, since Vj can be
defined only for ideal 1/7 fields. Experimentally or in SIMION
calculations, V;, and therefore y, should rather be considered as
a control parameter for the field strength.

The mean overall base resolution itg has also been studied as
a function of the deceleration factor F. The data were presented
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Fig. 11. Mean overall base energy resolution as a function of y. Comparison
between ideal theory, SIMION, and experiment. The last two include the effects
of the fringing fields.
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Fig. 12. Overall base resolution N as a function of the reduced pass energy
7. Comparison between ideal theory, SIMION simulation and experiment. Here
F = 1. The last two include the effects of the fringing fields.

in Fig. 4 in comparison to theoretical predictions for various val-
ues of the lens linear magnification | My |. The comparison is only
qualitative since the actual value of | M | cannot be determined
in this setup.

Very high deceleration factors allowing for high resolution
studies are regularly achieved by HDA spectrometers that use
very narrow exit slits. However, in these spectrometers the
energy resolution is determined solely by the openings of the
entry and exit slits, and the distance between them, while in the
spectrograph under examination the energy resolution is con-
trolled by the lens linear magnification factor | My |. Thus, even
though the deceleration factors reported here are relatively small,
the absolute energy resolution is comparable to that of HDA
spectrometers using very narrow slits.

A comparison of the overall base resolution iy as a function
of the reduced pass energy 7, describing the energy resolution
over the PSD detection area, is shown in Fig. 12. A reasonable
qualitative agreement between SIMION and measurements is
clearly seen. Ideal potential theoretical results for different mag-
nification factors were also plotted in order to obtain an indirect
estimation of the value of | My |.

Deviations from the ideal theoretical curves is assumed to be
due to effects introduced by the strong fringing fields. However,
another factor that must also contribute to the deviation is the
lens’ chromatic aberrations. The lens voltages are set to mini-
mize the energy resolution of the rays at the energy 7 = W. This
means that other source electron energies, T < W or T > W,
will be focused either before or after the lens exit, respec-
tively, producing images corresponding to |My| > |My|w, in
general, where |Mp|w is the magnification factor for the rays
at T = W. This condition degrades the energy resolution as the
edges of the PSD are approached. It should be noted however,
that as F is increased and the acceptance window correspond-
ingly decreased (see Eq. (16)) chromatic aberrations of the lens
are expected to also become smaller.

In Fig. 13, the energy acceptance window A Tyindow 1S plotted
as a function of y. SIMION and experimental results are very
similar showing a much smaller increase of the energy window
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Fig. 13. Comparison of the reduced energy acceptance window ATyindow pre-
dicted by ideal HDA theory, SIMION and experiment for the HDA under study.

with increasing y primarily attributed to transmission losses at
the edges of the PSD detection area caused by the fringing fields.
The energy acceptance window AT/ W is also plotted as a func-
tion of the inverse deceleration factor 1/F as seen in Fig. 14.
The data are in quite good agreement with theory, as expected,
since in this case focusing effects are insignificant.

In Fig. 15, the comparison of the energy calibration curves
for the case of F = 1 is shown. Good agreement between the
two theoretical models show that the quadratic model is a good
approximation. The measurements and the simulations corre-
spond to HDA tuning energies ranging from 300 to 3000 eV.
The effect of the fringing fields is again evident since SIMION
and experiment show similar behavior, contrary to the ideal 1/r
case. Note the change in the sign of the curvature of the lines in
SIMION and experiment compared to ideal theory. This is due
to the opposite sign of the parameter C in the energy calibration
relation of Eq. (25) as can be clearly seen in Fig. 16, where the
parameters A, B and C of Eq. (25) are plotted as a function of y.
It is interesting to note that for increasing values of y, C eventu-
ally goes through zero therefore resulting in a truly linear energy
calibration curve. This could be of interest to further pursue as
no studies have been reported.
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Fig. 14. Experimental energy acceptance window A7/ W as a function of the
inverse deceleration factor 1/F.
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Fig. 15. Comparison of the energy calibration curves for F' =1 as predicted
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An important factor in all spectrometers utilizing preretarda-
tion to improve energy resolution is the electron transmission as
afunction of the deceleration factor F. Transmission is defined as
the ratio of the number of particles detected at the spectrograph
exit (PSD area) over the number of particles entering the spec-
trograph entry (lens entry). For conventional two-stage parallel
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Fig. 16. The parameters A, B and C of the energy calibration relation (Eq.
(25)) are plotted as a function of y. Comparison between ideal theory, SIMION
simulation and experiment.
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Fig. 17. The electron yield of the 2p? ' D line obtained in collisions of 21.6 MeV
F8F 4+ H; plotted as a function of the deceleration factor F. A 90% spectrograph
transmission is observed for deceleration factors up to F = 10.

plate analysers used in the field of ZAPS the overall transmission
drops drastically with increasing F, practically a linear function
of 1/F [36]. In Fig. 17, the relative electron transmission (for
F =1, 100% relative transmission is assumed) measured from
the electron yield of the 2p? !D line obtained in collisions of
21.6 MeV F3t 4+ H, (shown in Fig. 8 for F = 1) is plotted as a
function of the deceleration factor F. The electron yield is seen
to be practically constant for a factor F up to 10. This indicates
that there are insignificant transmission losses, either inside the
lens or inside the HDA. This is one of the advantages of using
a spectrograph with focusing/decelerating lens system and vir-
tual aperture, as large apertures can be implemented allowing
for almost 100% transmission while at the same time the energy
resolution is controlled by the lens magnification through Eq.
(13).

Transmission is, in general, a function of the particle exit
position. According to the theory of the ideal HDA, the trans-
mission function is described by a trapezoidal form [18,12]. In
principle the lens transmission can be assumed to be unity, due
to the large analyser entry opening used (dyp = 6 mm). There-
fore the linear magnification can easily be limited to values of
[ML| < do/ds = 6/2.5 = 2.4, even for very high deceleration
factors, when proper lens voltages are applied. In principle, a
value of | My | < 2.4 allows for deceleration factors F up to 2000
(for 100% transmission) well above the observed conditions of
operation. Consequently, the spectrograph transmission should
follow the trapezoidal form of the ideal HDA.

Indeed, in Fig. 18 a SIMION study of the HDA transmission
is shown for the case of F = 1. Lens voltages were set according
to the energy resolution optimization. The trapezoidal transmis-
sion function form is evident. The same trapezoidal form can
be seen in the experimental data shown in Fig. 8. The data were
normalized to the theory by an overall scaling factor. The agree-
ment between theory and measurement, as well as the sudden
cut-off of the spectrum at both edges justifies the trapezoidal
form. It should be noted however, that the maximum absolute
transmission value is determined by the two 90% transmission
grids, placed at the exit of the analyser just before the PSD.
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Fig. 18. SIMION study of transmission of the hemispherical spectrograph.
Deceleration factor was setto F = 1.

The comparative study between simulations and measure-
ments are in general in good qualitative agreement, indicating
that the SIMION ion-optics package can be a very useful tool
in designing and studying charged-particle detection systems.
Since the accuracy of SIMION predictions [21] was not the aim
of this work, SIMION was only used as a guide to get an insight
in understanding the electron-optical behavior of the generalized
HDA.

4. Conclusions

The focusing and dispersive properties of the generalized
HDA were studied as a function of the entry point Rg and the
nominal value of the potential at the entry Vy = V(Ry). Ana-
Iytical expressions for the dispersion, energy resolution, energy
calibration and energy acceptance window were derived in the
generalized case of a biased paracentric HDA spectrograph
equipped with a focusing/deceleration lens system. Moreover,
the energy resolution of the HDA was studied as a function of the
lens linear magnification | My |, showing that there is an optimum
value |My |, depending on geometrical factors as also on the
deceleration factor F, which minimizes the energy resolution.
The condition |My | = |ML|, establishes a practical criterion
for designing spectrographs incorporating lens focusing ele-
ments. Experimental results and simulations using SIMION
were compared for energy resolution, energy calibration and
energy acceptance window, in the case of Ry =82.6 mm.
Comparison showed a general qualitative agreement between
SIMION and experiment, which however deviate from the ideal
HDA theoretical results, indicating in this way the role of the
fringing fields. Our results presented here complement the the-
oretical description of particle trajectories presented in Ref.
[10,11].
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Appendix A
Table A.1.

Table A.1

An alphabetical list of the most important symbols used in this paper is given for
convenience together with its value for our particular biased paracentric HDA
where appropriate

c V(r) = (=k/r) + c (see Eqgs. (187, 1105))
do diameter of HDA entry aperture (image) 6 mm
dy object diameter 2.5mm
dp diameter of the lens entrance aperture (pupil) 4 mm
dpsp (active) PSD diameter 40 mm
D HDA dispersion
D HDA mean dispersion, D = D(t = 1)
F deceleration ratio, F = W/w
Imax maximum PSD channel number 226
imin minimum PSD channel number 32
k V'(r) = (—=k/r) + c (see Egs. (186, 1106))
1 mean distance of the object to the entrance of the 264 mm
lens
| My lens angular magnification, |M,| = o, /Ao
| My lens linear magnification, |My| = Arg/ds
Mo optimum lens linear magnification value (Eq.
(15))
M HDA linear magnification, M = —1
P HDA polar angular aberration or trace width,
P,=-D
n PSD number of channels 195
q particle charge (¢ = —e for electron)
ro electron trajectory radius at HDA entry
I'n electron trajectory radius at HDA exit
Ry principal ray entry radius 82.6 mm
R, principal ray exit radius, R; = R
R HDA inner radius 72.4 mm
R, HDA outer radius 130.8 mm
R HDA mean radius 101.6 mm
Rs the HDA base energy resolution, R = At/t
Np HDA overall base energy resolution,
N = AT/T
Np HDA average overall base energy resolution,
R =NRe(r=1)
Npo HDA optimum average overall base energy
resolution, Rz, = Rp(IML|o)
t particle kinetic energy (before refraction) at
HDA entry
T particle kinetic energy far from HDA
V(r) HDA potential, V(r) =V (r) + V,
V(r) Vi) =(—k/r)+c
Vo nominal voltage V(Ry) (see Eq. (I3))
Vi nominal voltage V(R;) on R; (see Eq. (1109))
Vs nominal voltage V(R2) on R, (see Eq. (1109))
Vo biased voltage for deceleration, V(r) =V
)+ Vp
Via lens element 2 voltage (= V;)
Via lens elements 3 and 4 voltages
Vis lens element 5 voltage
Vie lens element 6 voltage (grounded)
w HDA tuning energy after deceleration
w HDA tuning energy prior to deceleration
o launching angle in plane of orbit

Aag maximum lens entrance half-angle (pencil angle)
maximum HDA entrance half-angle

5%

Table A.1 (Continued)

y HDA entry bias parameter to set Vp (see Eq. (I3)) 1.5

Ary PSD spatial resolution 0.2mm
ATyindow HDA energy window

& HDA paracentricity £ = R,/ Ro 1.230

T reduced pass energy, T = t/w ~ 20%

X spectrometer design criterion x=a"2/Rp
% Xx=x=1
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