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Abstract

The following pages are intended to compliment my presentation Strings from Scratch. Al-
though I have tried hard in the presentation to convey some important features of string theory
in a way that is both accesible and (hopefully!) aesthetic, the presentation format makes it
awkward to develop concepts with much rigor. Here I work through many of the important
results outlined in the talk, and in doing so provide a more complete picture of the physics of
strings.

String Actions

Of fundamental importance to succesfully calculating in string theory is a command of the string
action. As an initial pass, lets write down the Polyakov action and obtain the equations of motion
is describes:

Sp = − 1

4πα′

∫

dτdσ
√
−h hαβ∂αX · ∂βX (1)

here, hαβ is the world-sheet metric, while the string coordinates are understood to be contracted
with the flat 2-D Minkowski metric. The world-sheet metric has the properties hαβ = (h−1)αβ so
hαβhαβ = 2, and I have defined (as is customary) h ≡ dethαβ .

Varying the Polyakov action must be done for both the string coordinates and for the world-
sheet metric. The former is the easier of the two, and serves as a nice warm-up. Since the action
is clearly symmetric in the string coordinate Xµ, the variation of the action is twice the variation
with respect to one of the coordinates in the scalar product X · X,

δS = − 1

4πα′

∫

dτdσ
√
−hhαβ∂α(δXµ)∂βXµ (2)

The goal here is always the same—we want no derivatives acting on the variation, which can be
accomplished by writing the derivative like

∂α(δXµ)∂βXµ = ∂α(δXµ∂βXµ) − δXµ∂α∂βXµ

so that the variation becomes

δS = − 1

4πα′

∫

dτdσ
√
−hhαβ [∂α(δXµ∂βXµ) − δXµ∂α∂βXµ] (3)

In other words, I have simply integrated by parts. As always, this has led to a surface term,
which is the first in the brackets above. Looking at this term alone, it is clear that it must vanish
independently, so

δSboundary = 0 = − 1

2πα′

∫

dτ
[

δXµ∂σXµ

]∣

∣

σ2

σ1
− 1

2πα′

∫

dσ
[

δXµ∂σXµ

]∣

∣

τ2

τ1
(4)
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Because we require that the variation at the initial and final times be 0, the second term vanishes
trvially. The first, however, gives us our boundary conditions for σ. Just as was illustrated on slide
13, this term can be made to vanish so long as one of the following conditions is met:

Xµ(σ1) = Xµ(σ2) (Periodic)

X
′

µ = 0 (Neumann)

Xµ(σ = σ1, σ2) = c (Dirichlet)

The remaining term in the variation of the action that must vanish is

δSEOM =
1

2πα′

∫

dτ dσ δXµ∂α(
√
−hhαβ∂βXµ) = 0

since this is assumed to be true for all variations δXµ one can see that it must be that

∂α

(√
−hhαβ∂βXµ

)

= 0 (5)

As it stands, it is hard to get much information out of equation (5). To put it in a more recognizable
form, it will be necessary to pick a convenient gauge. As I suggest on slide 13, for an open string
whose worldsheet is described by an infinite strip free of topological obstructions, one can use the
conformal gauge. This gauge allows one to fix the world-sheet metric such that hαβ = ηαβ , or

hαβ =

(

−1 0
0 1

)

The determinant of this matrix is easy, h = −1, and we can now systematically write out the above
equation of motion. Notice that all off diagonal terms in the metric vanish, so we get

∂α

(√
−hhαβ∂βXµ

)

= ηαβ∂α∂βXµ = 0

or more familiarly,
Ẍµ − X

′′µ = 0 (6)

Which is of course just the wave equation! Next we must try a bit harder to obtain the equations
of motion the correspond to the variation of the worldsheet metric. Solving Zwiebach’s “Quick
Calculation” 21.5 (trivial) one can show that given a 2×2 matrix A,

A =

(

a11 a12

a21 a22

)

, detA = a11a22 − a12a21

and

A−1 =
1

det A

(

a22 −a12

−a21 a11

)

, δA =

(

δa11 δa12

δa21 δa22

)

from which it is easy to see that

δ det A = a22δa11 + a11δa22 − a21δa12 − a12δa21 = det ATr(A−1δA)

not surprisingly, this generalizes to larger square matrices as well, but that doesn’t matter here. In
the present case, take

A = hαβ so detA = h , A−1 = hαβ
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which, when inserted into the identity above, gives

δh = hhαβδhαβ

The reason I am working through this is because the action has terms like
√
−hhαβ , if you recall.

To put this in a more useful form, remember that contracting hαβ with its inverse is equal to 2, so

δ(hαβhαβ) = 0 = δhαβhαβ + hαβδhαβ

Using the above relationship, and the fact that hαβ is symmetric, we are finally in a position to do
some damage. . .

δ
√
−h = −1

2

δh√
−h

= −1

2

√
−hδhαβhαβ

returning to the Polyakov action action, note that

δS = − 1

4πα′

∫

dτ dσ

[

(δ
√
−h)hαβ∂αXµ∂βXµ +

√
−hδhαβ∂αXµ∂βXµ

]

= − 1

4πα′

∫

dτdσ
√
−h

[

−1

2
δhαβhαβhγδ∂γXµ∂δXµ + δhαβ∂αXµ∂βXµ

]

in case it is worth mentioning, the dummy indicies have been changed to avoid confusion—the hαβ

only exists to contract the derivatives, so this is necessary. Again, the above expression must vanish
for arbitrary variations δhαβ . This makes it easy to see that

∂αXµ∂βXµ − 1

2
hαβhγδ∂γXµ∂δXµ = 0 (7)

As per [1], the world-sheet energy momentum tensor is given by

Tαβ = −2

t

1√
−h

δS

δhαβ

which, from (7) shows that for strings the tensor vanishes. As was done previously, this equation
of motion is somewhat more interesting in the conformal gauge, where hαβ = ηαβ and

Tαβ = ∂αXµ∂βXµ − 1

2
ηαβ(X ′µX ′

µ − ẊµẊµ)

The variation of the metric just gives the system of constraints

Tαβ =

(

Ẋ2 + X ′2 ẊX ′

ẊX ′ Ẋ2 + X ′2

)

= 0 (8)

One interesting thing to notice is that if one were to trace the energy-momentum tensor with the
metric, he would find

Tr T = ηαβTαβ = Ẋ2 + X ′2 − (Ẋ2 + X ′2) = 0

in this case, it is obvious that because we were able to choose the conformal gauge the trace
vanished. The freedom to choose this gauge is a result of the reparametrization invariance of the
world-sheet metric—the so-called Weyl invariance inherent in the string action.
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Next I will see if I can show that “classically” the Polyakov action is identical to the Nambu-Goto
action, given by

SNG = −T

∫

dσdτ
√−γ = −T

∫

dσdτ

√

(Ẋ · X ′2)2 − Ẋ2X ′2 (9)

where I have used the fact that the induced metric is defined by

γαβ ≡ ηµν∂αXµ∂βXν (10)

Now the vanishing of the energy-momentum tensor allows one to write

∂αXµ∂βXµ =
1

2
hαβhγδ∂γXµ∂δXµ (11)

this is encouraging, since the quantitiy on the LHS of (11) is simply the induced metric γαβ as
defined by (10). Interestingly enough, this expression shows that the induced metric is proportional
to the world-sheet metric at each point on the world-sheet. We can now attempt to manipulate
(11) until it looks like the Polyakov action. Start with

γαβ =
1

2
hαβhγδγγδ

and take the determinant of both sides, remembering that hγδhγδ is a scalar:

det γαβ =
1

4
det hαβ(hγδhγδ)

2

γ =
h

4
(hγδhγδ)

2

then multiply both sides by -1 and take the square root. . .

√−γ =
1

2

√
−hhγδ∂γXµ∂δXµ

we may now relable the dummy indicies, multiply both sides by −1/2πα′ and integrate over the
world-sheet so

− 1

2πα′

∫

dτdσ
√−γ = − 1

4πα′

∫

dτdσ
√
−hhαβ∂αxµ∂βXµ (12)

Equation (12) is one of my favorites. It shows that the Nambu-Goto string action and the Polyakov
action are classically equivalent!

Before moving on and working out a few interesting results, I think it is worth writing a few
comments about the symmetries of the actions. First I would like to explain what I meant in my
slides when I said that the string actions are “manifestly reparametrization invariant”. The idea
will be to try to show that a term of the form

dτdσ
√−γ

does not change if one were to use a new parametrization where dτ̄ → dτ̄ (τ, σ) and dσ̄ → dσ̄(τ, σ).
This is perhaps written in a rather confusing way, but I suspect what is meant will become clear
in a second.

To do this right, remember that changing a measure always introduces a Jacobian, J such that

dτdσ = |J |dτ̄dσ̄ where J =





∂τ
∂τ̄

∂τ
∂σ̄

∂σ
∂τ̄

∂σ
∂σ̄




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Furthermore, if |J̄ | describes the inverse transform, then it must be that |J ||J̄ | = 1. Now note that,
as defined on slide 8,

−ds2 = ηµν = dXµdXµ = γijdξidξj

this length certainly can not depend on the parametrization, so (with the help of the chain rule)

γijdξidξj = γ̄mn
∂ξ̄m

∂ξi
dξi ∂ξ̄n

∂ξj
dξj

From the above it is easy to see that

γij = γ̄mn
∂ξ̄m

∂ξi

∂ξ̄n

∂ξj
= γ̄mnJ̄miJ̄nj

with an effort no greater than several lines of algebra (see for example [2], who uses a nice trick) it
is straightforward to construct a relationship between γ ≡ det({γij}), like

γ = γ̄(det J̄)2

Now we are well poised to demonstrate what is meant by reparametrization invariance. Notice that
the measure transforms like

dσdτ
√−γ = dσ̄dτ̄ |J |√−γ̄ |J̄ | = dσ̄dτ̄

√−γ̄ (13)

In other words, the measure does not change under a reparametrization of the world-sheet. This
feature of string actions is often referred to as diffeomorphism invariance in the literature.

There is one more symmetry of the string action that deserves mention. This is the powerful
Weyl invariance that allowed us to exploit merits of the conformal gauge and work with a traceless
energy-momentum tensor.

Once you know what this symmetry looks like, it is very simple to show that it is respected in
the Polyakov action. This is an invariance of the action under local rescaling of the world-sheet
metric, ie.

hαβ → eω(σ,τ)hαβ

to confirm that this is a good symmetry, it is clear that we must only check what happens to the
term

√
−hhαβ . Since h−1

αβ = hαβ , it follows that

hαβ → e−ω(σ,τ)hαβ

From this we obtain

dethαβ → e2ω(σ,τ) dethαβ so
√
−h → eω(σ,τ)

√
−h

and thus √
−hhαβ →

√
−h eω(σ,τ)e−ω(σ,τ) hαβ =

√
−hhαβ (14)

At long last I think I have contented my self with the preliminary problems and I can try my
hand at putting the above results to good use. In what follows, I will change pace a bit and work
out some interesting results using the previously investigated features of the string action . . .

String Stuffs

The following three worked examples offer a quick glance at a few fundamental results in string
theory. I have tried to choose problems that address distinct and interesting aspects of the theory,
from classical limits of relativistic actions to string interactions. All of three of these puzzles come
from standard string theory texts, and are cited accordingly.
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String Limits (Polchinski 1.1)

Here one must find the non-relativistic limits of the point-particle action and the Nambu-Goto
string action. To make this problem a bit more straightforward, I have chosen to work in the static
gauge where X0 = τ in both cases:

For the relativistic point particle, we have

S = −m

∫

τ

dτ

√

−ẊµẊµ (see slide #5)

in the static guage, xµ = (τ, x1, x2, x3, . . . , xd) so

Ẋµ = (1, v1, v2, . . . , vd)

ẊµẊµ = −1 + v2
1 + v2

2 + . . . + v2
d

= −1 + v2

in the non-relativistic limit v ≪ 1, one expands
√

1 − v2 ≈ 1 − 1
2v2 which leaves

S ≈
∫

dt {1

2
mv2 − m} (15)

Notice that the action contains contributions from the classical kinetic energy as well as the parti-
cle’s the rest mass.

For the Nambu-Goto string action, we start from

S = − 1

2πα′

∫

dτdσ
√−γ

and construct the matrix {γαβ} using the static gauge condition Xµ = (τ, σ,Xi). . .

{γαβ} =

(

−1 + ẊiẊi ẊiX ′

i

Xi′Ẋi 1 + Xi′X ′

i

)

We need to take the determinant of this matrix, which is simplified somewhat by noting that
the only terms that contribute will be those that are second order or less in the velocity fields.
Accordingly, we keep

γ ≈ −1 + ẊiẊi − Xi′X ′

i

This in turn means

√−γ ≈
√

1 − ẊiẊi + Xi′X ′

i (16)

≈ 1 − 1

2
ẊiẊi +

1

2
Xi′X ′

i (17)

so

S ≈ − 1

2πα′

∫

dτdσ{1 − 1

2
ẊiẊi +

1

2
Xi′X ′

i} (18)

In analogy with the relativistic point particle, we see that the term

− 1

2πα′

∫

dτdσ = −m

∫

dτ

so long as m = lT where l =
∫

dσ and T is the string tension. The second term represents the
transverse kinetic energy, while the last is analogous to the potential energy in a non-relativistic
string, ie. Unr = T/2(∂y∂x)2.
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String Endpoints (Zwiebach 6.5)

Here is a somewhat surprising demonstration of the fact that string endpoints travel at the speed
of light. I will show this in two different ways. . .

As you might recall, when I derived the string equations of motion in the conformal gauge,
varying the metric led to the so-called Viraroso constraints,

T00 = T11 = Ẋ2 + X
′2 = 0 (19)

T01 = T10 = Ẋ · X ′ = 0 (20)

now if the string endpoints are moving at all, it must be that the string is characterized by Neumann
boundary conditons, and so at the ends X ′ = 0. We then have the relation Ẋ2 = 0. This equality
is also found when working in the light cone gauge. As was shown previously, one can write

Ẋ2 = −1 + v2 = 0

where v = ∂tX. The solution is both wonderful and trivial, one finds v = 1. Reinserting appropriate
dimensions,

vend = c (21)

The other way to see this is somewhat less direct, but as it is the way Zwiebach recommends in
the problem, I will include it as well. Starting from the Lagrangian density for the Nambu-Goto
string action,

L = −T

√

(Ẋ · X ′)2 − Ẋ2X ′2

we can compute the momenta like

P σ
µ =

∂L
∂X ′

= −T
(Ẋ · X ′)Ẋµ − Ẋ2X ′

µ
√

(Ẋ · X ′)2 − Ẋ2X ′2

so

P σ
µ Pµσ = T 2Ẋ2 Ẋ2X

′2 − (Ẋ · X ′)2

(Ẋ · X ′)2 − Ẋ2X ′2
(22)

= −T 2Ẋ2 (23)

rewriting the boundary conditions in terms of these momenta recasts the Neumann boundary
condition as P σ

µ = 0, so once more

Ẋ2 = 0 = −1 + v2

or
vend = c

which of course is exactly what was found above, see (21).
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String Interactions (Zwiebach 22.7)

This is the problem I was most excited to solve from the start. Here we consider a four open
string interaction in the special case where the incident strings have the same momenta—a sort
of world-sheet center of mass frame. The picture here would look a bit like figure 1. Notice that

Figure 1: World-sheet diagram of a 4-string open tachyon interaction in which all incident and
scattered strings carry the same momenta (ie. p+

1 = p+
2 = p+

3 = p+
4 = 2πα′p+)

unlike the general case where p+
1 6= p+

2 6= p+
3 6= p+

4 in this interaction the parameter T can never be
negative. This is intuitively clear by examining figure 1 . When T1 = T2, the ’slits’ coincide and it
no longer makes sense to measure the distance between them.

Here I will explicitly calculate the modulus, and show that in this (special) case, all the impor-
tant features discussed on slide # 24 are present as they must be.

Following the flow chart on slide #21, it appears as though the first order of business will be
to write the appropriate conformal map. Using the Schwarz-Christoffel map one finds

θP1
= θP2

= θP3
= θP4

= π

θQ1
= θQ2

= −π

which gives
dw

dz
=

A

z
(z − x1)

1

z − λ

1

z − 1
(z − x2) (24)

to make use of this, it will be useful to write this in a partial fractional decomposed form. This
makes it easier to integrate the result, and provides a convenient form for comparing to the string
’Feynman rule’. This is done for a general four open string interaction in [2], and it won’t contribute
much to write the steps here. The result is

dw

dz
= A

(

x1x2

λz
+

(λ − x1)(λ − x2)

λ(z − λ)(λ − 1)
+

(1 − x1)(1 − x2)

(z − 1)(1 − λ)

)

(25)

To obtain an system of equations, we compare the above to the differential equation obtained from
the string ’Feynman rule’. Starting from P1 and going clockwise around the degenerate polygon,
we increase σ twice, then decrease around P3. The answer is

w(z) = −2α′p+ ln z − 2α′p+ ln(z − λ) + 2α′p+ ln(z − 1)

Differentiating this expression and matching terms with (25) allows one to construct a system of
equations. Again, I will spare you the algebra and write down the result. Taking ratios of the
relationships eliminates the unknown constant A and simplifies the math. This gives

1 =
(λ − x1)(x2 − λ)

(1 − λ)x1x2
(26)

1 =
(1 − x1)(x2 − 1)

(1 − λ)x1x2
(27)
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To solve this system it is obvious that we are short one equation. To remedy this, we use the
constraint that the interaction time is given by T = T1−T2. This, coupled with the results on slide
#23 (specifically T1 = ℜw(x1) and T2 = ℜw(x2)) plus a bit of tedious algebra, leaves

T

2α′p+
= ln

x2

x1
+ ln

x2 − λ

λ − x1
+ ln

1 − x1

x2 − 1
(28)

Solving the system described by (26 –28) for the modulus, λ can be done many ways. After about
a page of algebra, one finds

λ(T ) =
4e

T

4α′p+

(1 + e
T

4α′p+ )2
(29)

I was very excited to obtain this result, because it has every property it should:

λ → 0 as T → ∞
λ → 1 as T → 0

what’s (still) amazing about this result is that as T takes on every allowed value, λ ranges mono-
tonically from 1 to 0. Just as before, since a Riemann surface with four ordered punctures also

has an N4 moduli space, we can say that the string diagrams produce the moduli space of all such
surfaces. The question also asks one to confirm that λ is a monotonic function of T . This should
be obvious, since the only maxima or minima occur at the endpoints T = 0,∞, but in case it needs
more of an explanation I have included a plot in figure 2.

2 4 6 8 10 12 14
T

0.2

0.4

0.6

0.8

1.0

ΛHTL

Modulus for 4 Open String Interaction

Figure 2: The modulus describing this 4-string open tachyon scattering as a function of time.

As a concluding remark, it is interesting to note that for four open tachyon scattering we
describe the process with the Venziano amplitude. As described on slide #25, this amplitude is
easily integrated and results in a mass spectrum identical to that expected for the strings:

M2 =
1

α′
(n − 1)
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