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Abstract: Although the perturbative approach to understanding the contents of a field
theory can be remarkably successful, it is nonetheless inextricably bound to the theory’s
weakly coupled regime. Not surprisingly, field theories are capable of supporting a rich
structure of non-perturbative phenomena, which no Feynman diagram can describe. Here
we explore one breed of solution, known as the soliton, whose existence is independent of
the value of the coupling constant. After realizing these modes in simple theories with
broken symmetries, we will turn our attention to understanding the consequences of their
existence.
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1. The Stuck Mattress

As it turns out, field theories can be much more than a collection of sticks and loops. The
weakly coupled, perturbative regime of a quantum field theory is well described by the
Feynman calculus, but these powerful techniques are hopelessly inadequate for deciphering
strongly interacting systems. Whats more, by probing only the weakly interacting field
excitations, modes characterized by a non-analytic dependence on the coupling are utterly
inaccessible. More precisely, consider a theory with coupling λ. If this theory contains a
propagating mode with energy E(λ) ∝ 1/λ, we will never find it in perturbation theory
(since no Taylor series for E(λ) exists about λ = 0).

In section 2, we will find modes with exactly this property in a simple field theory
with spontaneously broken symmetry. These exotic solutions will be purely topological,
dependent on non-trivial maps from the boundary of spacetime to the degenerate vacuua.
Interestingly, these solitons will turn out to be non-dissipative. In the “spring mattress
model” of quantum field theory, such modes are like a region of stuck springs that can
propagate in unison, but never disperse.

Increasing the dimensionality of spacetime, and the number of fields that live in it,
increases the possibility for interesting (non-trivial) maps between spatial infinity and the
vacuum. These possibilities are enumerated by the so-called homotopy group, which we
will briefly introduce. Among the solutions of interest, we will encounter the Nielsen-Olesen
vortex, and the ’t Hooft–Polyakov monopole.

The remainder of this review will be dedicated to deciphering the consequences of
these strange solutions. This will allow us a quick glimpse into superconducters, charge
quantization, and topology.
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A Note on Conventions

This review assumes a “gravitational” metric with signature (−,+,+,+). When the stress
tensor Tµν appears, we always mean the “improved” stress tensor, which has the advantage
of leaving many relevant symmetries explicit. For any action describing a matter field (i.e
a non-gravitational action), Sm this tensor is defined by

Tµν =
−2√
−g

δSm

δgµν
(1.1)

where gµν is the metric of spacetime.

2. Simple Solitons in 1+1 Dimension

We begin our soliton search in the tried and true scalar theory described by the Lagrangian

L = −1
2
∂µϕ∂µϕ− λ

4
(ϕ2 − v2)2 (2.1)

As is well known, (2.1) has the amusing property of a degenerate ground state at ϕ =
±v. Accordingly, any perturbative techniques we wish to apply to this theory should be
formulated in terms of small fluctuations about either one of these two vacuua. Let’s
quickly review the consequences of such a perturbative analysis: one redefines the field,
shifting by either vacuum expectation value (VEV), for example ϕ(x) = η(x) + v, so (2.1)
becomes

L = −1
2
∂µη∂µη − λv2η2 − vη3 − λ

4
η4 (2.2)

Evidently, our theory of the scalar field φ contains in its spectrum a particle η with mass
mη = v

√
2λ.

For suitably small values of the coupling λ, the interactions of the η with itself are
well described by applying the perturbation theory encoded in Feynman diagrams to (2.2).
The η can propagate through space, and weakly interact with either two or three other η

bosons. Is this the end of the story?
The answer, it happens, is a rather emphatic no. To defend this claim, we might search

for field configurations that can not be classified as small oscillations about one vacuum or
the other. These modes will be characterized by minimum energy configurations subject
to some boundary conditions. Now the energy density in any scalar theory of the form
L = −1

2(∂µϕ)2 − V (φ) is governed by the stress tensor

Tµν = ∂µϕ∂νϕ− gµν

[
1
2
∂αϕ∂αϕ + V (ϕ)

]
(2.3)

as can easily be shown using (1.1).
The energy of some field configuration is just the integral of T 00 over the volume of

space. It will turn out to be interesting if we agree to work in one space and one time
dimension, where this energy is given by

E =
∫ ∞

−∞
dx

[
1
2
ϕ̇2 +

1
2
(∇ϕ)2 + V (ϕ)

]
(2.4)
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First consider (2.4) in the context of the theory described by (2.1). To make life easier, we
can choose to look for solutions that are time independent (ϕ̇ = 0). Because these solutions
will be at rest, we relabel E → M where M is now the rest mass of the excitation. Since
this theory is manifestly Lorentz invariant, if such modes exists we can always set them in
motion via an appropriate Lorentz boost. Explicitly, we have

M =
∫ ∞

−∞
dx

[
1
2
(∇ϕ)2 +

λ

4
(ϕ2 − v2)2

]
(2.5)

In our hunt for germane solutions, we should certainly exclude the uninteresting configu-
rations that are characterized by a divergent rest mass. Looking closely at (2.5), we note
that both terms are positive, and thus each should give a finite contribution to the mass.
Accordingly, to avoid a linear divergence in the second term, we must impose the boundary
condition limx→±∞ ϕ(x) = ±v.

There are thus two possibilities: option A, where both points of the spatial boundary
are mapped to the same vacuum state (ϕ(±∞) = v or ϕ(±∞) = −v), or option B, where
each point of the spatial boundary is mapped to a different vacuum state (say ϕ(∞) = v

and ϕ(−∞) = −v). It is easy to see that there are no non-trivial field configurations that
satisfy the criteria of option A. To this end, note that we can rewrite (2.5) like

M =
∫ ∞

−∞
dx

[
1
2

(
∇ϕ−

√
2V (ϕ)

)2
+∇ϕ

√
2V (ϕ)

]
=

∫ ∞

−∞
dx

1
2

(
∇ϕ−

√
2V (ϕ)

)2
+

∫ ϕ(∞)

ϕ(−∞)
dϕ

√
2V (ϕ) (2.6)

Consider option A, with ϕ(±∞) = v. From (2.6), it is obvious that the second term van-
ishes. This leaves us with the task of attempting to minimize the mass of the configuration
while satisfying the boundary conditions. Because the remaining (first) term in positive,
the smallest it could hope to be is zero. Apparently, the field configuration that will make
it zero must solve the differential equation ∇ϕ =

√
2V (ϕ) such that ϕ(±∞) = v. Of course

this solution is easy to find—it’s just the trivial vacuum configuration ϕ(x) = v!
This solution suffers three strikes: we already knew it existed, it’s boring, and it’s

clearly not what we are after. Luckily there is option B, where the spatial boundary is
mapped to unique vacuua. Repeating the analysis of the proceeding paragraph, we find
that in this case the second term does not vanish, but instead contributes Ms = 2

3v3
√

2λ =
1
3(m3

η/λ) to the rest mass of the excitation. If we can again find a way to satisfy the
boundary conditions while making the first term disappear, Ms will then be the mass of
our new, non-perturbative field configuration.

Again, this is not such a hard task. Now we solve ∇ϕ =
√

2V (ϕ), requiring ϕ(∞) = v

and ϕ(−∞) = −v. Integrating, one finds

ϕ(x) = v tanh
(mη

2
x
)

(2.7)

where I have arbitrarily set the integration constant to 0, centering this solution on the
origin. Equation (2.7) is to be our first example of a soliton, and as such it will pay to
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Figure 1: Kink profile and energy density plotted in units where v = mη = 1.

spend a bit of time understanding it in some detail. The profile of this solution, and its
energy density, are shown in figure 1. For obvious reasons, this configuration is known as
a “kink”. Evidently, the energy density is localized in a region ls ∼ 1/mη. Interestingly,
both the size of this soliton ( lk) and its mass (Ms) are controlled by the mass and quartic
coupling in the theory of interacting η bosons. The fact that the mass of the kink is
inversely proportional to the quartic coupling, λ, means we should not be surprised that
these objects do not appear as dynamical modes in perturbation theory. Imagine studying
the Lagrangian (2.2) in its weakly coupled regime. Here the kink is extremely heavy, and
the corresponding theory is one in which these modes are effectively “frozen out”. Thus
these degrees of freedom will never appear in any Feynman diagram.

Beyond the relativistic field theory studied here, it is interesting to consider how a
kink might arise in condensed matter systems as well. Consider the canonical example
of an infinite “chain” of spins in the presence of an external magnetic field. At zero
temperature, the spins align with the applied field. At sufficiently high temperature, the
spins are disordered. We can quantify this behavior by studying the order parameter, m(x),
which in this case tells us about the variation of the magnetization across space. In the
context of our field theory example above, we recognize m(x) → 〈ϕ(x)〉. This identification
immediately allows us to describe a kink in the spin chain: it would look like m(x) = M

for −∞ < x < 0 and m(x) = −M for 0 < x < ∞, where M is a constant. Such defects do
indeed appear in condensed matter, often as “domain walls” in higher dimensional systems.

Before considering some more technical aspects of these soliton solutions, lets introduce
one more. For this we will need the Sine-Gordon Lagrangian, which has the form

L = −1
2
∂µϕ∂µϕ− α

β2
(1− cos βϕ) (2.8)

where α, β are real constants. The generic analysis performed above certainly applies to
this scalar field theory as well. Turning the crank, we solve

∇ϕ =
√

2
α

β2
(1− cos βϕ) (2.9)
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Figure 2: [Left] Sine-Gordon soliton profile and energy density plotted in units where α = β = 1.
[Right] The relevant part of the Sine-Gordon potential.

which is easily accomplished by integration. The result is a soliton of the form

ϕ(x) =
4
β

arctan
[
exp(x

√
α)

]
(2.10)

which is shown in figure 2 superimposed atop its energy density. Also shown in figure 2
is the potential experienced by the scalar field. Note that just as for the kink, this mode
interpolates between two distinct vacuua at the spatial boundary. Specifically, ϕ(∞) → 2π

and ϕ(−∞) → 0. We can of course choose any two vacuua to map the endpoints of space
into—this corresponds to the ability to select different branches of the arctangent in (2.10).

Until now, we have ignored one fantastically important property that these solutions
must have. In order to be interesting solutions in a dynamic theory, these defects should
be robust against small perturbations in the field. The question of the stability of the
soliton can be answered on many levels. Presently, we will understand this stability from
the conservation of a topological current, as suggested by [2]. In section 3.1, we will revisit
this problem in the context of homotopy groups. For an alternative explanation, the reader
is referred to [3] where the question is rephrased in the language of a simple problem in
quantum mechanics.

Note that commuting partial derivatives ensure the conservation of the current

J = n(?dϕ) → Jµ = nεµν∂νϕ (2.11)

in any flat space d= 1+1 scalar field theory. Here, n is an arbitrary constant we can use
to normalize the charge as convenient. Conservation laws like (2.11) do not require a con-
tinuous symmetry of the Lagrangian like those of Noether. Instead, they are consequences
of the topology of the manifold on which the fields live. In the present case, it is the
existence of a map from the one-form gradient of the scalar field to a one-form current in
two dimensions (the Hodge ?) that allows this current. It is easy to see that there exists
analogues of (2.11) in d dimensions for any (d− 2)-form fields. In any case, the conserved
charge resulting from (2.11) will be given by

Q = n

∫ ∞

−∞
ε01∂1ϕ = n [ϕ(∞)− ϕ(−∞)] (2.12)
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as per the fundamental theorem of calculus. For the ϕ4 theory in its broken phase, choose
n = (1/2v) and for the Sine-Gordon theory n = (1/2π). Then both of these configurations
have Q = 1. Now consider the interaction of these soliton modes with a small fluctuation in
the field (for example, the η boson in (2.2)). By definition, a small fluctuation is localized,
vanishing at the boundary of space. From (2.12), we see that these perturbations must
have charge Q = 0. Accordingly, there exists no way for a small fluctuation to “straighten”
these one-dimensional defects (1+0 =1). As promised in the introduction, this solution is
non-dissipative—once a kink, always a kink.

2.1 Bogomol’nyi and Derrick

There are a few more points of note worth discussing before we hunt for solitons in higher
dimensional theories. First, observe that the two terms in (2.6) are manifestly positive. In
the ϕ4 theory, the second term in this expression integrates to 1

3(m3
η/λ), and we find that

the mass is bounded from below:

Ms ≥
1
3
(m3

η/λ) (2.13)

If we rescale the conserved current like n → n′ = mη(v/3) we can rewrite this inequality as

Ms ≥ |Q| (2.14)

A constraint on the mass of this sort is generically called a Bogomol’nyi bound, and is a
feature common to descriptions of solitons we will encounter in this review. The Bogo-
mol’nyi bound is a nontrivial relationship between a conserved charge and the mass of the
excitation. Clearly, both of our 1+1 dimensional soliton solutions (2.7) and (2.10) saturate
this bound. Indeed, we indirectly used this fact to help identify them. Such solutions are
called Bogomol’nyi-Prasad-Sommerfeld (BPS) solitons. In theories with extended super-
symmetry (N > 1), BPS states are particularly interesting because they lead to shortened
multiplets (see e.g. [4]).

The second point will serve as a warmup for the sections to come. Imagine we extend
our soliton search to 2+1 dimensions. Our experience in section 2 tells us that in order
to have non-trivial solutions, we need a non-trivial vacuum. In two dimensions, spatial
infinity is topologically equivalent to a circle, S1. Is there some field theory whose vacuua
also have this topology? Of course the answer is yes—one easy example is the complex
scalar field in its broken phase,

L = −∂µϕ†∂µϕ− λ

4

(
ϕ†ϕ− v2

)2
(2.15)

clearly the VEV of this field is given by 〈ϕ†ϕ〉 = v2, the vacuum lies on a circle in field
space with radius v.

Just as before, we can look for time independent minimum energy field configurations
in

M =
∫ ∞

−∞
d2x

[
|~∇ϕ|2 +

λ

4
(ϕ†ϕ− v2)2

]
(2.16)
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This time, we avoid a quadratic divergence by enforcing ϕ(r = ∞, θ) = veiθ. That takes
care of the second term in (2.16), but watch what happens to the first. In polar coordinates,
d2x → rdrdθ and ∇ϕ = r̂∂rϕ + θ̂(1/r)∂θϕ. At infinity, the first term is |∇ϕ|2 → v2/r2,
and (2.16) diverges logarithmically. This is to be expected, as a consequence of the famed
“Derricks’s Theorem” which asserts that there are no finite-energy, time-independent soli-
tons localized in d > 1 in a theory built only from scalar fields. To understand why this
is the case1, consider a theory of N scalar fields ϕi=1,2...,N in d = D + 1 dimensions. The
appropriate Lagrangian is simply

L = −1
2
∂µϕi∂

µϕi − V (ϕi) (2.17)

where we take V (ϕi) ≥ 0. If ϕi(x) is a soliton solution, then its energy will be given by
E = T + U where

T =
∫

dDx |∇ϕi|2 (2.18)

U =
∫

dDxV (ϕi) (2.19)

and ϕi minimizes E. Under a scaling, x → x′ = x/α, the measure transforms as dDx →
αDdDx′ and the gradient scales like ∇ → α−2∇′. The energy is now given by

E(α) = αD−2 T + αD U (2.20)

By definition, ϕi(x′)|α=1 is the field configuration that minimizes the energy. Accordingly,
it must be that

∂αE(α)
∣∣∣
α=1

= 0 = (D − 2)T + DU (2.21)

For an arbitrary (non-trivial) potential that satisfies V (ϕi) ≥ 0, we find that (2.21) can not
be satisfied for any collection of scalar fields for D ≥ 2 (since both T and U are manifestly
positive). Apparently, there can exist no finite energy field configuration constructed from
scalar fields, localized in more than one spatial dimension.

3. Further Down the Spiral: The Vortex in d = 2+1

At long last we are prepared to leave our linear world and upgrade to more spatial dimen-
sions. Our first stop will be physics on a plane. Inspired by Derrick (section 2.1), we know
that there will be no topologically interesting solutions in any theory we build exclusively
from scalar fields. Loosely, the problem was that the kinetic term for our soliton configu-
ration diverged, rendering the solution useless. A reasonable course of action might be to
try adding some field that transforms non-trivially under the Lorentz group, and use this
field to help nullify some of the infinities we encountered.

1The proof offered here follows problem 92.1 of [1], which is problem 1.1 in [5].
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The simplest such choice is the vector, Aµ, which we already know can be used to
gauge the global U(1) symmetry present in (2.15). The corresponding theory, written in
terms of the covariant derivative Dµϕ = (∂µ − ieAµ)ϕ, is

L = −(Dµϕ)†Dµϕ− 1
4
λ

(
ϕ†ϕ− v2

)2
− 1

4
FµνFµν (3.1)

where Fµν is the usual two-form field strength. Under an appropriate gauge transformation,
we can always force A0 = 0. In this case, time independent scalar field configurations have
a kinetic energy given by

|Dµϕ|2 → | ~Dϕ|2 = |~∇ϕ− ie ~Aϕ|2 (3.2)

which suggests that a clever choice of ~A might be made to cancel the divergences we
found below (2.16). At spatial infinity, ϕ → veiθ so ~∇ϕ → v(i/r)eiθ, and the requirement
~∇ϕ ∼ ie ~Aϕ forces ~A → (1/er)θ̂ at infinity. Because the kinetic term for this gauge field goes
like |F |2 ∼ (1/r4) at large r, this choice clearly renders the soliton energy finite. As pointed
out in [1], these asymptotic field configurations correspond to local U(1) transformations
(U = eiθ) of the vacuum, 〈ϕ〉 = v and 〈Aµ〉 = 0. With this in mind, we take our soliton
solutions to be of the general form

ϕ(r, θ) = vf(r)eiθ (3.3)

~A(r, θ) =
1
er

g(r)θ̂ (3.4)

where f(r) and g(r) are undetermined functions fixed by minimizing the energy of the field
configuration. These functions are subject to the boundary conditions f(0) = g(0) = 0 to
keep the fields and their gradients well defined at the origin, and f(∞) = g(∞) = 1 to
keep the energy of the soliton finite.

Even without explicitly solving for f(r) and g(r), we can learn quite a bit about the
soliton configuration described by (3.3). As a consequence of this theory’s U(1) gauge
symmetry, the action (3.1) is obviously invariant under the global U(1) transformation
ϕ → Uϕ = eiηϕ for constant η. Accordingly, there is a conserved Noether current readily
computed in the standard way, which looks like

Jµ = i
[
(Dµϕ)†ϕ− ϕ†Dµϕ

]
(3.5)

and sources the electromagnetic sector of the theory, ∂µFµν = Jν . By construction, this
current vanishes far from the origin, but the fields do not. We can easily compute the flux
of the field strength by integrating the form F over S2:

Φ =
∫

S2

F =
∫

S2

dA =
∫

S1

Aµdxµ (3.6)

where we have used Stoke’s Theorem to rewrite the flux as an integral of the one-form
potential A over a circle at infinity. Using (3.4) with the appropriate boundary condition
g(∞) = 1, the integral is easy—we find Φ = (2π/e). Evidently, a weakly charged scalar
field gives rise to solitons with large magnetic flux.
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Interestingly, there is an ambiguity in the way we have constructed our fields (3.3) and
(3.4). In order to keep the energy finite, we required ϕ(r = ∞, θ) = veiθ. Furthermore, we
chose to study this theory for the important reason that there exists a map between spatial
infinity, S1

∞ and the space of vacuum configurations, S1
v . Take the coordinate θ to designate

points on S1
∞ and use the coordinate α on S1

v . Our map m : S1
∞ 7→ S1

v is a relationship
that takes values of θ into values of α. Generically, our field at infinity takes the form
ϕ(r, θ) ∼ eiα(θ). To keep the field regular (ϕ(θ) = ϕ(θ+2π)), we find α(θ+2π) = α(θ)+2πn,
for n ∈ Z. The idea is that we can loop around S1

v n times as we circumnavigate S1
∞ once—

for n > 1 this map is onto, but not one-to-one. A simple map that preserves this property
is α : θ 7→ nθ. With this in mind, we can write ϕ(r = ∞, θ) = veinθ which reduces to our
original ansatz for the special case n = 1.

Retracing our steps, we see that we can modify our earlier results to reflect this map,
like

ϕ(r, θ) = vf(r)einθ (3.7)
~A(r, θ) =

n

er
g(r)θ̂ (3.8)

Φ =
2πn

e
≡ nΦ0 (3.9)

Evidently, if we employ such a map from S1
∞ to S1

v our solitons will necessarily carry mag-
netic flux quantized in units of Φ0 = (2π/e). This intriguing result was already anticipated
by Nielsen and Olesen when they found these solutions in 1973 [6]. In fact, these authors
were motivated by applications of Landau-Ginzburg theory (qualitatively (3.1) for time
independent field configurations with A0 = 0) to the theory of type II superconductors.
To capture their line of reasoning, it is useful to consider our 2+1 dimensional theory em-
bedded in one higher spatial dimension. In other words, our fields are located at points
(t, r, θ, z), and we will assume that the physics is independent of t and z. It doesn’t take
much imagination to decide that our flux-holes have now grown into flux-tubes that connect
z+ and z−, the spatial boundaries in the z direction.

Now it is a well known result from the theory of superconductors that interesting things
happen when they are immersed in a magnetic field. Generically, superconducting materials
(in their superconducting phase) expel magnetic fields from their interior, as described by
the Meissner effect. When the applied field is weak, this occurs over a characteristic length
called the London penetration depth. As the field increases, the superconductor will do
one of two things: a type I superconductor will cease superconducting for some critical field
strength. Above this value of the field, there is a region in which a type II superconductor
will form flux tubes that carry the magnetic field through the material. In this state,
a type II super conductor remains superconducting. As it turns out, these flux tubes
transport quantized magnetic flux, and the current in the material circulates around them
like a tornado. For this reason, these flux tubes are dubbed vortices. Shortly, we will see
that our solutions also have this circulation, and we have already decided that they carry
quantized magnetic flux—accordingly we will call our d = 2+1 solitons vortices as well.

Originally, Nielsen and Olesen were inspired by the flux tubes of type II superconduc-
tivity because they reminded them of the Veneziano model of hadron interactions. This
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α

β

Figure 3: Illustration of the essential idea of a homotopy. Here we look at the image of the maps
α, β : S1 7→ N in N , the annulus (lavender). Although α and β are both loops in N , they belong
to different equivalence classes (i.e. they are not homotopic) because α can be shrunk to a point,
whereas β cannot. The set of equivalence classes forms the fundamental group, π1(N).

model, in its original form (and its current incarnation, string theory!) is a theory in
which the fundamental degrees of freedom are “strings” as opposed to point particles. The
Veneziano model had noteworthy experimental success at describing hadron phenomenol-
ogy [7], before Quantum Chromodynamics emerged as its replacement. Nielsen and Olesen
were trying to find a relativistic field theory that gave rise to these Veneziano strings, and
trying to show that the strings/flux tubes obeyed a Nambu action (which is proportional
to the area of the string world sheet). The idea of Nielsen-Olesen vortices as strings is
anything but forgotten, appearing in various contexts even to this day [8].

3.1 Mathematical Interlude

At first glance, our insistence upon the existence of a map α(θ) from spatial infinity to
the vacuua of our theory may seem superficial. We found that such a map quantizes the
magnetic flux spouting from our vortex, which is interesting, but so far unjustified. Indeed,
our original assertion (that ϕ†ϕ → v2 as r →∞) only fixes the magnitude of ϕ(r = ∞, θ),
and says nothing about what we should choose for our phase. Actually, there is an excellent
reason for us to enforce the map between S1

∞ and S1
v—it will guarantee the stability of

our solution! This surprising fact is a beautiful consequence of the homotopy group π1(S1)
which we will discuss now at no great length.

Briefly, a homotopy is an equivalence relation that identifies maps between two topolog-
ical spaces. More specifically, given two spaces M and N , and two maps mi=1,2 : M 7→ N ,
we say that m1 ∼ m2 if the image of m1 can be continuously deformed into the image of m2

in N . This whole business is easily explained with a cartoon. Take M = S1 a circle, and
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N the annulus shown in figure 3. Two maps from M to N can be α and β, whose images
in N are just loops. From the figure, it is obvious that there is something fundamentally
different between the two maps. Under continuous deformation (i.e. without cutting or
gluing) it is easy to see that α can be shrunk to a point in N . If α and β are to be in
the same equivalence class, then we should be able to do this to β as well. Obviously
this is impossible. As we contract β, we eventually run into the hole in the middle of
the annulus, and can go no further. It is easy to see that this example supports many
equivalence classes, each characterized by how many times the loop winds around the hole,
and in what direction (clockwise or counterclockwise). It turns out that there is a well
defined product between loops, and thus between equivalence classes. One can show [5]
that these equivalence classes support a group structure, which is called the fundamental
group, denoted π1(N). In so many words or less, the fundamental group catalogues all the
topologically distinct maps from the circle to the space N .

The example in the preceding paragraph was chosen to evoke a connection to our
Nielsen-Olesen vortex solutions. There too we had maps distinguished by their integer
winding number, n. In the vortex case, we should talk about the fundamental group of S1

v ,
the topological space equivalent to the scalar vacuum. Earlier, we wrote our map explicitly
as α(θ) = nθ. For n = 0, α = 0 for all θ. This is the trivial map, where the entirety
of S1

∞ is mapped to a point in S1
v . For n = ±1, we have α = ±θ. This is the identity

map, where each point in S1
∞ is mapped to the “same” point in S1

v , in either a clockwise
or counterclockwise manner. From this, it is easy to deduce the fundamental group of S1

v .
Since loops in S1

v look like einθ, the product of two loops is a third: einθ · eimθ = ei(n+m)θ.
Thus, we surmise that the fundamental group is the additive group of integers, π1(S1

v) = Z.
Notice that the trivial map n = 0 corresponds to the identity element in Z, 0. Since

Z is a discrete group, arbitrary group elements are not continuously connected to the
identity. In terms of our maps, there is no way to turn, say, the identity map into the
trivial map. Intuitively, you can’t take a rubber band off of a garden hose without scissors.
This fundamental result, given to us by the fundamental group, guarantees the topological
stability of our vortex solution. In other words, a stable vortex requires the existence of
a map from spatial infinity to the space of vacuum configurations, and this map in turn
forces the vortices to carry quantized magnetic flux.

3.2 A Vortex By Any Other Name

With these technicalities behind us, we can return to our vortex for a few final considera-
tions. Just as we have done for the kink, it is straight forward to compute the energy of
our vortex configuration by integrating T 00 over space. Using (1.1), it is easy to compute
the energy tensor

Tµν = (Dµϕ)†Dνϕ− gµν

[
1
2
(Dµϕ)†Dµϕ + V (ϕ†ϕ)

]
− 1

4

[
gµνF 2 − 4FµαF ν

α

]
(3.10)

which, using the fact Bi = 1
2εijkFjk, implies that for time independent solutions in temporal
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gauge (A0 = 0),

E =
∫

d2xT 00 =
∫

d2x

[
| ~Dϕ|2 + V (ϕ†ϕ) +

1
2
B2

]
(3.11)

To find the minimal energy configuration, we require δE = 0, and insert the field ansatz
(3.7) and (3.8) into the resulting equations of motion. The consequence is a rather unspec-
tacular system of coupled, second order differential equations for the functions f(r) and
g(r). In general, these equations can only be solved everywhere numerically for arbitrary
values of the winding number, n, and the couplings λ, e, v. Fortunately, for our present
purposes it will suffice to examine the solutions near the vortex core, where ρ ≡ evr << 1.
In this limit, the equations of motion decouple, and reduce to

f ′′ +
f ′

ρ
− n2f

ρ2
= 0 (3.12)

g′′ − g′

ρ
= 0 (3.13)

The goal is to solve these equations, subject to the boundary condition f(0) = g(0) = 0.
This is no great task. The second of these, (3.13) is easily integrated to give g(r) = m2

γr2,
where mγ = ev is the mass of the “photon”. A computer has no trouble solving the first
(3.12), the solution is f(r) ∼ mn

γ rn.
Consider these near-core solutions for the special (but arbitrary) case n = 1. We can

gain some valuable insight into our vortices by examining the behaviour of the conserved
current (3.5) near r = 0. In Cartesian coordinates, we have J i = ∂xi

∂r Jr + ∂xi

∂θ Jθ, or

Jx = −2y
√

x2 + y2
(
x2 + y2 − 1

)
+ 2x(x2 + y2) (3.14)

Jy = 2x
√

x2 + y2
(
x2 + y2 − 1

)
+ 2y(x2 + y2) (3.15)

where x = x1, y = x2 and all constants have been set to one. This current is shown in
figure 4. Lo and behold, the charge is circulating around the soliton core! This somewhat
satisfying observation, coupled with the fact that these solutions carry quantized magnetic
flux (3.9), fully justifies our insistence on calling them vortices.

4. Monopoles!

Finally, we are prepared to examine the most famous topological defect of all. Fortunately
for us, all the formal machinery has been developed in sections 2 and 3, so we are more or
less on autopilot until it comes time to interpret our results. . .

We now turn to the construction of soliton solutions in d = 3+1. Specifically, our goal
is to find a stable defect localized in three spatial dimensions. Our homotopic instincts
tell us that the (stable) foundation on which we should build our solution is a nontrivial
homotopy group, so what options exist? This group should characterize maps from spatial
infinity to the space of vacuua. In d = 3+1, spatial infinity is topologically equivalent
to the sphere, which we can denote S2

∞. The problem, then, is to identify an interesting
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Vortex Current

Figure 4: Behaviour of the conserved current, Jµ, near the vortex core. This circulating charge is
a vortex hallmark.

topological space N such that π2(N) 6= 0, and devise a theory whose vacuua share this
topology.

It is easy to see that there are no non-trivial maps m : S2
∞ 7→ S1

v , but there are
interesting maps from S2 to S2. As an example, given two beach balls, we could map all
the points on the surface of one into the north pole on the surface of the other (trivial), but
we could also identify each point on one with the “same” point on the other (north pole
7→ north pole, etc.) which is the identity map. Indeed, it is not hard to demonstrate the
well known math fact π2(S2) = Z. As before, our defects will thus be characterized by an
integer winding number, n. That these solutions will be stable is easily understood by the
well known life fact that its impossible to remove the yolk from an egg without cracking
the shell.

All this strongly suggests we look to theories with vacuua equivalent to S2. It is easy
to guess one such theory, that of three real scalar fields with the potential

V (ϕ) =
1
8
λ

(
ϕ2 − v2

)2 (4.1)

with ϕ2 = ϕiϕi and i = 1, 2, 3. Clearly the potential can be minimized for ϕi = v(ϕi/|ϕ|),
where |ϕ| is just

√
ϕiϕi. This implies that the boundary condition on our scalar fields

should be something like ϕi(r = ∞) ∼ vx̂i, which is just the three dimensional analogue of
what we did in section 3. Furthermore, we know that we will be unable to find finite energy
solutions unless we throw some gauge fields into the mix. One compatible model places the
scalar fields in the adjoint representation of an SU(2) gauge group, so ϕ = 1

2ϕaσa where
the σa are the familiar Pauli matrices. This theory is described by the Lagrangian

L = −1
2
(Dµϕ)a(Dµϕ)a − V (ϕ)− 1

4
F aµνF a

µν (4.2)
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with V (ϕ) given by (4.1), and the covariant derivative in the adjoint representation given
by (Dµϕ)a = ∂µϕa + eεabcAb

µϕc. We can understand the transformation properties of the
scalar field on two levels. Trivially, we noticed that we would achieve a moduli space (the
space of vacuum configurations) that was topologically the same as our spatial boundary
by studying three real scalar fields in the potential (4.1). The adjoint representation of
SU(2) is 22− 1 = 3 dimensional, and thus a perfect fit for our scalars (of course they don’t
have to transform as an irreducible representation, but it makes life easier).

More importantly, if we decide to break the gauge symmetry along, say, ϕ3 (we can
always do this, as all vacuua in the moduli space are related by a global SU(2) rotation)
then the matrix valued VEV (V) is proportional to σ3: V = 1

2vaσa = 1
2vσ3. Obviously, V

commutes with σ3, and thus this generator forms an unbroken U(1) subgroup. All of this
is a fancy way of saying that by putting the scalars in the adjoint representation, we can
break the gauge symmetry in such a way as to leave one of the three vector bosons (A3

µ)
massless. This massless gauge boson is associated with an unbroken U(1) gauge symmetry,
and thus we will have a certified photon. This should be contrasted with the case of the
vortex, where the “photon” acquires a mass when the gauge symmetry breaks.

For the time being, we will focus our attention on the special case of the identity map
from S2

∞ 7→ S2
v . This corresponds to the boundary condition on the scalar field

ϕa(x) → v
xa

√
xaxa

= v
xa

r
(4.3)

at the boundary of space. Just as before, we can use the gauge field to keep the kinetic
contribution to the excitation energy finite. This amounts to requiring (Dµϕ)a = 0 as we
approach r → ∞. Using the definition of the adjoint covariant derivative, together with
(4.3), it is simple to show that the asymptotic form of the gauge field must be

Aa
i (x) → εaij xj

er2
(4.4)

and thus our trial solutions will take the form f(r) times (4.3) and g(r) times (4.4), where f

and g are functions we will determine by solving the equations of motion (just like before).
Using the nonabelian generalization of (3.10), it is easy to see that the energy we

should be minimizing is given by

E =
∫

d3x

[
1
2
(Diϕ)a(Diϕ)a + V (ϕ) +

1
2
Ba

i Ba
i

]
(4.5)

where, as one might have guessed, the Yang-Mills magnetic field is given by Ba
i = 1

2εijkF
a
jk.

At this juncture, we have several options. By requiring δE = 0, we could obtain the
“equations of motion” for our system, and subsequently insert our ansatz for ϕ and Aµ.
This will result in a system of differential equations for f(r) and g(r) which we can then try
to solve, constrained by the appropriate boundary conditions. A considerably easier (and
equally enlightening) course of action is to see if we can write a Bogolmol’nyi inequality,
and construct the BPS states that saturate it. We will eagerly opt for this approach.
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The goal is to write (4.5) as a constant plus an integral over manifestly positive terms.
The constant will come from a surface term in the integrand, so we should look for a clever
way to redistribute derivatives. To this end, note that

1
2
(Diϕ)a(Diϕ)a +

1
2
Ba

i Ba
i =

1
2

[Ba
i + (Diϕ)a]2 −Ba

i (Diϕ)a (4.6)

The first term is certainly always positive, and the second looks as though it could house
our sought-after surface term. To find the desired term, we will need to use a few facts
from differential geometry. First, covariant derivatives satisfy a Leibniz rule: D(P ⊗Q) =
(DP )⊗Q + P ⊗ (DQ). We can put this in the gauge theory context by remembering that
a product of fields transforms in the direct product representation. Since B and ϕ both
transform in the adjoint, we can use the SU(2) fact 3 ⊗ 3 = 1 ⊕ 3 ⊕ 5 to note that the
product Bϕ can transform as a singlet. Of course the covariant derivative of a singlet field
is just the ordinary partial derivative, so we find that

Di(ϕaBa
i ) → ∂i(ϕaBa

i ) = (Diϕ)aBa
i + ϕa(DiBi)a (4.7)

This is promising, as the “leftover” term in (4.6) is evidently equal to the difference of a
surface term and a divergence of B. Evidently, we would be in good shape if this divergence
vanished. Here we appeal to a Bianchi identity, which is guaranteed for covariant derivatives
of fields in the adjoint representation by virtue of the Jacobi identity. Explicitly,

DiBi =
1
2
εijkDiFjk =

1
2
D[iFjk] = 0 (4.8)

where the Bianchi identity is used in the last equality. Finally, we are able to rewrite our
energy integral in a useful way:

E =
∫

d3x

[
1
2

[Ba
i + (Diϕ)a]2 + V (ϕ)+

]
−

∫
dΩiB

a
i ϕa (4.9)

where dΩ is the surface element of a sphere located at infinity. As promised, we have a
certifiable Bogomol’nyi bound

M ≥ v|Q| ≡ −
∫

dΩiB
a
i ϕa (4.10)

and a condition for BPS states (taken for vanishing λ)

Ba
i + (Diϕ)a = 0 (4.11)

which we will tackle in the order presented.
The integral in (4.10) has a very obvious interpretation, which likely won’t come as

much of a surprise given the conclusions section 3. On the surface of interest, at spatial
infinity, we have ϕa → vδa3, providing we agree to break the symmetry along the third
component of the scalar field. As discussed previously, this is a smart choice because it
leaves the gauge boson A3

µ massless, giving rise to a wonderfully ordinary electrodynamics.
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The 't Hooft!Polyakov Monopole !Hedgehog"

Figure 5: [Left] The BPS ’t Hooft-Polyakov monopole (hedgehog). [Right] The monopole’s name-
sake, my deceased hedgehog Leibniz.

The Kronecker delta picks out B3, leaving us with the integral of an honest-to-goodness
magnetic field over a sphere at infinity—the magnetic flux!

|Q| = −4π

∫
drr2B3 =

4π

e
(4.12)

In computing the integral (4.12), it is important to remember that B3, computed from
the field strength F 3

ij = ∂iA
3
j − ∂jA

3
i can only be interpreted as the magnetic field at the

boundary of space. Although we were able to avoid the issue here, B3 actually transforms
like a component of the gauge field under gauge transformations—it is not gauge invari-
ant. This implies that an improved, gauge invariant definition of the electromagnetic field
strength should be used everywhere else in space. Such a tensor is easy to construct, see
for example [2].

Summarizing, we have found in (4.12) the magnetic flux emanating from a point par-
ticle. Our solution is thus a stable particle in a 3+1 dimensional field theory that carries
magnetic charge g = −(4π/e)—in other words a magnetic monopole. The particular defect
we have been studying has a special name: it’s the ’t Hooft-Polyakov monopole. If we were
to back up a bit and generalize our map for arbitrary winding number n, it is not hard to
show that the flux is again quantized like g = n(4π/e). This brings us to one of the most
celebrated results of all time. Note that an “electron”, sitting at the origin, produces an
electric flux ΦE = q/(4πr2) · 4πr2 equal to its charge, q. If we add “electrons” into our
theory, placing them into the fundamental representation of SU(2), they will carry charge
q = e/2. Combining these results, we have

qg = 2πn (4.13)

which is nothing more than Dirac’s fabled charge quantization condition. In section 4.1 we
will briefly return to this result, deriving it in a far more elegant manner.
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It would be a shame if we left this section without first writing down an explicit solution
for the ’t Hooft-Polyakov monopole. From (4.11), it is straightforward to derive a coupled
system of differential equations describing the BPS state with mass gv. These equations
are not very impressive, but their exact solutions certainly are:

ϕa(r) = v

(
coth(evr)− 1

evr

)
x̂a (4.14)

Aa
i (r) =

1
er2

(
1− evr

sinh(evr)

)
εaijxj (4.15)

The field configuration described by (4.14) is shown in figure 5. For obvious reasons, the
’t Hooft-Polyakov monopole is often called a hedgehog.

4.1 From Another Angle

There remains one final point worth typing, which showcases the underlying geometric
nature of the magnetic monopole. Given a two-form field strength, F , we can compute
the magnetic flux corresponding to the charge of the monopole by integrating F over S2

as in (3.6). For better or worse, this isn’t always the painless procedure we made it out
to be in our study of the vortex. The problem is that F = dA is not in general globally
exact, and so multiple charts may be needed to properly define the integral. This is exactly
what happens for the monopole–since one needs two coordinate patches (N,S) to cover
the sphere,

g =
∫

S2

F =
∫

N
dAN +

∫
S

dAs =
∫

S1

AN −
∫

s1

AS (4.16)

Clearly, if the gauge potential is globally defined, (AN = AS) the flux vanishes and we
have no monopole. The fact that our vortex solution arose in a two dimensional theory
saved us from this worry earlier. The problem is thus reduced to finding two locally defined
potentials—one for the northern hemisphere (AN ) and one in the south (AS)—that give
rise to the monopole field strength F = −(g/4π) sin θdθdφ.

This problem has a well known solution, originally due to Wu and Yang [9]. Choose

AN =
g

4π
(cos θ − 1) (4.17)

AS =
g

4π
(cos θ + 1) (4.18)

so that there is no ambiguity at θ = 0 in the north, and θ = π in the south. Now we
simply take these potentials and plug them in to (4.16). Since we want both potentials
to describe the same physics, we require them to be related by a gauge transformation:
AN −AS = (g/2π)dφ = (1/iq)e−iχdeiχ. Accordingly,

g =
∫

S1

AN −As =
1
iq

∫
S1

e−iχdeiχ =
1
e

∫
S1

∂µχdxµ =
1
q

[χ(2π)− χ(0)] (4.19)

Because the gauge function χ(x) appears as a phase, χ(x) and χ(x) + 2πn give the same
gauge transformation. In other words, χ(2π) − χ(0) = 2πn and so for the second time in
as many pages we find

qg = 2πn (4.20)
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This approach emphasizes the important connection between quantized charge, magnetic
monopoles, and (compact) U(1) gauge symmetries, about which we will have more to say
in the conclusion.

5. When All is Said and Done

The observation that field theories are capable of producing non-perturbative excitations
has, at this juncture, provided us with far too many pages of entertainment. That said,
it will prove useful to fill a final page with a sort of highlight reel to take stock of where
we’ve been. . .

By searching for time-independent field configurations that minimized the energy, we
were able to select candidates for soliton solutions. In all cases, we turned our attention to
theories with spontaneously broken symmetry, because non-trivial moduli spaces coupled
with the appropriate dimensionality of space guaranteed the stability of our defects. This
stability was a consequence of the theory of homotopy groups, which organized for us the
set of all topologically inequivalent maps from the spatial boundary to the space of vacuum
configurations.

To move beyond d = 1+1, we were required by Derrick’s theorem to introduce vector
fields into the mix. Through the covariant derivative, these new gauge fields were tailored
to keep the kinetic contribution to the rest mass finite. In our d = 2+1 theory, the gauge
fields acquired a mass, and our soliton solution spit out quantized “magnetic” flux. This
solution whirled about its core, so we called it a vortex. We noted that a massive photon,
coupled with vortices capable of transporting magnetic fields, was exactly what one might
hope for in an attempt to describe the phenomenology of superconductors.

Incrementing the dimension of space by one brought a wealth of new technicalities to
address, as well as some new physics. By studying a theory with spontaneous symmetry
breaking scalars in the adjoint representation of an SU(2) gauge symmetry, we were able
to isolate an unbroken U(1) theory we called electrodynamics. The stable, time indepen-
dent minimum energy configurations we found carried quantized magnetic charge, and were
thus dubbed magnetic monopoles. As an example of such a defect, we studied the BPS
states of the ’t Hooft-Polyakov monopole, finding that they very much resembled a small
mammal covered in spines. We then tried for a deeper understanding of the Dirac charge
quantization condition, looking at the problem through the eyes of a geometer. Here we
learned that the existence of a monopole (and hence charge quantization) was fundamen-
tally related to the existence of a compact U(1) gauge group that doesn’t appear as a direct
product. This is the case for grand unified theories based on simple Lie groups like the
Georgi-Glashow SU(5), but not for the standard model, where the gauge group is given
by SU(3) ⊗ SU(2) ⊗ U(1). It is likely appropriate to point out that magnetic monopoles
have yet to be seen experimentally.

Finally, it may (or may not) be painfully obvious that in all these pages, there is no
mention of the quantum theory of solitons, nor their interactions. These are rich extensions
equally deserving of ample air time. Interacting quantum mechanical solitons arise in many
diverse corners of physics, from the study of condensed matters to supersymmetric string
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theories. In fact, these applications highlight one of the most remarkable features of these
topological defects, which is their role in dual models of physical systems. That, however,
is another story.
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