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At energy densities greater than a few GeV/fm3, lattice QCD calculations predict the formation of a new state of

matter. Above this critical temperature (Tc ≈ 175 MeV [1]), partons are deconfined from one another and exist as a

quark-gluon plasma. Here I examine an ideal gas of quarks and gluons in the relativistic limit. I start from the full

relativistic dispersion relation, and determine a number of interesting statistical quantities such as the parton

number and energy densities as functions of the plasma temperature.

1 A Physics Introduction

An interesting question to ask in physics is whether or
not the atoms and particles of today arrange them-
selves in the same ways as atoms and particles did
at the beginning of the universe. In an attempt to
answer this rather daunting question, one can step
backward through our universe’s evolution and ex-
amine the conditions that existed in it’s youth.

About 400,000 years after our universe popped
onto the scene by way of the big bang, previously free
electrons began to notice the positively charged nuclei
that surrounded them in space. Before this time, the
electrons had sufficient energy to resist the electro-
magnetic interaction, and formed a dense scattering
trap which effectively corralled the photons. As soon
as the electrons could no longer escape the tug of the
Coulomb interaction, they bound to the nuclei set-
ting the trapped photons free in what would later be
called the cosmic microwave background radiation.
This process is known as recombination.

Somewhere around 5 seconds after the big bang,
the speeding protons and neutrons begin to feel the
effects of the strong force. This is the age of nucle-
osynthesis. Before this time, the universe was suf-
ficiently hot for the protons and neutrons to roam
about indifferent to one another. Since unbound neu-
trons have a half life of something like 15 minutes [2],
some of them even decayed. At some point, seconds
after it all began, the nucleons had enough energy

to bring them close enough to one another for the
strong force to bind them, but not enough to get
away. These nuclei would later go on to form the
atoms in our universe today.

Mere microseconds after the beginning, it gets
more interesting yet. The universe in this era is now
over a trillion degrees—hot enough for the quarks
and gluons (that would later confine themselves into
the nucleons) to exist in a deconfined soup known
as the quark-gluon plasma. This plasma represents
a state of matter that hasn’t existed for over 14 bil-
lion years, and it’s observation represents one of the
most formidable challenges in the physics of heavy
ion collisions.

Quantum chromodynamics (QCD), the prevailing
theory of the strong interactions, predicts that a
quark-gluon plasma (QGP) can exist at extremely
high temperatures and energy densities—somewhere
around 5 GeV/fm3 [1]. Experimentally recreating
these conditions is one of the primary research goals
of the Relativistic Heavy Ion Collider (RHIC) at
Brookhaven National Labs. At RHIC, heavy ions
such as gold nuclei (favored for their sizable mass
and spherical shape) are accelerated to nearly 99.99%
the speed of light and collided into one another at a
collision vertex surrounded by a myriad of detectors.
These collisions put a lot of energy (up to 40 TeV)
into a minuscule space, and may have a shot at ob-
serving a QGP.

In this work, I explore some of the consequences
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of a relativistic soup of quarks and gluons. I begin
by considering the case that the temperature far ex-
ceeds the rest mass of the quark (the high tempera-
ture limit) and show that there are simple, analytic
results for the ratios of the number and energy den-
sities between quarks and gluons. I then investigate
numerically how these ratios change as the temper-
ature sinks below the quarks rest mass. Ultimately,
these methods are generalized and discussed as to
whether or not they might provide a rough portrait
of the produced matter within a heavy ion collision.

2 The High Temperature Limit

As a massless gauge boson, the gluon travels at the
speed of light and is described with the familiar dis-
persion relation

ǫk =
√

(h̄ck)2 + (mc2)2 (1)

where m = 0. In general, the density of states, g(ǫ),
is given by

g(ǫ) =
gs

(2π)3

∫

d~k δ(ǫ − ǫk) (2)

where gs is the degeneracy factor. Gluons themselves
have color charge, in fact each carries one unit of color
and one unit of anti-color. Since there are three va-
rieties of color, one would expect 9 distinct gluons.
As it turns out, one is a color singlet [3] and accord-
ingly the contribution to the gluon degeneracy from
the color is eight. The gluon degeneracy factor must
also account for two possible spin states, so we get a
grand total of gs = 8 × 2 = 16.

Evaluating this integral is best accomplished by
exploiting the (spherical) symmetry of the problem,
and noting that the k dependence of the delta func-
tion requires multiplication by a Jacobian term:

gg(ǫ) = gs
4π

(2π)3

∫

k2 δ(ǫ − ǫk)dk (3)

= gs
4π

(2π)3
k2 1

∣

∣

∂ǫk

∂k

∣

∣

∣

∣

∣

∣

k= ǫ

h̄c

(4)

=
8ǫ2

π2(h̄c)3
(5)

A similar analysis can be preformed for the case of
quarks and anti-quarks in the limit where kBT >>
mc2. Here the dispersion relation is identical to that
of the gluon’s with a modified degeneracy term. Since
the quarks come in three colors and two spin states,
the appropriate degeneracy factor is gs = 6. Inte-
grating just as we did for the gluons, we find that

gq(ǫ) =
3ǫ2

π2(h̄c)3
(6)

gives the density of states for the quarks.
We can exploit the grand potential to determine

the number and energy densities of these hot quarks
and gluons by noting that

Π = kBT ln Ξ = pV (7)

where Ξ is the grand partition function. Under the
quantum mechanical representation, Ξ can be written
in a surprisingly useful form if one agrees to represent
the system’s energies as the discrete eigenvalues of
some Hamiltonian:

H |i〉 = Ei|i〉

The conservation of baryon number, b, guarantees
that the net number of baryons never changes under
any physics interaction, so it is a good quantum num-
ber in this analysis. Like any good quantum num-
ber, the operator associated with it (b̂ in this case)
commutes with the Hamiltonian, which is one way of
saying that the energy eigenstates can also be charac-
terized by their baryon number. With this, one can
return to the grand-canonical partition function and
attempt to write it in a more revealing way. If Z is
the canonical partition function, then

Ξ(T, V, µ) =
∑

i

eβµbiZ

=
∑

i

e−β(Ei−µbi)

=
∑

i,b

〈i, b|e−β(H −µb̂)|i, b〉 (8)

Equation (8) is extraordinarily useful, because it sim-
ply represents the trace of an operator related to the
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grand-canonical partition function. Since the trace
of any quantum mechanical operator is representa-
tion independent [4], one can choose the occupation
number basis |n〉 to expand the states.

In the occupation number basis, the state energy
is simply the sum of all the level energies multiplied
by how many particles are in each level, or

En =
∑

i

niǫi

Now, evaluating the trace in the occupation number
basis gives the grand-canonical partition function as

Ξ =
∑

n

e−
∑

i
niβ(ǫi−µbi)

This expression can be simplified greatly, especially if
one is working towards the grand potential (7). For-
tunately, this is exactly what we are in the process of
doing—the answer is

pf/B(T, µ) = ±
kBT

V

∑

i

ln(1 ± e−β(ǫi−µbi)) (9)

where the plus sign is for fermions and the minus for
bosons. The summation in (9) can be considered an
integral over level energy as long as one multiplies
the integrand by the density of states. In this case

pf/b(T, µ) = ±kBT

∫

g(ǫ) ln(1 ± e−β(ǫ−µb))dǫ (10)

As a matter of notation, it is handy to note that the
eigenvalue of b̂ is the opposite sign for particles and
anti-particles. Instead of carrying around the b for
the next few pages, one can simply introduce this
sign change into the chemical potential, so that

µ = −µ̄ (11)

where µ̄ denotes the chemical potential of an anti-
particle.

When there are both quarks and anti-quarks
present, the grand potential contains grand partition
function contributions from both the quarks and the
anti-quarks, and it follows that the fermion pressure
should as well:

pq,q̄(T, µ) = kBT

∫

g(ǫ)[ln(1 + e−β(ǫ−µ))

+ ln(1 + e−β(ǫ−µ̄))]dǫ (12)

From (10), the number density is readily calculated
as the derivative of the pressure with respect to µ
holding the temperature fixed. Differentiating in this
way yields

n(T, µ) =

∫

g(ǫ)

eβ(ǫ−µ) ± 1
dǫ (13)

as the number density for quarks or anti-quarks (plus
sign), or gluons (minus, µ = 0).

If there are equal numbers of quarks and anti-
quarks, it follows that ∆N ≡ nq − nq̄ = 0, and
something very interesting happens. Subtracting the
number of anti-quarks per unit volume from the num-
ber of quarks per unit volume (as given by (13)) gives
zero so long as µ = µ̄. From (11), one can see that
this requires µ = −µ which is clearly only true if
µ = µ̄ = 0.

When µ = 0, the number density is easily inte-
grated. Under the substitution x = βǫ the integral
in (13) is of the form

∫

x2

ex ± 1
dx (14)

and can be evaluated in terms of polylogs (q’s, q̄’s)
and Riemann-zeta functions (gluons). As it turns
out, so long as µ = 0 the polylogs themselves can
be written in terms of the zeta functions, and the
analytic number densities in the high temperature
limit are simply

nq,q̄(T, µ = 0) = ζ(3)
9(kBT )3

π2(h̄c)3
(15)

for the quarks and anti-quarks and

ng(T ) = ζ(3)
16(kBT )3

π2(h̄c)3
(16)

for the gluons. The most interesting quantity in this
work will be the ratio of the quark-gluon densities.
In this (hot) limit, one finds

nq

ng
=

9

32
(17)

so at temperatures far greater than the rest mass of
the quark, there are roughly 4 gluons for every quark.
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It’s not too much harder to find the quark and
gluon energy densities. The energy density is simply
the number density weighted by the parton energy,
or

u(T, µ = 0) =

∫

ǫ g(ǫ)f(ǫ)dǫ (18)

where f(ǫ) is the Bose or fermion occupancy factor.
Just as before, these integrals can be evaluated ex-
plicitly with the help of the zeta functions, they give

uq,q̄ = ζ(4)
63(kBT )4

π2(h̄c)3
(19)

for the quarks and anti-quarks, and

ug = ζ(4)
48(kBT )4

π2(h̄c)3
(20)

for the gluons. The ratio of these two densities shows
that they are directly proportional to each other,
namely

uq

ug
=

21

64
(21)

so the gluons have about three times as much energy
per volume as the quarks.

Since the energy per parton is simply the parton’s
energy density divided by its number density, it is
a trivial matter to arrive at the average energy per
quark (or anti-quark). Dividing (19) by (15) leaves

Uq,q̄ = (kBT )
63ζ(4)

18ζ(3)
(22)

This energy is particularly interesting because it is
easily related to the volume described by the wave-
length of an averagely energetic quark. In the high
temperature limit the quarks are all traveling at ap-
proximately the speed of light, so they have a wave-
length determined by the deBroglie relation

λ =
hc

U
(23)

= hc
ζ(3)18

(kBT )ζ(4)63
(24)

The number of quarks in a volume λ3 is just the num-
ber density of quarks multiplied by (23), or

n · λ3 = 36πζ(3)

(

18ζ(3)

63ζ(4)

)3

(25)

This expression can be evaluated numerically, and it
says that there are about 4 quarks in each volume
described by the quark’s wavelength. Of course the
same is true of the anti-quarks.

3 The Not-So-Hot Limit

As the temperature cools, it is no longer appropriate
to ignore the quark mass term in equation (1), and
the physics gets far more interesting. Specifically, it
is in this limit that one must begin to pay careful at-
tention to the physicality of the statistical model. In
the final section of this work, I will spend some time
discussing how a QGP may (or may not) resemble a
relativistic partonic gas. At present, it will suffice to
note that if it is ever appropriate to model a QGP
with such a gas, it only makes sense to do so when
the temperature exceeds about 175 MeV, the critical
temperature that marks the phase transition from or-
dinary hadronic matter to the plasma. In this section,
I derive the quark to gluon number and energy den-
sity ratios as functions of the temperature, and plot
them as such. It is important to keep in mind that
below Tc ≈ 175 MeV hadronization has occurred and
the pictures are largely meaningless. I have chosen
to include the plots in their entirety because their
shapes are particularly interesting—while I consider
systems consisting of the three lightest quark flavors
(figures 3,4), with some imagination one can see that,
at higher temperatures, similar curves will describe
systems consisting of the heavier quarks as well.

In this limit, the dispersion relation can be inte-
grated to yield the modified density of states

g(ǫ)q =
3

π2(h̄c)3
ǫ
√

ǫ2 − (mc2)2 (26)

which clearly approaches (6) as m → 0. This density
of states describes some interesting features, as can be
seen in figure 1. Primarily, there are no states below
the rest energies of the quarks, and the densities of
states approach each other as the energy becomes
very large. More specifically, at energies near the
rest energy the density of states grows like the square
root, then like the energy squared as ǫ increases.
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Figure 1: Plot of the density of states against energy
for the three lightest quarks. The blue curve repre-
sents the density of states for the up quark alone, the
green curve gives the density of states for a system
of up and down quarks, and the red curve shows the
density of states for a system consisting of up, down,
and strange quarks. Notice that in the latter case,
there is no contribution to the density of states from
the strange quark until the energy is above its rest
energy (near 150 MeV).

The quark and anti-quark number densities are
again given by (13), this time however the integral
has no closed form analytic solution. Compared to
the number density of the gluons (16),

nq

ng
=

3

ζ(3)16

∫

x
√

x2 − (βmc2)2

ex + 1
dx (27)

where the integral has been made dimensionless
through the substitution x = βǫ. From this ex-
pression, one can note that at high temperatures (as
βmc2 → 0), one ends up with exactly the same result
given by (17).

When the temperature is very small (large β), the
exponential in the integrand of (27) sends the ratio
quickly towards zero, like exp(−βmc2), reflecting the
fact that at lower temperatures there are many more
gluons than quarks. A better description of this ra-
tio can be found in the plots of figure 2. This graph
was made by numerically integrating the expression

in (27) for many values of βmc2. As expected, in the

Figure 2: Generic Plot showing the ratio of the num-
ber of quarks to the number of gluons for a range of
values of βmc2.

high temperature regime the ratio is constant and
around nq/ng = 0.281 which is precisely the ratio
predicted by (17). As the temperature decreases the
ratio drops sharply as well. By the time the temper-
ature has decreased to 1/5 the quark’s rest mass, the
ratio has already fallen to about 1 quark for every 50
gluons.

An equally interesting plot is shown in figure 3,
which shows a log-log plot of the ratio of the number
of quarks to the number of gluons for the three light-
est quark flavors as a function of β. Just as before,
at high temperatures there is a contribution of about
0.281 from each of the three flavors. As the temper-
ature declines, the ratio is seen to fall abruptly with
a “step”, marking the abscence of the strange quark.
No step is seen when the system transitions from up
and down quarks to up quarks alone because the two
flavor’s rest energies are very similar.

Not surprisingly, it is fairly simple to determine
the energy density ratio in this section’s (not-so-hot)
limit. With the appropriate dispersion relation, one
finds

uq

ug
=

3

ζ(4)48

∫

x2
√

x2 − (βmc2)2

ex + 1
dx (28)
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Figure 3: Log-log Plot showing the ratio of the num-
ber of quarks to the number of gluons for a system
of up, down, and strange quarks. Ratio is plotted for
a range of temperatures. The first “step” shown at
high temperatures (small β) reflects the influence of
the disappearance of the strange quark.

where the same substitution (x = βǫ) has been used
to rid the integral of dimension. This ratio is plot-
ted in figure 4 for a system containing the three
lightest quarks. Conveniently, the limit of (28) as
βmc2 → 0 exactly approaches that obtained in (21),
about 0.328. As the temperature decreases, the ex-
ponential in the denominator again dominates and
the ratio shoots toward zero, reflecting the fact that
at low temperatures the energy density of the gluons
far surpasses that of the quarks.

4 From the Very Big to the

Very Small

Although the statistical description of the partonic
gas seems to offer a very nice glimpse of some prop-
erties of a quark-gluon plasma, it is fair to wonder
how well a plasma filled with quarks and gluons can
truly be described with these methods. To answer
this question, one can begin by discussing the as-
sumptions that were used to develop the statistical
model.

One interesting assumption made throughout this
work was that there is no baryon/anti-baryon asym-
metry in the QGP. This assumption required that the
quark and anti-quark chemical potentials were both
zero, and greatly simplified the integration for the
number and energy densities. In fact, heavy ion col-
lisions have an inherent matter/anti-matter assym-
metry, as two colliding gold nuclei bring with them
2×(79×3+118×3) = 1182 quarks and no anti-quarks.
Since baryon number is conserved, this asymmetry
will always exist in the collision: no matter how many
particles and anti-particles are produced in the fire-
ball, at the end of the day there will always be 1182
more quarks than anti-quarks. There is no analagous
‘conservation of boson number’ for the gluons.

The 1182 quarks that enter the collision are the va-
lence quarks of the nucleons in the heavy ions. Since
both protons and neutrons are comprised of up and
down quarks alone, no additional quark flavors are
brought into the collision. This observation, cou-
pled with the fact that the rest mass of the strange
quark is relatively close to Tc, suggests that the study
of strange particles produced in heavy ion collisions
might be of particular interest.

Figure 4: The above plot shows the ratio of the en-
ergy of a system of up, down, and strange quarks to
the energy of the gluons for many values of β. Note
the steep decline in the energy density of the quarks
as it becomes too cold to make more strange quarks.
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In the quark-gluon plasma, the primary means
of producing strange particles is through a process
called gluonic fusion, in which gg → ss̄ [4]. From
figure 2, one can see that these produced strange
and anti-strange quarks decline noticeably in num-
ber by the time the critical temperature is reached
(βmc2 ≈ 1) and hadronization occurs. Because the
masses of the up and down quarks are small compared
to Tc, the decrease in their number is far smaller.
With this, one might suspect that if the gluonic fusion
process contained some inherent matter/anti-matter
asymmetry, it might be reflected in the final state
strange particles that emerge from the fireball.

As an exercise, I arbitrarily chose a strange/anti-
strange asymmetry of 1 and plotted the number den-
sities as a function of temperature in figure 5. From

Figure 5: Log-Log plot showing the number of
strange (red line) and anti-strange (blue dots) quarks
as a function of β for non-zero baryon number. In this
case the strange/anti-strange asymmetry has been set
to one. At temperatures less than about 10 MeV
there are essentially no anti-strange quarks, and one
strange quark remaining.

this picture, one can see that at or before the tem-
perature has fallen to the critical temperature there
are on the order 107 strange quarks, and 107 − 1
anti-strange quarks. This result asks the interesting
experimental question of how well strange particles
can be counted. Evidently, if the matter/anti-matter

asymmetry in gluonic fusion was much, much larger,
it might be possible to see this asymmetry more
clearly in the multitudes of strange particles formed
during hadronization. Studies of charged kaon ratios
suggest that it is not [5].

Perhaps more important yet is the assumption that
the individual partons interact only weakly with their
neighbors. There are two fundamental forces that one
could be worried about. First, since the quarks and
anti-quarks carry electric charge (gluons are electri-
cally neutral), one must consider the possibility of
Coulomb interaction. Fortunately, at the energies of
interest here (above 175 MeV) the cross section for
the Coulomb interaction is essentially non-existent.
One can show this by dividing the energy density of
the Coulumb interaction

uC = nq
q2

4πǫ0〈d〉

= n4/3
q

q2

4πǫ0
(29)

by the energy density in the relativistic gas (18), and
noting that the quotient is on the order of the fine
structure constant (α ≈ 1/137), far smaller than
unity.

The other interaction that may occur within the
plasma is the strong interaction between the quarks
and gluons. As the name conveniently reminds us,
the coupling constant (αs) for the strong interaction
far exceeds the fine structure constant at familiar
temperatures. In fact, it is on the order of one, which
renders many perturbative calculation methods use-
less for understanding quark interactions on most en-
ergy scales [3]. But all hope is not lost. Curiously,
the strong coupling constant decreases as the energy
increases, a result that earned David Gross, David
Politzer, and Frank Wilczek the Nobel Prize in 2004
[6].

The “running” coupling constant’s dependence on
energy can of course be reflected in temperature as
well. So long as the temperature does not exceed
about 5 times Tc, a good approximation for αs(T ) is
[4]

αs(T ) ≃
αs(Tc)

1 + (0.760) ln(T/Tc)

7



where αs(Tc) is calculated to be around 0.5. From
this result, one can see that at temperatures at or
near the critical temperature, the value of αs is still
not much smaller than one.

From a value for the strong coupling constant at
RHIC temperatures, it has been suggested that the
produced matter actually behaves more like a fluid
than a gas [7]. Indeed, many now think that the par-
tons in heavy ion collisions are strongly interacting,
an inference supported by observations of collective
phenomena such as elliptic flow [8]. This view of the
quark gluon plasma is in opposition to the model I
have used, and should instead be treated with the
mathematical methods of hydrodynamics. Studies
involving such hydrodynamical models have led to
a variety of interesting predictions about the QGP,
such as it’s ability to support collective modes [9].

5 Conclusion

Although the statistical treatment of a relativistic gas
of partons may be inadequate to describe the proper-
ties of a QGP at RHIC energies, It is unclear whether
or not the quarks and gluons will remain strongly
coupled as the energy continues to increase [8]. If it
is ever appropriate to call a QGP a relativistic gas,
then the methods I employed here offer some very
nice pictures of the number and energy densities of
the plasma constituents. Understanding how these
densities change with temperature offers a portrait
of a gaseous QGP, and may offer some information
about the nature of the QCD interaction. Whether
or not that information is of any use is yet to be
decided.
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