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Abstract: The Standard Model of particle physics, with matter fields transforming under
representations of the direct product group SU(3) ⊗ SU(2) ⊗ U(1), is one of the greatest
triumphs of theoretical physics. While highly predictive, this model is also highly tuned.
In order to extract meaningful results, it is currently necessary to manually insert about
twenty paramters that quantify particle masses and couplings. Motivated by both physics
and aesthetics, it is interesting to ask whether there might exist a more cohesive framework
on which to build particle physics. Examples of such frameworks are found in the regally
named Grand Unified Theories (GUTs) in which matter fields are tucked into represen-
tations of a single, larger gauge group (and thus “unified”). Here we explore one such
unification scheme, based on the special unitary group SU(5). We begin by highlighting
some useful facts about the standard model, and quickly discuss a few group theoretical
preliminaries. The remainder of the review is then devoted to embedding the standard
model in SU(5) and understanding the consequences of this decision. . .
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1. Welcome to the Standard Model

Our present understanding of the interactions of subatomic particles represents one of
the most detailed descriptions of the natural world ever concocted. The ingredients are
a collection of fields whose excitations carry charges and mass. These excitations (read
particles) are fundamental, in the sense that they are not composite objects. Interactions
between the particles are mediated by gauge bosons. Colloquially, these are the messengers
of the strong, weak, and electromagnetic forces. Excluding gravity, all known interactions
are accounted for by this model. More importantly, this theory uses these particles and
their interactions to produce exceedingly accurate predictions. The calculated muon’s
anomalous magnetic moment, for example, currently agrees with experiment to something
like one part in a million [1].

Interestingly, but perhaps not surprisingly, the Standard Model is deeply rooted in a
soil of symmetry principles. Understanding and exploiting these symmetries has been a
dominant thrust of particle physics research for more than half a century. This exploration
is largely formulated in the language of group theory, and has yielded profound insights into
the physics of elementary particles. Early efforts like [2, 3] used approximate symmetries
of the strong force to probe this notoriously non-perturbative interaction at energies below
ΛQCD. Through clever computation of scattering amplitudes and their ratios, empirical
formulas for hadron masses and interaction cross sections were worked out long before the
details of the Standard Model (or the strong interaction!) solidified.
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While symmetry groups have proved invaluable in formulating our current model of
particle physics, the concept of symmetry breaking may be more important yet. This far
reaching concept allows for an extraordinarily rich phenomenology, and will play a notable
role in the second half of this review.

In all its successes, it is not unfair to write that the Standard Model is somewhat
utilitarian. Although it provides a framework in which one can calculate to astonishing
precision, the fact remains that in order to do so, one must specify about twenty parameters
currently dialed by experiment. Is there not some theory in which we need only specify
10, or 2 or none? Furthermore, after the groundbreaking work of Glashow, Weinberg, and
Salam, we understand the electromagnetic and weak force as different manifestations of a
single “unified” electroweak interaction. Might it be possible to find a theory that adds
the strong force into this mix? These are some of the goals of unification. Before we take
on these worthy questions, we digress slightly to take stock of what it is we have to work
with.

1.1 Gauge Theory Detour

All known interactions between fundamental particles are constrained by the principle of
local gauge invariance. In the Standard Model, theories invariant under such spacetime de-
pendent transformations are dubbed gauge theories, and appear in two related but distinct
varieties: abelian, and nonabelian. To better understand how these theories give structure
to the Standard Model, it will prove beneficial to review some well known facts about field
theories in a language convenient for our present purposes.

Importantly, one should recognize that the field operators, φ(x), in a field theory can
be tensor operators that transform in the usual way under the action of a group with
generators T a. To see this, construct a unitary operator called UT that implements a
group transformation on the Hilbert space:

〈f |φi|i〉 → 〈f |U †T φi UT |i〉 = UR
ij 〈f |φj |i〉 (1.1)

where R labels the representation under which the matrix element transforms, and we sum
over repeated indices. Since equation (1.1) holds for arbitrary states |f〉 and |i〉, it remains
true as an operator equation as well. If we take for concreteness UT = exp(−ig θaT

a), then
for infinitesimal θa it is easy to see that (1.1) implies

[T a, φi ] = (T a)R
ij φj (1.2)

which is precisely the definition of a tensor operator.
To make contact with the standard model, we assume that any valid Lagrangian de-

scribing the physics of fundamental particles is invariant under spacetime dependent group
transformations, UT (x). Imposing this constraint has substantive implications for the re-
sulting theory. Consider, for example, terms in the Lagrangian like

φ†iφi → φ†jU
R †(x)jiU

R(x)ikφk (1.3)

If the UR(x) are a unitary representation so that UR †(x)jiU
R(x)ik = δjk, it is obvious that

such terms are left invariant. An interesting thing happens, however, when we consider the
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kinetic term. For the kinetic term to be invariant, we would like the derivative of the field to
transform like a tensor operator as well, ie. Dµφi → UR(x)ijDµφj . It is easy to see that the
ordinary derivative does not respect this transformation: ∂µφ→ ∂µ[UR(x)φ] 6= UR(x)∂µφ

as a result of the chain rule. To cancel the unwanted term, we introduce a gauge field, Aµ

and build from it the covariant derivative, Dµ = ∂µ − igAµ(x). Now for the kinetic term
in the Lagrangian to be gauge invariant, it is clear that the derivative must transform in a
special way:

Dµφi → UT (x) [Dµ, φi]U
†
T (x) = UR(x)ijDµφj

if

Dµ → UR(x)DµU
R†(x) (1.4)

where the derivative in Dµ acts on everything to its right. This transformation law in turn
requires the gauge field to transform like

Aµ → UR(x)Aµ U
R†(x) +

i

g
UR(x)

[
∂µ U

R†(x)
]

(1.5)

For a theory with an SU(N) gauge symmetry, if the matter fields are in the fundamen-
tal representation the UR = exp(−ig θa(x)T a) are N × N matrices. From equation (1.5)
and the cyclic property of the trace it is easy to see that TrAµ → TrAµ. Accordingly, we
can take the Aµ to be traceless, Hermitian field operators. As such, they can be expanded
in terms of the generators of the Lie algebra, T a, like Aµ = T aAa

µ. Infinitesimally, (1.5)
now reads

Aa
µT

a → Aa
µT

a + iθa
[
T a , T b

]
Ab

µ + ∂µθ
aT a

or

Aa
µ → Aa

µ − fabcθbAc
µ + ∂µθ

a (1.6)

From (1.6), we see that up to a derivative term, the gauge field transforms under the adjoint
representation of the group.

In quantum electrodynamics (QED), there is a U(1) gauge symmetry. In this case,
we have UR(x) = exp(−ieχ(x)) and the familiar transformation law Aµ → Aµ − ∂µχ(x).
Comparing with (1.6), we see that the structure constants fabc must vanish, which reflects
the fact that QED is an abelian gauge theory. This is to be contrasted with quantum
chromodynamics (QCD), which has an SU(3) gauge symmetry. Here a representation of
the generators is given by the eight lambda matrices, and the fabc are not identically zero.
This is the hallmark of a nonabelian gauge theory.

Now we are well poised to focus on the particulars of the Standard Model. The
immediate goal will be to catalogue the matter fields according to the representations they
transform under in the SU(3) of color, and the SU(2)⊗U(1) of electroweak theory. While
a comprehensive review of the Standard Model is far beyond the scope of this survey, it
will nonetheless be helpful to highlight a few salient features.

For the remainder of this work, we label the fields of the Standard Model like (Rc, D, Y )
corresponding to the representations the fields belong to in SU(3)⊗SU(2)⊗U(1), respec-
tively. A visual synopsis of these fields is presented in figure 1. The structure of the theory
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Figure 1: The fermion (left) and boson (right) fields of the Standard Model.

allows us to consider the symmetry properties of just one generation. The other two are
copies. We begin with the lepton sector. The leptons are not colored, and are thus singlets
under the SU(3) so Rc = 1. The electron, e, and its neutrino νe are accounted for by
introducing the left handed Weyl fields ψl and ē. A left handed Weyl field is a field in
the (2,1) representation of the SU(2)⊗ SU(2) lie algebra locally isomorphic to that of the
Lorentz group in 1+3 dimensions.

Specifically, we take ψl to transform like (1,2,-1
2) and ē like (1,1,1). Note that because

Y values add, there is no singlet (1,1,0) that can be formed by taking direct products of the
representations of ψl and ē. Accordingly, the gauge invariance forbids explicit mass terms
for the leptons in the Lagrangian (a Yukawa coupling with the Higgs (1,2,-1

2) is permitted,
this will give mass to the fermions). Phenomenologically, we can make the identification

ψl =

(
νL

eL

)
and ē = CeR (1.7)

where the L and R denote left or right handed Weyl fields, and C is the charge conjugation
operator. Note that we have assumed the absence of a right handed neutrino.

The quark sector of the Standard Model has a somewhat similar structure. We con-
struct an SU(2) doublet of left handed fields, ψq, in the representation (3,2,16) and the left
handed singlets, ū (3̄,1,−2

3) and d̄ (3̄,1,13). Here we identify

ψq =

(
uL

dL

)
and ū = CuR , d̄ = CdR (1.8)

Somewhat tangentially, it may be useful to recognize that this generation can be organized
in terms of Dirac fields like

E =

(
e

ē†

)
N =

(
ν

0

)
D =

(
d

d̄†

)
U =

(
u

ū†

)
(1.9)

All things said and done, we see that the standard model is a gauge theory that
describes three generations of left handed Weyl fields in the representation (1, 2,−1

2) ⊕
(1, 1, 1) ⊕ (3, 2, 1

6) ⊕ (3̄, 1,−2
3) ⊕ (3̄, 1, 1

3). By introducing a complex scalar field in the
representation (1, 2,−1

2), we can construct a mechanism through which some of these fields
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acquire a mass (more on this in section 4). In section 3 we will search for a Lie group
that contains SU(3) ⊗ SU(2) ⊗ U(1) as a subgroup, and try to place the fields of the
Standard Model into its representations. Section 5 explores the novel physics that this
simple unification scheme requires.

2. A Few Facts About SU(5)

Any simple Lie group containing SU(3)⊗ SU(2)⊗ U(1) as a subgroup must satisfy some
obvious constraints. Namely, we need 2 + 1 + 1 = 4 or more generators in the Cartan
subalgebra. This narrows our search to groups of (at least) rank 4. Also, note that the
representation containing the fields is complex. As it turns out, among the rank 4 groups,
only SU(5) has complex representations. For our first (and only) try, we shall see if we
can fit these fields into representations of SU(5).

In order to make this procedure relatively painless, it will be wise to compile some per-
tinent information about SU(5). We do this now. Specifically, we would like to understand
what representations exist, whether they appear symmetrically or anti-symmetrically, and
(most importantly) how these representations decompose into irreducible representations of
SU(3)⊗SU(2)⊗U(1). The first two of these are easy. We can explore the representations
and their symmetry properties via Young tableaux. A five component tensor transforming
under the fundamental representation is depicted by a �.

The direct product of two fundamental representations is easily seen to be

⊗ = ⊕ (2.1)

computing the “factors over hooks” to find the dimensionality of the diagrams on the right
hand side of (2.1), and noting the first is symmetric and the second is antisymmetric, one
obtains 5 ⊗ 5 = 15S ⊕ 10A. Also, we can do

⊗ = ⊕
(2.2)

which is just 10 ⊗ 5 = 5̄A ⊕ 45. In passing, we note that the dimension of the adjoint
representation is given by 52 − 1 = 24.

We next begin the task of determining how these representations decompose into rep-
resentations of the Standard Model group. A pragmatic way of doing this is to work it out
for the fundamental representation, and use the products in (2.1) and (2.2) to construct
further decompositions. For the 5 of SU(5), this is particularly simple. Out of the 24
generators represented by traceless, Hermitian 5× 5 matrices, we take

(
1
2λα 0
0 0

)
(α = 1, 2, . . . , 8)

(
0 0
0 1

2σβ

)
(β = 1, 2, 3) Y =


−1

3 0 0 0 0
0 −1

3 0 0 0
0 0 −1

3 0 0
0 0 0 1

2 0
0 0 0 0 1

2

 (2.3)
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to generate the Standard Model subgroup. In (2.3) the λα are the Gell-Mann matrices, the
σβ are the Pauli matrices, and Y is the hypercharge. Implicitly, I have chosen the charge
operator to be Q = T3 + Y .

For an SU(5) tensor transforming under the fundamental representation, vi, we can
arrange the indices such that the first three, vα, are acted on by the λα and the final two,
vβ, transform under the σβ . Importantly, when the generators of the subgroup act on vi,
the vα transform as singlets with respect to SU(2) and the vβ transform as singlets with
respect to the SU(3). Since the 2̄ = 2 in SU(2), it is obvious that the vβ transform like
(1,2,12) in the Standard Model subgroup. For the hypercharge chosen above, we take the
vα to transform in the 3 (not 3̄) of SU(3), so in the subgroup, these transform as (3,1,-1

3).
To summarize, we can write the decomposition like

5 → (1, 2,
1
2
)⊕ (3, 1,−1

3
) (2.4)

To see how the 15S and the 10A decompose, one simply forms the direct product in
(2.1) using the explicit decomposition in (2.4):

15 = 5⊗S 5 → (1⊗S 1, 2⊗S 2,
1
2

+
1
2
)⊕ (3⊗S 3, 1⊗S 1,−2

3
)⊕ (3, 2,

1
6
)

= (1, 3, 1)⊕ (6, 1,−2
3
)⊕ (3, 2,

1
6
) (2.5)

if the notation isn’t obvious, the ⊗s means the symmetric part of the direct product. In
much the same way, it is not hard to see that

10 = 5⊗A 5 → (3̄, 1,−2
3
)⊕ (3, 2,

1
6
)⊕ (1, 1, 1) (2.6)

The only other decomposition of interest is the 45. The procedure here will be to take the
conjugate of representation (2.6) and form the direct product with (2.4):

10⊗ 5 → (1, 2,−1
2
)⊕ (3̄, 1,

1
3
)⊕ (3, 2,

7
6
)⊕ (3̄, 3,

1
3
)⊕ (3̄, 1,

1
3
)⊕ (6, 1,

1
3
)

⊕ (8, 2,−1
2
)⊕ (3, 1,−4

3
)⊕ (1, 2,−1

2
) (2.7)

Discarding the antisymmetric decomposition of 5̄ leaves behind the representation we are
after. To wit,

45 → (3, 2,
7
6
)⊕ (3̄, 3,

1
3
)⊕ (3̄, 1,

1
3
)⊕ (6, 1,

1
3
)⊕ (8, 2,−1

2
)⊕ (3, 1,−4

3
)⊕ (1, 2,−1

2
) (2.8)

finally, it will be convenient to look at how the 24 transforms. Since 5⊗ 5̄ = 1⊕ 24, we use
(2.4) again to see that

24 → (1, 1, 0)⊕ (1, 3, 0)⊕ (3, 2,−5
6
)⊕ (3̄, 2,

5
6
)⊕ (8, 1, 0) (2.9)

At this juncture, the mathematics necessary for this review is entirely in hand. Not
only have we enumerated some useful representations of SU(5), but we also know how
these representations decompose into representations of SU(3)⊗SU(2)⊗U(1). With this,
and the representations of the matter fields worked out previously, it is painfully obvious
how to proceed. . .
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3. A Little Like House Keeping

From our work in sections 1 and 2, it is apparent that SU(5) was a remarkable choice for
an attempt at unification. Specifically, the five fields in the lepton doublet and the d̄ singlet
are exactly the representations that appear in the 5̄ of SU(5). This leaves six fields in the
quark doublet, three fields in the ū singlet, the left handed positron, and the Higgs. The
first ten of these (everything but the Higgs) is exactly the content of the antisymmetric 10,
as per (2.6). For the Higgs in the representation (1,2,−1

2), lines (2.4) and (2.8) imply that
we can fit it into either the 5̄ or the 45 representation of SU(5).

Almost miraculously, we have successfully placed all the matter fields of the Standard
Model into representations of SU(5). Explicitly, we have the fields

ψ =
(
d̄r d̄b d̄g e −ν

)
χ =


0 ūg −ūb ur dr

−ūg 0 ūr ub db

ūb −ūr 0 ug dg

−ur −ub −ug 0 ē

−dr −db −dg −ē 0

 H =
(
ϕr ϕb ϕg h

− −h0
)

(3.1)
transforming under the 5̄, 10, and 5̄ representations, respectively.

As (3.1) shows in no uncertain terms, some of these irreducible representations contain
both quarks and leptons. This implies that it may be possible for our unified theory to
contain interactions that violate baryon number, for example changing down quarks into
positrons. In section 5 we will see that these interactions do indeed appear in the theory,
leading to surprising predictions that await experimental verification.

Eventually, it will be interesting to look at the interactions the components of these
fields have with the gauge bosons of the unified theory. Generalizing our discussion from
section 1, this will involve replacing any derivatives in the Lagrangian with the covariant
derivative, Dµ, which depends on the gauge fields, Aµ. For the left handed Weyl fields, the
kinetic term is given by

L = iψ†i σ̄
µDµψ

i +
i

2
χ†ij σ̄µDµχij (3.2)

where σ̄µ = (I,−~σ) and the ~σ are the Pauli matrices. Here the i, j labels are indices for
SU(5). The covariant derivatives are easily seen to be

Dµψ
i = ∂µψ

i − ig5A
a
µ(T a

5̄ )i
jψ

j

Dµχij = ∂µχij − ig5A
a
µ(T a

10)
kl

ij χkl (3.3)

of course the covariant derivative for the H is the same as for the ψ, but the kinetic term
certainly is not. Furthermore, the interactions between the gauge and matter fields are
mediated by one “unified” coupling, g5. To see this, simply insert (3.3) into (3.2) and
discard the ordinary derivative terms.

Now that the Standard Model has been subsumed by our SU(5) GUT, we can sys-
tematically turn the crank and try to extract as much physics as possible. In fact, given a
few more lines, we will have covered as much ground as Georgi and Glashow did in their
original (and very enthusiastic) work [4].

– 7 –



The missing lines are a discussion of the relationship between our new coupling, g5, and
the Standard Model couplings g1, g2 and g3. An experimentally interesting parameter is
the weak mixing angle, θW (in electroweak theory, θW can be related to the mass of the Z).
In terms of the coupling constants, tan θW = g1/g2. Because all interactions in the unified
theory will have couplings proportional to g5, it is possible to obtain a real prediction for
the ratio of the g1 and g2. To do this, it is sufficient to note that all the relevant interaction
terms will have a g5, a Standard Model gauge field (normalized by its kinetic term), and a
corresponding generator (either T3 or Y ). Evidently, then, the only thing that differentiates
one coupling from the other is the normalization of the generator. Call N3 and NY the
normalization factors of T3 and Y respectively. Since both these generators are diagonal,
it is easy to see that over the fundamental representation T †3T3 = |N3|2 trT 2

3 = 1 so long
as N3 =

√
2. Similarly, we have NY =

√
6/5. In other words, for our SU(5) GUT

tan θW =
g1
g2

=
Ny

N3
=

√
3
5

(3.4)

Experimentally, via measurement of the Z mass (and with MS renormalization) this angle
is θW = 0.502 [5] which differs by about %24 from that calculated in (3.4).

4. Breaking it Down

There are two (related) issues that need to be resolved before we proceed. The first
should be rather obvious. At the length scales currently probed by high energy physics
experiments, the Standard Model is in excellent agreement with all measured results. That
is to say SU(3)⊗ SU(2)⊗ U(1) describes all known interactions between all known gauge
bosons and all known matter fields. The fact that SU(5) contains extra fields like the
φa of (3.1) and predicts interactions as yet undiscovered strongly suggests that the SU(5)
symmetry is “spontaneously” broken down to the symmetry group of the Standard Model
at some energy scale, MGUT.

Additionally, we will need to develop a scheme by which the fermions acquire a mass.
To recognize why this is necessary, it is sufficient to note that any term in the Lagrangian
resembling a mass term for a left handed Weyl field would have to transform like 5̄⊗ 5̄ =
15⊕ 10, or 10⊗ 10 = 5̄⊕ 45⊕ 50, or 5̄⊗ 10 = 5⊕ 45. Since none of these direct products
contain the singlet, a mass term breaks the SU(5) gauge invariance. By including Yukawa
terms in the Lagrangian, we will see that it is possible to break yet another symmetry and
allow the fermions to become massive.

4.1 From One There Were Three

First lets break SU(5) into SU(3) ⊗ SU(2) ⊗ U(1). For reasons that will soon become
clear, consider a real scalar field Φ in the adjoint representation of SU(5). As mentioned
in section 1, this implies a transformation like Φ → Φ + iθa [T a,Φ] where Φ = ΦaT a on
the right hand side. Of course this also means DµΦ = ∂µΦ − ig5A

a
µ [T a,Φ]. As should be

familiar, if we add to our Lagrangian a potential for Φ that is minimized when 〈Φ〉 = v,
in unitary gauge we can define a shifted field Φ(x) = (ρ(x) + v)/

√
2 and use it in any
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perturbative scheme we develop. It is important to realize that Φ, v and ρ are all 5 × 5
matrices with respect to SU(5). By clever choice of symmetry transformation, we can
bring v into diagonal form. It remains traceless. Now something interesting happens when
we use the unitary gauge expansion of Φ in the gauge invariant kinetic term tr (DµΦ)2.
We have DµΦ = Dµρ− i g5√

2
Aa

µ[T a, v]. Working out the kinetic term, it is easy to see that
there will be a piece that looks like

LM = g2
5 tr
(
[T a, v][T b, v]

)
Aa

µA
bµ (4.1)

Note that since Aa
µA

bµ is symmetric on the indices a, b that label the gauge field, we can
take 1/2 the anticommutator inside the trace if it is convenient. Obviously, when the trace
doesn’t vanish, the gauge fields can acquire a mass. These masses (squared) will be the
eigenvalues of

(M2)ab = −g2
5 tr
(
[T a, v][T b, v]

)
(4.2)

For the case at hand, we want the unbroken gauge symmetry group to be that of the
Standard Model, SU(3)⊗SU(2)⊗U(1). It is not hard to see that this means [T a, v] must
vanish for the 8 + 3 +1 = 12 generators that correspond to the Standard Model. Regarding
(2.3), it is easy to see how we can ensure that this is true. Since v is a diagonal, traceless,
3 + 2× 3 + 2 matrix, we can take v to have a 3×3 block with a along the diagonal and a
2× 2 block underneath it with b along the diagonal. This requires the constraint 3a + 2b
= 0. We already know one matrix that has this form, the SU(5) hypercharge generator
Y . Accordingly, we can choose 〈Φ〉 = v = vY , which ensures that v commutes with all the
SU(5) generators. Here v is a number with mass dimension one. Generically, it sets the
energy scale at which the gauge invariance is spontaneously broken.

As suggested above, the broken generators (those that do not commute with v are
capable of giving mass to the remaining twelve gauge bosons. Using the decomposition in
(2.9), we see that three of the five terms correspond to the gauge bosons of the standard
model: (8,1,0) for the eight gluons, (1,3,0) for the three “W” (remember we have not yet
broken SU(2)⊗U(1)) and (1,1,0) for the B. This implies that the twelve broken generators,
X, transform under (3, 2,−5

6) ⊕ (3̄, 2, 5
6). These representations are clearly conjugates of

one another, so we can take the X to transform as a complex field under (3,2,-5
6). Now

we can use (4.2) to find the mass of the twelve X. To minimize work, we should find a
generator of SU(5) that is not one of those in (2.3). One of them, taken from [6], is

T 4 =
1
2


0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

 (4.3)

since [T 4, v][T 4, v] = −v2 25
144 [δ 1

i δ
j
1 +δ 4

i δ
j
4] we find at once that the mass of the X is given

by MX = g5v
5

6
√

2
.

The massive X are one of the most interesting features of SU(5) grand unification.
As per (2.3), the five values an SU(5) index can take are divided into i → c, w where
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c = 1, 2, 3 and w = 4, 5. In this notation, the eight gluons are the components A c′
c (with

the constraint A c
c = 0), and the three W are the A w′

w (with the constraint A w
w = 0).

The twelve X, however, have split indices: X c
w and X w

c . Thus they mediate interactions
between the Standard Model fields that are the c components of the 5̄ and the fields that
are the w components, for example. Although we will make this (a bit) more precise in
section 5, we can already see that the absence of these interactions in today’s high energy
experiments suggests that the mass of these X must be larger than the few TeV scale.

4.2 How to Make a Fermion Fat

As we discovered earlier, there is still the problem that none of our fermion fields (which
are in the 5̄ and the 10 of SU(5)) are allowed (by gauge invariance) to have mass. This
remains true in the unbroken SU(3)⊗ SU(2)⊗ U(1). That said, it has been known since
[7] that there is a trick for circumnavigating this apparent show stopper.

It will be nice to spend a few lines reviewing how this works in the Standard Model.
Experimentally, the W± and the Z are massive, while the photon is not. This implies that
in a way very much analogous to what was done above, the SU(2) ⊗ U(1) of electroweak
theory is spontaneously broken. In the process, the gauge bosons of the weak interaction
acquire mass, but the photon does not.

In electroweak theory, one can make the empirical observation that (2,−1
2)⊗ (2,−1

2)⊗
(1, 1) = (1, 0)⊕(3, 0). The singlet, (1,0) appears, so if we take our Higgs field ϕ to transform
as (2,−1

2) we can make a gauge invariant interaction in the Lagrangian like

LY = −yφ1eē+ yφ2νē+ h.c (4.4)

in equation (4.4) y is a coupling for the interaction, and I have used the fact that the
antisymmetric 1 in SU(2) implies that εij is an invariant symbol we can use to contract
SU(2) indices.

Just as before, if the potential for ϕ is minimized by 〈ϕ〉 = v, in the unitary gauge
ϕ = (ρ+ v)/

√
2. By rotating v with a symmetry transformation, we can take v1 = v and

v2 = 0. This in turn lets us rewrite the interaction term (4.4) with the Dirac fields in (1.9)
like

LY = − y√
2
(v + ρ)ĒE (4.5)

From the above, it is easy to see that the electron has acquired a mass term, and me = yv√
2
.

Without too much imagination, it is possible to see how this generalizes for the quark
sector.

This recap should be sufficient to apply the mechanism to our unified theory. We have
already seen from (2.8) and (2.4) that the 45 and 5̄ both contain the desired representation
(1,2,-1

2). Here I will choose the Higgs in (3.1), that is, the one that transforms under the 5̄.
Notice that I have used the charge operator Q = T3 + Y , to label the last two components
of H by their electric charge.

Earlier in this section, we found that 10 ⊗ 10 = 5̄ ⊕ . . . and 5̄ ⊗ 10 = 5 ⊕ . . . Since
5̄ ⊕ 5 = 1 ⊕ 24, it is obvious that we can make gauge invariant Yukawa type interaction
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Figure 2: Cartoon of spontaneous symmetry breaking in an SU(5) grand unified theory. The
leftmost arrow shows the energy scale at which the symmetry is broken. The spheres represent
gauge bosons “weighed” on scales. Only the teal subsets of the original 24 massless gauge bosons
remain massless. Naming conventions match those in the text. Experimentally, MEW ∼ 240 GeV
while MGUT ∼ 1012 GeV.

terms with H and H† just as we did with φ in the electroweak theory:

LY = −yH iψjχij −
z

8
εijklmH†

i χjkχlm (4.6)

Once again, the fact that the singlet appears antisymmetrically in SU(5) means the ε

tensor totally antisymmetric on five indices is an invariant symbol for terms in our GUT’s
Lagrangian.

If one so desired, it would not be difficult to write (4.6) in terms of the fields of the
Standard Model. Since the result is somewhat messy, it won’t be worth much to write it
explicitly. It is, however, worthwhile to observe that all Standard Model fields couple to
both the colored components of H, φc as well as the ϕ− and ϕ0. Those coupled to the
latter can lead to mass terms for the fermions after another bout of spontaneous symmetry
breaking. Those coupled to the former will form interaction terms that violate baryon
number conservation.

The highlights of this section are summarized in figure 2. As the cartoon suggests, it is
a bit more involved to break SU(5) down to the physics at our energy scale, as compared
to breaking the electroweak theory. Namely, the procedure involves two different Higgs
fields, transforming under different representations of SU(5). Furthermore, the litany of as
yet undetected massive gauge bosons and scalar fields require some explaining, which we
turn to next.
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5. Dealing With the Consequences

Structurally, (that is to say group theoretically) our SU(5) unified theory looks pretty good.
The Standard Model fields are all there, and there is a mechanism in place for breaking
the gauge symmetry down to the SU(3) ⊗ U(1) gauge symmetry present at “ordinary”
energies. That said, it remains to discover whether or not the unified theory is a useful
description of fundamental physics. In this vein, there are two obvious questions we need
to answer:

1. Does this theory tell us anything about our world we can’t already explain?

2. If so, does this theory make any novel predictions that can be verified experimentally?

As one might imagine, there are many ways to answer these questions, with varying degrees
of sophistication. In this section we will provide at least a cursory answer to both.

5.1 Neutral Hydrogen and Quantized Charge

Some of the most fundamental observations a physicist can make also prove to be the most
difficult to describe theoretically. This is certainly the case for the experimental fact that
the charge of the electron is exactly opposite the charge of the proton, and that this charge
is quantized. In the context of our SU(5) unified theory, both of these peculiarities emerge
naturally, and in an almost trivial way.

Consider first the quantization of the electric charge. As we have seen, the gauge fields
of SU(5) couple to the 24 generators of the group. This is obvious from the form of the
covariant derivative, where Dµ = ∂µ− ig5T aAa

µ implies that the combination g5T a behaves
as a sort of charge that the gauge boson Aa couples to. Since the photon in SU(3)×U(1)
couples to electromagnetic charge Q = T 3 + Y , there is some linear combination of the Aa

that represents the photon. This combination must correspond to generators that remain
massless after the spontaneous symmetry breaking(s).

In the unified theory, the defining representation can be described by generators written
as 5 × 5 matrices. This of course includes those that correspond to T 3 and Y . This is a
consequence of that fact that SU(5) is a simple Lie group, and thus Y is not the generator
of a U(1) product. This should be contrasted with the case of SU(3) ⊗ SU(2) ⊗ U(1)
where Y is some number. As a generator of SU(5), Y is constrained to be traceless and
Hermitian, so it can no longer have arbitrary components. From this, it is easy to see that
Q in any simple group will be Hermitian with zero trace as well. Diagonalizing Q, we find
that the charge takes on quantized values, and that the sum of the charges of particles in
a given representation must vanish.

As a specific example, it is easy to see that for the 5̄ of (3.1), Q is given by

Q = T 3 + Y =


−1

3 0 0 0 0
0 −1

3 0 0 0
0 0 −1

3 0 0
0 0 0 1 0
0 0 0 0 0

 (5.1)
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and thus 3Qd̄+Qe = 0, or Qd̄/Qe = −1/3. If Qe = -1, then Qd̄ = 1/3. Amazingly, the ratio
of these charges has emerged as a consequence of the theory, rather than an experimentally
motivated input. Now we can compute the charge of the proton and find out whether
or not hydrogen is electrically neutral in an SU(5) universe. Since left and right handed
fields are related through charge conjugation, Qd = −Qd̄. Additionally, we can show that
Qu = T 3

u + Yu = 1/2 + 1/6 = 2/3, and thus Qp = 4/3 − 1/3 = 1 just as hoped. The fact
that the charge of the proton is opposite, but equal in magnitude to that of the electron
has been verified to outstanding precision [5].

Although it is beyond the scope of this review, the fact that charge is quantized in our
SU(5) unified theory can also be viewed as a consequence of the existence of a t’Hooft-
Polyakov monopole in the theory. This magnetic monopole appears in spontaneously bro-
ken gauge theories, and through a familiar (but somewhat involved) argument, its existence
implies the quantization of electric charge. Ignoring the details, it turns out that the mass
of this magnetic monopole is somewhat larger than the MX of section 4. This convenient
observation helps justify the fact that these monopoles have not yet been observed in high
energy particle physics experiments.

5.2 The Death of the Proton

Without doubt, one of the most salient features of our GUT is the appearance of massive
gauge bosons that mediate interactions which turn quarks into leptons (and vice-versa).
This peculiarity first arose as a consequence of breaking SU(5) → SU(3)⊗ SU(2)⊗ U(1),
and was discussed briefly in section 4. The possibility of decays that disrespect baryon
number conservation is very exciting from a cosmological standpoint. As is well known,
our universe is full of ordinary matter. Since we assume that matter and antimatter
were created in equal amounts, the fact that we don’t observe “anti-asteroids”, or better
yet, the fact that we observe anything at all presents a bit of a puzzle. For the initial
symmetry between matter and antimatter to be broken, it must be that the relevant physics
differentiates between particles and anti-particles (like the weak force) and baryon number
can change through an allowed interaction. With these conditions satisfied, one can develop
a simple scheme by which a universe with zero initial baryon number acquires a very small
(but non-zero!) baryon number: If the length scale characteristic of the early universe is
below 1/MGUT, the gauge bosons that mediate baryon number violating interactions are
copiously produced. The exchange of these bosons is then likely to alter the net baryon
density in the universe, and may be capable of creating the observed baryon to photon
ratio NB/Nγ ∼ 10−10.

In keeping with the tone of this review, we will now explore the phenomenon of proton
decay from a perspective that favors group theory arguments over explicit computation.
The aim will be to use what we have learned to estimate the lifetime of the proton. Although
(relatively) straightforward, explicit calculation of this decay rate is a fairly technical ex-
ercise. Here it will suffice to sketch the procedure, and highlight the results.

Before doing any real work, lets recap a few important facts. When the SU(5) gauge
symmetry is broken by the scalar Φ, 12 of the 24 generators break, and the corresponding
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Figure 3: Proton decay as mediated by the X. Initially, B − L = 1, and this remains true after
the decay. Neither B nor L are independently conserved.

gauge bosons acquire a mass MX = g5v
5

6
√

2
. Generically, these gauge bosons carry “split”

indices with respect to the gauge group, X c
w or X w

c where c = 1, 2, 3 and w = 4, 5.
From the gauge invariant kinetic term for the fields in the 5̄ and 10 (3.2), it is easy to

see that the interaction term describing the exchange of an X between fields in the 10 is

Lint = −g5 tr
(
χ†Xµσ̄

µχ
)

(5.2)

An experimentally accessible channel for proton decay is p→ ēπ0. In terms of fundamental
particles, this decay looks like uud→ uū+ ē. From this, we see that the relevant term in
(5.2) must be

Lp→ēπ0 =
g5√
2

(
X†c

1µē
†σ̄µdc − εabcX

†a
1µu

†bσ̄µūc
)

+ h.c. (5.3)

which allows for u → ū and d → ē. This decay is illustrated diagrammatically in figure
3. Notice that while baryon number and lepton number are independently violated, the
quantity B − L is conserved.

From the figure and a few elementary considerations from field theory, it is already
possible to obtain an estimate for the decay rate of the proton. Each vertex introduces a
factor proportional to g5, and (at least for sufficiently large MX) we can take the internal
vector boson propagator to go like 1/M2

X . Very roughly, then, the diagram of figure 3 gives
an invariant amplitude M ∼ (g5/MX)2. In the center of mass frame, the decay rate is
generically given by the product of |M2| and a phase space factor. The scale of the decay
is set by the mass of the proton, mp, so we can just multiply the square of our invariant
amplitude by however many mp’s we need to get units of inverse time. This approach gives
Γ ∼ m5

p(g5/MX)4. In terms of the GUT symmetry breaking scale v, the lifetime of the
proton is then easily seen to be

τ =
1
Γ
∼ 1

4m5
p

(
5 v
6

)4

(5.4)
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Figure 4: An allowed interaction between standard model fields and the heavy component of H.
These types of interactions can be combined to predict processes which violate baryon number
conservation.

Interestingly (but not so surprisingly), the larger the energy scale at which the unified
theory breaks, the longer the proton lives. Ongoing experiments suggest that if the proton
decays at all, it takes an astoundingly long time for it to do so—maybe on the order 1033

years according to [5]. This would imply v ∼ 1010 GeV. A more careful analysis, based on
renormalization group flows, for example, pushes this about 5 orders of magnitude higher.

The exchange of the X is not the only means by which a proton might decay. Indeed,
in section 4 we discovered that the Higgs field responsible for breaking the spontaneous
symmetry of the Standard Model gauge group, H, transforms under the 5̄ → (3, 1,−1

3)⊕
(1, 2, 1

2). Clearly, there is a triplet component with respect to SU(3)—these are the φc.
With a few lines of algebra, it is easy to see that the Yukawa term in (4.6) involving these
fields is given by

LYφ
= −yεijφaqailj − yεabcφ

ad̄būc − zφ†aū
aē+ h.c. (5.5)

For illustration, a typical term in this Lagrangian is depicted in figure 4. Now we have
a problem. Just as before, the fact that we have never observed a decay like this implies
that if our SU(5) theory is a good one, there is a lower limit on the mass of the φ, around
1010 GeV. This is far larger than the scale of electroweak breaking (∼ 100 GeV) which is
supposed to be accomplished by the doublet component of H, ϕi. The fact that φ and ϕ sit
in the same representation makes it natural to assume that mφ ∼ mϕ. The experimentally
motivated observation that these masses differ by something like eight orders of magnitude
is a noteworthy theoretical challenge, and is generically referred to as the “doublet-triplet
problem”.

6. When All is Said and Done

By now, there exist all sorts of unified theories based on all sorts of groups, that place the
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Figure 5: As the coupling constants of the Standard Model run, do they meet at one point or
narrowly miss one another?

matter fields of the Standard Model into all sorts of representations. Some of them, like
SO(10), usurp SU(5) in the sense that the all of the matter fields can be placed into a
single representation of the group. Others contain exotic particles (so far unobserved) that
are capable of prolonging the life of the proton.

Some of the most interesting GUTs under consideration contain bosonic counterparts
for each of the fermions. These suspersymmetric theories are particularly interesting be-
cause they are capable of tweaking the renormalization group flows such that for some
energy scale, MGUT , g1 = g2 = g3. Very briefly, the idea is that the particle content of a
theory is capable of influencing the dependence of the the coupling, g, on the energy scale,
Λ, at which it is measured. This is familiar from quantum chromodynamics, where the
beta function to one loop is

β(g) ≡ d g

d log Λ
= − g3

16π2

(
11− 2

3
Nf

)
(6.1)

Evidently, adding more quark flavors Nf can have dramatic consequences for the running
g. Specifically, as soon as the number of flavors is larger than 17, the beta function of QCD
changes sign from negative to positive. Physically, this means that the theory is no longer
asymptotically free in the ultraviolet.

The running of the coupling constants in the Standard Model has been studied exten-
sively. As is well known, as the energy scale increases, the couplings seem to flow towards
a common value. If there exists some scale MGUT at which all three couplings meet at a
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point, it would suggest that our unification idea is not completely crazy. This is sketched
in figure 5. As it turns out, in the Standard Model these couplings do not appear to simul-
taneously intersect. In a way very much like that discussed above, adding supersymmetric
fields into the mix can (with some work) alter the flows and force the couplings to unify.
It is for this reason that many unified theories currently considered for phenomenology
include supersymmetry as an essential ingredient.

All things considered, the idea of a “grand unification” of the strong, weak, and elec-
tromagnetic forces is immensely attractive. The discovery that we can construct such a
unification, based on a simple Lie group, is both surprising and encouraging. The fact that
it is capable of producing testable predictions is better yet. As we have seen, these theo-
ries have all sorts of interesting features, like proton decay and magnetic monopoles. For
better or worse, the failure of experimentalists to observe these features highly constrains
the theory. Presently, experimental bounds on the proton’s lifetime likely rule out simple
unified theories based on SU(5). It remains to be seen whether or not the other GUTs,
with or without exotic modifications, suffer the same fate.
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