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Abstract

Recent studies of hadron jets from heavy ion collisions seem to suggest that the produced

matter alters the jets in a characteristic way. Understanding this modification mechanism

may reveal new properties of the produced matter, such as it’s speed of sound or resistance

to flow. In this work, I develop simple models of two competing methods of jet modification,

and present a simulation of these altered jets in the PHENIX experiment. I find that

the acceptance of the drift chambers in PHENIX has a notable influence on three particle

correlation histograms, and comment on the feasibility of resolving bent and conical jets by

way of angular correlations. I show that three particle angular correlations result in distinct

features of a conical jet that differ from those of a bent jet, and that the detector’s acceptance

unfavorably alters these features. I conclude with some remarks on the simulation’s utility,

as well as how it might be improved.
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Chapter 1

A Physics Overview

1.1 What’s the Matter?

The world we live in today is thought to be composed of a handful of elementary particles

subjected to even fewer governing forces. These particles can arrange themselves into a

variety of atoms, which are carefully tabulated by way of a Periodic Table. In turn, these

atoms can join to form molecules which arrange themselves into different states of matter

(such as solids, liquids, and gases) and these states of matter can even transition from one

to another.

But was this always the case? One very interesting question in physics asks whether

or not the atoms and particles of today arrange themselves in the same ways as particles

and atoms did billions of years ago. In an attempt to answer this question, one can step

backward through time and examine how the changing conditions of our universe affected

the matter within it.

About 400,000 years after the universe popped into existence by way of the big bang,

electrons and nucleons joined together, forming atoms in a process known as recombination.

Before this, the universe was sufficiently hot that electrons had enough energy to overcome
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the electromagnetic attraction of the protons and travel freely through the universe. The

photons previously trapped in a dense sea of electrically charged particles are suddenly re-

leased, and travel out from the scattering trap in all directions creating the cosmic microwave

background still visible today.

5 seconds after the big bang, amidst a collection of speeding photons and electrons, the

universe has cooled enough to allow once unbound neutrons and protons to feel the effects

of the strong force. This short range force secures the two to one another in the process

called nucleosynthesis. Previously, lone protons and neutrons (themselves composite objects

of three confined quarks) ignored each other, and there was some chance that an unbound

neutron could decay. 1

The current theory of quarks and their interactions, quantum chromodynamics (QCD),

predicts that at a high enough energy density, a new state of matter will be formed in which

quarks and gluons (the gauge bosons of the strong force) are deconfined from one another.

These were precisely the conditions of the early universe until about one microsecond after

the big bang.

This new state of matter, the quark-gluon plasma (QGP), represents an interesting puzzle

that may offer a test of our knowledge about the way quarks and gluons interact. In the

following sections I will provide an overview of one experiment capable of seeing a quark-

gluon plasma for the first time in over 15 billion years, as well as a quick discussion of the

big ideas in QCD and their experimental implications.

1.2 A Big Bang of Our Own

In order to replicate the conditions present in the first moments of our universe’s existence,

one must find a way to put a lot of energy into a very small space. One good way to do this

1The lifetime of an unbound neutron is around 885 seconds, or something like 15 minutes [1].
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is to collide two tiny particles that are given a large kinetic energy.

Since the kinetic energy of a particle depends on both the particle’s mass as well as it’s

speed, the ideal collision takes place between two heavy particles traveling extraordinarily

fast. At Brookhaven National labs in New York, the Relativistic Heavy Ion Collider (RHIC)

accelerates gold nuclei to more than 99.9% the speed of light and slams them into one

another, creating a region of extraordinarily high energy density within the collider. This

region earns the appropriate title of “the fireball”, and is characterized by an energy density

in excess of 5 GeV/fm3 [2].

The experiment uses gold ions for two fundamental reasons. First, gold nuclei are largely

spherical in shape, which simplifies the collision analysis. Furthermore, with 79 protons

and 118 neutrons, these ions have a sufficiently large mass. Since the collider is capable of

creating collisions with a nucleon-nucleon center of mass energy around
√
sNN = 200 GeV,

these Au-Au collisions are capable of producing upwards of 40 TeV.

When the two gold nuclei collide, the extremely high energy density ensures that there

is a high volume of produced matter that travels from the fireball in such a way that both

energy and momentum are conserved. These newly created particles can be tracked and

identified by any number of detectors surrounding the beampipe. From these detectors, one

can gain knowledge about both the types of particles emerging from the collision, as well as

the kinematics of the particles, such as their energies and momenta. With this information,

one can hope to work backwards, reconstructing the event and understanding the collision

details.

One of the four groups studying these collisions at RHIC is PHENIX, or the Pioneering

High Energy Nuclear Interaction eXperiment. PHENIX is currently the largest experiment

taking data at the RHIC, and one of its principle objectives is to determine whether or not

a quark-gluon plasma is being created in heavy ion collisions. In order to accomplish this,

PHENIX is designed to measure direct probes of the nuclear collisions—particles like photons
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and muons that are produced as a result of the collision. More specifically, PHENIX uses the

dilepton pairs (like µ±) to determine whether or not the properties of decaying vector mesons

(such as the J/ψ) are altered by the collision. PHENIX also has the ability to measure the

trajectories and momenta of charged hadrons by way of a drift chamber. This particular

detector will be of some importance to this work, and I will return to it in detail at the start

of chapter 3.

1.3 A Colorful Theory

In order to better understand the scientific ramifications of a quark-gluon plasma, it may be

helpful to discuss some of the defining characteristics of quark-gluon interactions. To begin,

there are six known quarks conveniently arranged into three doublets, like

(
u

d

)
,

(
c

s

)
,

(
t

b

)

where the upper quark in each doublet has charge +2/3 and the lower −1/3 in units of

fundamental charge, e. For every quark there is also an anti-quark, with the same mass and

opposite charge. Quarks group themselves in one of two specific ways to create particles

known as hadrons. They can either form a group of three, creating the baryons (protons,

neutrons, etc.) or groups of two with one quark and one anti quark. The latter are known

as mesons, examples of which are the π0 and the J/ψ. As an example, the quarks in the first

doublet, u (“up”) and d (“down”) combine to create the protons (uud) and neutrons (udd)

that make up the nuclei of every known element.

In addition to the electric charge carried by each quark, there is also a “color charge”

which enables the quarks to participate in the strong interactions. There are three different

types of color charge, and they are traditionally labeled red, green, and blue. It is an
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experimentally determined truth that every naturally occurring (observable) hadron is a

color singlet. In analogy with color addition in light, this is one way of saying that every

baryon contains one red, one green and one blue quark (Red + Green + Blue = White)

and every meson is a combination of color/anti-color quark/anti-quarks (Red + Anti-Red =

White).

The theory of the strong interaction, QCD, fits nicely into the special unitary group

SU(3), with the red, green, blue triplet as the fundamental representation. The group has

eight generators, and since they do not all commute, QCD is a non-Abelian gauge theory.

In QCD, the gauge boson is the gluon, a massless spin one particle that can be thought of

as the force carrier of the strong interaction. Gluons themselves have color charge, in fact

each gluon carries one unit of color and one unit of anti-color. This curiosity gives QCD

many of its unique properties. Most importantly, since the gluons carry color charge, they

can couple to one another in three and four gluon vertexes known as “glue-balls”.

Another interesting consequence of the gluon self-coupling arises when one attempts to

determine the strength of the interaction between two quarks. By way of analogy, con-

sider first the Coulomb interaction between two (electrically) charged particles. Because the

strength of the Coulomb interaction drops off as 1/r2 the lines of interaction between the

two particles get farther and farther apart as one moves away from the system (figure 1.1,

left). The strong interaction, by contrast, is quite different. If one brings two, say, green

quarks very near one another, the apparent color charge will decrease by way of a sort of

anti-screening mechanism. This oddity results in the so called “asymptotic freedom” of the

quarks—when they are very close together they essentially act like free particles.

Now we can consider what happens when one tries to pull a quark (q) and an anti-quark

(q̄) farther apart from one another. Because the gluons themselves are colored, one can think

of the interaction lines between the qq̄ pair as having some attraction to each other. This

effectively groups all the interaction lines into a bundle of parallel lines known as a flux tube,
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describing a force independent of the quark’s spatial separation (figure 1.1, right). Another

way of saying this is that the potential between the two quarks increases linearly with the

distance between them.

Figure 1.1: Two sketches showing the differences between the Coulomb interaction (between
e−e+) and the strong (QCD) interaction (between qq̄). The interaction lines representing
the Coulomb force are free to spread out in space, and they do so in such away that their
density decreases like 1/r2. For the strong interaction, the lines are effectively attracted to
one another resulting in the flux tube shown above and a linear potential.

In the context of heavy ion collisions, this effective potential has some rather profound

implications. Most notably, it is interesting to ask what happens when the quarks in the

above paragraph are stretched farther and farther apart. As the quark and anti-quark

separate, the color field between them grows larger and larger until they are separated by

about 10−15 m, the typical diameter of a hadron. At this point it is energetically favorable

for new qq̄ pairs to pop out of the vacuum and form mesons and baryons with the existing

quark and anti-quark. This process continues as long as it costs less energy than the rest

mass of the new quarks and the energy of separation between the qq̄ pairs. The newly formed

hadrons carry with them some energy and momentum from the original qq̄ separation, and so
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they too travel from the point of separation in back to back streams of mesons and baryons.

For somewhat intuitive reasons, these streams of particles are known as jets.

From the preceding paragraphs, it should now be clear why a QGP is of substantial scien-

tific interest. Primarily, the observation that all naturally occurring particles are contained

in “white” color singlets, alongside the interesting quark interaction that forbids a quark and

anti-quark from being pulled apart farther than a Fermi, can be summarized by saying that

quarks and gluons are confined. Under everyday conditions, neither a quark nor a gluon will

ever be found unaccompanied by other quarks and gluons. In this respect, if an experiment

such as PHENIX succeeds in identifying a plasma composed of deconfined quarks and glu-

ons, scientists will have access to a state of matter that last existed microseconds after the

big bang, when the conditions were far from ‘everyday’.
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Chapter 2

Toward an Understanding of Fireball

Physics

2.1 Jets as a Diagnostic Tool

The hadron jets produced in heavy ion collisions turn out to be one of the most useful probes

in determining the properties of the quark-gluon plasma. As the stream of partons (quarks

and gluons) produced by qq̄ separation traverse the fireball, the highly energetic matter

alters the jet path in a characteristic way. By studying these path alterations, it is possible

to discover some interesting properties of the QGP, such as it’s resistance to flow.

It is easy to understand this phenomenon by way of analogy: Imagine yourself shooting

a bullet through a swimming pool filled with an unknown substance. From experience,

you know that a bullet fired in ordinary air should travel with some velocity, v, and in a

relatively straight line from the muzzle of your weapon. When you shoot the gun through the

mystery matter in the swimming pool, however, something very different happens. Instead of

traveling at it’s characteristic velocity, you find that the bullet traveled much slower—v/10.

Additionally, instead of striking the other side of the pool at a point in front of the gun, the
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bullet ended up 20 yards to the left.

With these results, one can begin to ask important questions about the unknown sub-

stance. Is it uniform? What happens when I shoot ten bullets from ten different locations?

Do they always end up 20 yards to the left? By comparing the behavior of the bullet

in the mystery matter to predictions from a variety of models, one can hope for a better

understanding of what’s inside the pool.

The use of jets in the study of heavy ion collisions is similar in many ways. When a

jet is produced, the energetic partons leave the original qq̄ pair in opposing (back-to-back)

directions in such a way as to conserve momentum and energy. In empty space, the transverse

momentum, pT (the momentum perpendicular to the beam pipe), of particles in both sides

of the jet should be about the same. If, however, the qq̄ pair begins to separate near the

edge of the fireball, the situation is quite different (Figure 2.1). In this case, the partons in

the jet traveling toward the nearby surface may emerge with higher transverse momentum

than the opposing jet, which is forced to travel through most of the fireball. As the partons

travel through the fireball, they deposit most (if not all) of their energy and momentum into

the matter produced by the collision [3]. This phenomena is known as jet quenching, and it

Figure 2.1: Sketch of the fireball (orange) inside a heavy ion collision. X marks the spot of
qq̄ separation, and arrows indicate magnitude of hadron pT . Particles that traverse much of
the fireball give up most of their energy and momentum and lead to jet quenching.
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lies at the heart of QGP study.

2.1.1 The Correlation Scheme

In order to study this jet quenching, it is helpful to utilize two and three particle angular

correlations. In this technique, one studies the angular distribution between some trigger

particle in a jet and one or two associated jet particles (respectively). To make this method

meaningful in the study of heavy ion collisions, one can choose the trigger particle to be one

of the high pT hadrons that does not leave much energy or momentum in the QGP. This

choice increases the probability that jet particles opposite the high pT trigger have traveled a

substantial distance through the energetically dense matter. In other words, these associated

particles have had ample opportunity to be pushed around in some characteristic way by

the QGP.

An important quantity in angular correlations is ∆φ, the azimuthal angle between the

trigger particle and an associated (secondary) particle. If one considers a simple jet composed

of two streams of hadrons back-to-back, then one would expect a one dimensional histogram

to show peaks around ∆φ = 0 and π (for example, the blue line in figure 2.2). Any devia-

tion in this distribution suggests a more complex jet geometry, and indicates particle path

modification by the fireball.

2.2 Not Quite as Easy as π

In fact, the angular distribution obtained from particle correlations for Au+Au collisions is

not peaked at both ∆φ = 0 and π. Instead, both PHENIX and STAR (another collaboration

at the RHIC) have reported that the ∆φ distribution for Au+Au collisions has a local

minimum at ∆φ = π with peaks on either side near π ± 1 [3],[4]. A particularly illustrative

plot of this result is shown in figure 2.2.
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Figure 2.2: Plot showing the odd away side angular distribution. The peak at ∆φ = 0
contains the particles very near the high-pT trigger, while the peaks on either side of ∆φ = π
count the secondaries. Notice the dependence on the centrality (how direct the collision
between the gold nuclei). When centrality is low, the collision is more ‘head-on’ and one
hopes for the production of a new state of matter. Plot from [5].

This curiosity has led to much speculation about the true geometry of the away-side jet.

Recently, several models have appeared that attempt to describe the odd peaks in terms of

bending, coherent gluon radiation, and collective excitation. In the following sections I will

attempt to give a brief description of each.

2.2.1 Geometric Interlude

Before embarking on an investigation of the three primary models of jet modification, I

would like to provide a quick explanation of how each will ultimately lead to the angular

distribution shown in figure 2.2. In order to accomplish this, it will be necessary to know

that geometrically, the three models are similar in one fundamental respect.

Ignoring the actual mechanism of the jet modification, two of the models predict that

the associated particles lie on the surface of a cone. The remaining model suggests that the

secondary particles follow a path that is “bent” from the trigger’s axis by some angle. If the
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associated particles can be bent in any direction, then (over many events) they too trace out

the surface of a cone. 1 Most importantly, because both geometries effectively put particles

on the circumference of a circle (a cone’s cross section), they have the same map in ∆φ.

In an attempt to solidify this idea, I have provided the sketch in figure 2.3. This picture

shows how particles that are very near the cone’s opening angle in φ share very similar values

of ∆φ. Conversely, the particles that are distributed near ∆φ = π have very different values

of ∆φ. In this way, even though the particles are effectively distributed randomly over the

surface of a cone, they appear to “pile up” at the opening angle in the ∆φ distributions.

1If this seems confusing, it may help to imagine holding both arms together in front of you at some angle
toward the sky and spinning on your feet. As you do so, your arms will describe the surface of a cone.

Figure 2.3: Picture attempting to show how all three models for jet modification could result
in a histogram such as the one shown in figure 2.2. In this picture, ∆φ is measured along
the purple line. Notice how two particles along the “top” of the circle (light blue) have very
different ∆φ values (length of solid blue lines), while two the same distance apart but near
the side (salmon) have very similar values of ∆φ (length of salmon lines).
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2.2.2 A Bent Jet

In the simplest of the three geometries, the two streams of hadrons are not back to back,

but instead bent. The away-side jet (containing the hadrons that have traversed the fireball)

is offset from the jet axis by an opening angle corresponding to the peak in the angular

distribution. Since it is equally probable for the bent jet to open in any direction, one

obtains peaks at both π + φopen and π − φopen.

To bend a jet in this way, it has been suggested that the away-side jet receives a sort of

shove from the flow of the produced matter [6]. When the ions collide, a collective flow field

arises which has both longitudinal and transverse components with respect to the beam pipe.

This flow field can interact with the partons in two distinct ways (figure 2.4). In the first

case, the parton does not travel within the same Lorentz frame moving along the beampipe

as the produced medium. This situation can arise as a result of either the point of production

of the parton, or the time evolved trajectory of the medium. Most simply, nothing requires

that the parton be produced in the same Lorentz frame as the medium. Furthermore, if the

a) b)

Figure 2.4: Two scenarios describing the altered trajectory of partons by produced matter.
In (a), where the parton is not in the Lorentz frame of the flow field, the longitudinal flow
components push partons along the beampipe. In (b), hard partons traveling parallel to the
collective flow (green) are favored, while those transverse (blue) can be muted. (Figure (b)
adapted from [6])
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parton is produced in the same frame as the medium, it will likely leave it. It’s minuscule

mass ensures that it will travel along a light-like line that generally intersects that of the

collective flow field. For either of these scenarios, the end result is a bending of the jet in

the direction of collective flow along the beampipe.

In the second case, the direction of the flow field directly modifies the parton’s trajec-

tory through the transfer of momentum. As a result of the collective flow, the momentum

transfered to the parton does not depend on only the local energy density, but instead on

the energy momentum tensor which contains contributions from the flow [6]. In this way, a

small local energy density can still result in a sizable parton energy loss. More specifically,

the low-pT collective flow selects against hard partons traveling transverse to the direction

of the flow field.

One hallmark of the bent jet scenario is that it is a relatively straightforward matter to

distinguish between a bent jet and other, more complicated jet geometries. In particular,

if a jet is indeed being bent by a flow field, all the particles in the jet should experience a

similar path alteration. Accordingly, if one performs a three particle correlation, it should

be true that the two low-pT particles end up in the same peak in the ∆φ distribution. Notice

that in this case, two particle correlations fail to provide a distinction because it is equally

likely that an associated particle can end up in either peak.

2.2.3 Radiating Gluons

Quite distinct from jet bending is the idea of a cone of secondary hadrons formed from the

away side jet’s interaction with the fireball. One possible mechanism of production for this

geometry is Cherenkov-like gluon bremsstrahlung.

This scenario draws heavily from the QED analogue of Cherenkov radiation in a dielectric.

Electrodynamicly, when a charged particle exceeds the speed of light in a dielectric, the

material can emit a coherent cone of photons—the so-called Cherenkov radiation. Modern
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high energy experiments routinely exploit this radiation for energetic particle detection.

Another, more relevant means of obtaining Cherenkov radiation is the scattering of photons

from a gas. Most importantly, this type of scattering will only produce Cherenkov radiation

if the gas consists of bound states (such as atoms) and never from a gas of single elementary

charged particles [7].

In this spirit, it may be possible to determine the interaction strength of the produced

matter at the RHIC. If Cherenkov-like gluon radiation is observed in the heavy-ion collisions,

it would indicate that the produced matter is comprised of some quark-gluon bound states.

Additionally, it may be possible to investigate the resonance structure of these states and

the nature of their interaction.

In the gluon radiation model (figure 2.5), a speeding gluon produced in a heavy-ion

collision scatters from partonic bound states in the produced matter. In this process, the

bound state may become excited and radiate a gluon as a result of the interaction. If the

scattering conditions are such that the scattering amplitude is attractive, it is possible for

the interaction to result in a coherent cone of radiated gluons [7].

This characteristic cone becomes observable in the stream of hadrons that comprise

the away-side jet. One fundamental feature of the cone is the momentum dependence of

the cone’s opening angle. As the momentum of the incident gluon increases, the opening

angle decreases rather quickly. This feature provides a convenient method for determining

whether or not the cone was produced through gluon radiation. If one observes a substantial

momentum dependence of the opening angle of low-pT hadrons, it may be the result of

Cherenkov-like gluon bremsstrahlung.

2.2.4 A Flowing Cone

There is yet another way that a jet could deposit it’s energy and momentum into the produced

matter. In the third (and final) scenario I will discuss here, the energy from the quenched
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a) b)

Figure 2.5: Two processes that produce a conical geometry for the away side jet. (a) Pictorial
description of the scattering process that leads to gluon radiation. The incident gluon is
shown in red, while the coherent radiation is in blue. In (b) a speeding parton (red) deposits
it’s energy into the produced matter in the form of spherical sound waves (purple). Since the
parton travels faster than the speed of sound in the plasma, a Mach cone forms encouraging
conical flow (blue arrows).

jet excites a collective flow in the matter, producing a sort of sub-atomic sonic boom.

When the two heavy ions collide, an assortment of qq̄ pairs are formed throughout the

fireball. As a point of illustration, we can follow a pair that is produced near the surface of

the high energy density matter. As discussed previously, these pairs may result in a high-pT

particle that leaves the matter quickly, while it’s companion particle is forced to traverse the

majority of the fireball. Figure 2.1 may serve as a convenient reminder of this process.

As the away side jet attempts to navigate the produced matter, it deposits it’s energy

in the form of spherical sound waves that propagate from the instantaneous location of the

quenched jet (figure 2.5). The leading parton of this jet travels with a speed very near the

speed of light, while the shock wave propagates far slower at the fireball’s characteristic speed

of sound. It may come as no surprise that a body traveling through a medium at a speed

greater than that of sound leads to conical flow behind the shock waves. This is directly

analogous to the Mach cone that forms in the wake of a supersonic fighter plane.

The conical flow excited in the energetic elementary matter propagates normal to the
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direction of the shock fronts, and at an angle θs to the hard (leading) parton (figure 2.6).

When the fireball cools sufficiently, the partons trapped in the conical flow hadronize, and

form mesons and baryons traveling in the same direction. It is through this mechanism that

the quenched jet ultimately results in an observable cone of associated particles.

Using a simple trigonometric model, it is a straightforward manner to relate the opening

angle of the cone to the speed of sound in the produced matter. Regarding figure 2.6 one

can see that in the proper time interval τ the jet travels a distance cτ . Additionally, the

distance the shock wave travels is clearly given by

dsound = cτcosθs (2.1)

where θs is the cone’s opening angle. As the medium evolves in time, it is reasonable to

assume that it’s speed of sound (cs) might as well. In this case, one can write the distance

traveled by the shock wave as

dsound =

∫ τ

0

cs(t)dt (2.2)

comparing the two expressions for the distance traveled by the wave (2.1, 2.2) leaves an

Figure 2.6: The trigonometry associated with the opening angle of the Mach cone
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expression for the opening angle, it is

θs = arccos{ 1

cτ

∫ τ

0

cs(t)dt} (2.3)

Evidently, if one can determine the correct temporal dependence of the speed of sound in

the produced matter, it is possible to predict a theoretical opening angle for the cone.

One attempt at the best value for the speed of sound in the fireball considers the time-

weighted average of the three stages of the produced matter’s life. These stages include

the quark-gluon plasma phase where cs ≈ 1/
√

3, the mixed phase where cs ≈ 0, and the

resonance gas phase with cs ≈
√

0.2. Completing this averaging over RHIC’s data provides

a value of 〈cs〉 ≈ 0.33 as the most appropriate speed of sound in the produced matter [3].

Regarding (2.3) it is a simple matter to see that in this case, θs ≈ 1.2.

Like it’s predecessors, this model contains a helpful characteristic that is capable of

distinguishing it from other suggestions. Most notably, one can see that the value of θs

depends only on the speed of sound in the matter, and not on the momenta of the jets

(as is the case in the gluon radiation model). Accordingly, it should be true that the ∆φ

distribution is always peaked at π ± θs independent of the pT of the jet particles.

Although it is beyond the scope of this work, it is interesting to note that the presence

of such collective flows may reveal some exciting properties of the produced matter. Most

specifically, it has been suggested [8] that the produced matter may be a near perfect liquid.

In such a substance, one would expect very low dissipation and hence the possibility for

substantial collective modes such as the Mach cone.
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2.3 The Grand Scheme of Things

Before embarking on an explanation of the analysis I have performed, it may be helpful to

summarize this section’s big ideas. Most importantly, I have introduced the study of three

particle jet correlations as a reasonable method for learning about the produced matter

in heavy ion collisions. Furthermore, by examining the ∆φ distribution for these particles

(figure 2.2), we have seen an interesting deviation around the away side jet. This is of

particular interest because the particles in this jet interact the most with the fireball.

In an attempt to make sense of the odd away side peaks, three noteworthy models have

been developed. Each of these models describes a different interaction between the partons

and the plasma, and provides interesting, testable, predictions. Among these three models

were the bent jet, Cherenkov-like gluon bremsstrahlung, and the Mach cone.

Determining the proper model may have substantial implications for the nature of the

produced matter. If three particle correlations suggest a bent geometry, we may gain valuable

information about the patterns of flow within the plasma. If the correlations describe a cone

whose opening angle depends on parton pT , there may be quark-gluon bound states in the

plasma with accessible interaction strengths. Should the correlations point to a cone whose

opening angle is independent of parton pT , the resulting Mach cone may offer predictions

about the time weighted speed of sound, 〈cs〉, as well as the plasma’s resistance to flow.

In every case, meaningful information about the characteristics of the produced matter fall

within our reach.
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Chapter 3

3 Particle Correlations in PHENIX

3.1 An Analysis Overview

Once the competing mechanisms of jet modification have been described, it is possible to

evaluate each through the eyes of the experiment. In this chapter I present a study of

the prevailing jet geometries, the cone and the bent jet, in relation to the PHENIX de-

tector acceptance. In the previous chapter, I noted that both the Cherenkov-like gluon

bremsstrahlung and the conical flow are characterized by a tell-tale cone of secondary par-

ticles. Although the details of the cone’s geometry are distinct in either scenario (the first

has an opening angle that depends on pT while the second does not), both can be simulated

through common code. Furthermore, if the associated particles are all bent in the same way,

it becomes a simple matter to adapt the code to describe a bent jet.

I begin by discussing the PHENIX detector acceptance, and provide a concise mini-

study of the detector’s influence on the two-dimensional histograms utilized in three particle

correlations. After the acceptance has been successfully mapped, I develop a simple model

for a modified jet in three dimensions. I show that this geometry leads to curious peaks in

the ∆φ distribution, and offer an explanation for this behavior. I conclude by summarizing
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the most relevant results, and propose several steps for the evolution of this project.

3.2 Testing Our Vision

Ultimately, the physics we see is influenced heavily by the size (and shape) of the lens we see

it from. It is the task of the physicist to understand this lens and correct for any aberrations.

In PHENIX, where the lens is a set of limited coverage drift chambers, one must pay special

attention to it’s effect on angular correlations.

3.2.1 PHENIX at a Glance

It will be helpful to endure a brief orientation of the PHENIX experiment. The drift chambers

that I discuss in this study surround the beam pipe with some coverage in both φ (the

azimuthal plane perpendicular to the beam) and η. In the azimuthal plane the detector

looks like two 90◦ segments separated by a gap of 65◦. In η the detector extends to η = ±0.3

which corresponds to a span of about θ = π/2±1.3 in spherical coordinates. I have provided

a rendition of this set-up in figure 3.1 .

From the picture, it is clear that the detector’s acceptance will play an important role in

the interpretation of the ∆φ distribution. To discover exactly how the acceptance influences

our physics picture, it was pertinent to begin by mapping the regions of maximum and

minimum acceptance in a generic correlation histogram.

3.2.2 Working With What We’ve Got

In this simulation, I choose three φ angles at random that correspond to three jet particles.

The first, φ1, determines the position of the high-pT trigger, while the second and third (φ2

and φ3) mark the angular positions of the two secondaries. With these angles selected, I

determine the angles ∆φ12 and ∆φ13 which correspond to the φ-angles separating the trigger
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Figure 3.1: A schematic sketch of the drift chambers in the PHENIX experiment.On the left
is the detector’s coverage in the azimuthal plane, while the diagram at right adds the third
spatial dimension.In this picture the azimuthal plane intersects the detector parallel to the
light blue face, while η lies in the x-z plane. The beampipe runs along the z-axis.

particle and secondary 2 and 3, respectively. These ∆φ’s eventually make it to the two
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Figure 3.2: Two test histograms made to determine the detector acceptance’s influence on
the angular correlations. Plot at left contains all ∆φ angles, while the one at right shows
the normalized distribution after acceptance cuts were made.

dimensional histograms shown in figure 3.2. In the first plot, one can see that the distribution

is statistically flat, indicating that the three particles have truly received angular positions

at random. The second histogram looks far more interesting, with a series of contorted

ellipses stacked upon one another. This plot is the result of applying the PHENIX detector
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acceptance cuts to the generated ∆φ angles, and normalizing with respect to the random

distribution. As is evident, there is an assortment of characteristic holes and “sweet-spots”

in the histogram. Furthermore, from the normalization, one can determine the relative

probability of landing in any of the assorted regions.

In an attempt to provide an better understanding of exactly what constitutes a high (or

low) probability event, I have provided several examples of the particle configurations in

different regions of the histogram (figure 3.3). Regarding these pictures, one should note

that they make good sense when viewed in the context of the detector geometry shown in

figure 3.1. More specifically, the events in which two particles are on top of one another have

a greater chance of being seen than those in which all three particles are separated by large

angles.

Figure 3.3: Sample configurations that illustrate unlikely (A. and B.) and likely (C.) events
in terms of detection. A. corresponds to ∆φ12 ≈ 4 and ∆φ13 ≈ 2, B. occurs when ∆φ12 ≈ 1.7
and ∆φ13 ≈ 1, and C. shows ∆φ12 ≈ 0.2 and ∆φ13 ≈ π. Comparing this figure to the bottom
plot in 3.2 is particularly illustrative.

Having provided a map of the detector’s acceptance in three particle correlations, it is

at last possible to begin exploring the consequences of different jet modifications in terms
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of the ∆φ’s. In the following section I will provide a quaint picture of a cone of particles

as seen by the PHENIX experiment. After these histograms have been produced, it will be

possible to understand many of their features as consequences of the sweet-spots and holes

shown above.

3.3 The Simple Cone

3.3.1 The Standard Configuration

To best simulate the conical geometry described by both Mach cones and gluon radiation,

I settled upon a simple model consisting of a single vector in the −ẑ direction attached at

the origin to a cone opening along ẑ. In this picture, the vector along −ẑ represents the

high-pT trigger. The fact that it has no width reflects the choice to follow just one particle

in the nearside jet. I choose an opening angle for the cone, as well as the directions of two

secondary particles that look like vectors restricted to the cone’s surface. These associated

particles need to cover the cone uniformly over many events, and accordingly I choose their

position vectors at random.

This model aligned along the z-axis is the standard configuration in my simulation (figure

3.4 ). Every meaningful piece of information that precipitates from the code is a result of

simple spatial rotations of the standard set-up. Because these rotations are fundamental to

my analysis, I will adopt the following conventions while discussing them in this work. A

rotation R of the standard configuration Ustd clockwise around some axis a will be written

U ′ = Ra+
Ustd

where the a+ becomes a− for counter clockwise rotations. A somewhat more complete

exploration of the mathematical methods used here can be found in appendix A.
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Figure 3.4: The standard configuration illustrating the geometry of my simulation. The
trigger particle (red) is represented by a vector directed along −ẑ while the secondaries
(blue) are distributed randomly over the surface of a cone

Once the standard configuration has been created, it is a straight forward matter to

obtain the ∆φ angles which separate the trigger from each secondary particle. I accomplish

this in part with a rotation of π/2, like U ′ = Ry+
Ustd. To ensure that the rotation has been

applied properly, I generate the histogram in figure 3.5. This plot shows that the associated

particles have remained randomly distributed over the cone’s surface. From the rotated

position vectors of each of the three particles, one can determine the ∆φ values with some

simple trigonometry. Since the trigger particle has been carefully aligned with φ = 0, the

∆φ angles are simply the location in φ of each secondary, given by

φ = arctan(y/x) (3.1)

These angles are counted in the two dimensional histogram shown in figure 3.6.

The next step is to make the events isotropic in space. This amounts to making sure that

there is no preferential orientation for the standard configuration in the coordinate system
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Figure 3.5: Histogram ensuring that the associated particles are distributed randomly over
the surface of a cone after a rotation. The axes give the y and z components of the associated
particle’s location vector.

of the detector. To do this effectively, I first choose a random direction to represent the

trajectory of the trigger particle. Next, I determine what rotations are needed to match the

trigger particle in Ustd with the randomly oriented trigger particle in the detector’s frame.

With this information, one can properly rotate the rest of Ustd like

Udet = Rz
−

Ry
−

Ustd

so that he is left with Udet, a randomly oriented conical configuration in the detector frame.

The only physics that remains to be simulated is the effect of the drift chamber’s accep-

tance on the cone. To investigate this effect, it is necessary to first ascribe angular positions

to each trajectory in Udet using the familiar expressions (3.1) and

θ = arctan(
√
x2 + y2/z)
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Once this is accomplished, one is free to apply the acceptance cuts in η and φ in the frame

of the detector, and count the results in any number of interesting histograms.

3.3.2 The Simulation Histograms

Among the most interesting of these histograms are the ones shown in figure 3.6. On the

left is a two-dimensional histogram that depicts the ∆φ distribution before the acceptance

cuts were made, while the one on the right shows the same distribution after acceptance

cuts. The two histograms in figure 3.6 have a variety of notable features. First, the fact that

there are only counts within a small region centered around π is illustrative of the fact that

the associated particles were in fact confined to the surface of a cone. More specifically, one

may notice that the region of interest (the bluish box) extends from π − φopen to π + φopen

in both directions, where φopen is the opening angle of the cone.

Perhaps more interestingly, the distributions are both described by an assortment of
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Figure 3.6: Two histograms describing a modified jet where associated particles are dis-
tributed over the surface of a cone (opening angle of 0.8 radians). On the left is before
detector acceptance cuts, on the right is after.
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peaks and ridges that appear along the square’s perimeter. These characteristic features are

quite expected, and arise as the result of a cone’s map onto ∆φ space as discussed earlier.

They do not suggest that the associated particles “prefer” to travel at angles near the cone’s

opening angle. For a reminder of how this mapping works, it may be helpful to revisit figure

2.3. In the post acceptance cuts histogram, one can see that two of the peaks appear to have

been shaved off by the acceptance. Again, this seems to be in sound agreement with what

one would expect. Upon comparing the acceptance map shown in figure 3.2 to the post-cuts

plot in figure 3.6, it is clear that the drift chambers in PHENIX have very poor acceptance

in the regions where those two particular corners lie.

It should be noted that the histograms in figure 3.6 describe a very specific conical

geometry. In these plots, the simulated cone was given an opening angle of about 46 degrees.

Changing the opening angle of the cone will change both the location of the characteristic

features as well as the ∆φ distribution following the acceptance cuts. In appendix B I have

provided a series of pre and post cut histograms that describe several different cones.

By dividing the post-acceptance cuts histogram by the histogram without cuts applied,

one can gain some additional insight into the particulars of 3 particle correlations in PHENIX.

This is shown in figure 3.7. Not surprisingly, the prominent red slash across the histogram

indicates that PHENIX drift chambers are best at finding events in which the two secondaries

are located in the same place. Conversely, when the associated particles are on opposite sides

of the cone, there is a much smaller chance that the configuration will be detected. This

observation will have a more profound impact on the case where the jet is modified to a bent

geometry, and will be discussed in a later section.

In the more global context of the PHENIX experiment, the most important plots may be

those that describe the cone after the detector acceptance was imposed. These histograms

are indicative of what one might see in a three particle correlation of PHENIX data if the jet

was indeed modified to look like a cone. By altering the cone’s opening angle to better match
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Figure 3.7: Histogram made by dividing the post acceptance cuts correlation distribution
by the histogram before cuts were made. When secondaries are the same angular distance
from the trigger they are more likely to be accepted by PHENIX.

the true 3 particle correlation histogram, one may have a crude means of determining an

experimental opening angle. This in turn would allow one to make estimates of the speed of

sound in the produced matter, or perhaps the interaction strength of partonic bound states

as discussed in sections 2.2.3 and 2.2.4.

3.4 A Bent Jet Revisited

Through a simple modification of the code used to simulate a cone, it was possible to provide

a quick sketch of what one might expect to see if the secondary particles were bent from the

axis of the trigger particle. In the mechanism of jet bending, the most important feature is

that both of the associated particles are bent in the same direction. After requiring that the

two secondaries in my code satisfied this constraint, it was possible to produce the histograms

shown in figure 3.8. As is evident, these distributions look very different than those which

described the cone. Most notably, the square centered around π has been replaced by a

segment of diagonal line. This line is a simple consequence of the fact that both particles
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Figure 3.8: Two histograms describing a bent jet where the associated particles are bent
from the trigger particles axis by 0.8 radians. On the left is before detector acceptance cuts,
on the right is after.

are ending up with the same trajectory. The peaks at either end are again merely the result

of a circle’s appearance in ∆φ space. Since no constraint was placed on what direction the

jet was bent toward, over many events the secondaries trace out the surface of a cone.

One of the most interesting attributes of this plot is that PHENIX has very good (in

fact its best) acceptance along the diagonal that the distribution falls on. This, coupled

with the fact that the bent geometry looks markedly different from the conical geometry in

three particle correlations, suggests that it may be possible to distinguish between the two

geometries in the PHENIX experiment.

As a point of comparison, I have also provided a histogram that shows what happens

when one divides the post acceptance cuts histogram by the pre-cut histogram (figure 3.9).

This is the bent jet analogue of figure 3.7. Although the result is hardly surprising, it is

worth noting that if one were to allow the bent secondary particles to be bent by slightly

different amounts, the prominent diagonal would widen. This smearing could produce a

distribution that resembles figure 3.7, and suggests that histograms of this kind may not be
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the most effective means of distinguishing between the jet modification scenarios.
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Figure 3.9: Histogram made by dividing the post acceptance cuts correlation histogram for
a bent jet by the pre-cut histogram. If the associated particles are not all bent by the same
amount, the diagonal line above will broaden and begin to resemble figure 3.7.

3.5 The Next Step

The simulation presented here offers a relatively terse description of the PHENIX drift cham-

ber’s acceptance on three particle correlations. Although it accomplishes what it promises

to do, there are several noteworthy modifications that must be added before it has achieved

maximum utility.

Fundamentally, the simulation includes a few simplifying assumptions that need not be

made. The most important of these is to keep track of only one particle in the near side

jet, and two in the quenched jet. In reality, there are dozens of particles in each side of

the jet, and a better simulation would correlate them all. Performing these correlations will

change the histograms in sections 3.3.2 and 3.4 in several significant ways. Since there will

now be many particles traveling alongside the high-pT trigger, one would expect to obtain

an additional peak around ∆φ = 0 representing correlations between the trigger particle and
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the others in the same jet. Also, if one gives the bent jet some “thickness” by requiring that

the associated particles are bent in approximately the same way (to account for differing

momenta, etc.) then the diagonal lines in figures 3.8 and 3.9 will broaden as well.
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Chapter 4

Concluding Remarks

The study of jets in heavy ion collisions is a fascinating area of research that may provide

new insight into the earliest moments of our universe’s existence. Through an understanding

of the ways in which a jet of hadrons is modified by the hot, dense matter produced at the

center of the collision, it may be possible to discover some novel properties of a quark gluon

plasma—a state of matter that hasn’t existed in more than 15 billion years.

Recently, two particle angular correlations used to analyze hadron jets in the PHENIX

experiment at RHIC have suggested that the produced matter does in fact alter the jets

in an interesting way. In an attempt to provide a physical picture of the jet modification

that agrees with the ∆φ histogram, three distinct models have been proposed. Two of these

jet modification schemes describe a conical geometry for the away side jet, while the third

suggests that the associated particles are “bent” from the axis of a high-pT trigger particle.

Each of these models carries with it important consequences that could lead to increased

understanding of the produced matter.

More specifically, understanding a bent jet may provide information about the flow pat-

terns of the produced matter, while Cherenkov-like gluon bremsstrahlung may indicate the

presence of partonic bound states. If the jet is modified through the existence of a Mach
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cone like flow pattern, than one may be able to gain knowledge about the produced matter’s

characteristic speed of sound.

In an attempt to help identify which scenario is best described by the angular correlation

histogram, I have presented a simulation study that offers a picture of each of the three

models in terms of a three particle correlation. This technique should make it rather sim-

ple to differentiate between a bent jet and a conical geometry by following two associated

particles as opposed to just one. Furthermore, I have studied the affects of the PHENIX

detector acceptance on the correlation histograms, and provided a series of histograms that

describe what one might see in the PHENIX experiment for each of the competing modified

geometries.

These histograms show that defining features exist between a cone and a bent jet in

three particle correlations, and that the acceptance of the drift chambers in PHENIX has a

notable effect on the correlation histograms. Since the detectors have very good acceptance

along the left-to-right diagonal, it is likely that the experiment will be able to resolve a bent

jet using the three particle correlation technique. However, the existence of holes off the

diagonal removes some of the defining characteristics of a conical geometry and makes it

somewhat more difficult to identify.

Additionally, I have discussed the opportunities that exist for the continued evolution

of this project. Although the simulation discussed in this work is complete in some sense,

at present it is ignorant of some important physics that should be included. Among this

physics is the fact that real jet correlations are complicated by an assortment of particles. For

my simulation to be truly useful, I should include these particles in the angular correlations,

which will provide a more accurate picture of the jet modification. Fortunately, implementing

these changes to my code is in no way an overwhelming task, and I hope to successfully

incorporate them soon.

As it stands, it is my hope that this study will find use in discussions of angular corre-
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lations in the PHENIX experiment. Identifying and understanding the mechanisms of jet

modification in heavy ion collisions is an important an timely pursuit that may turn out to

have profound consequences. I am delighted to have had the opportunity to contribute a

minuscule piece to this cosmological puzzle.
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Appendix A

The Rotation Group SO(3)

The mathematics of spatial rotations in three dimensions is described by the special orthog-

onal group SO(3). It is special in the sense that the 3×3 matrices that are contained in this

group all have determinant one, and orthogonal in the sense that inverses of these matrices

are all equal to their transposes. To see how these features arise in the study of rotations in

three dimensional space, consider Euler’s rotation theorem which says that any rotation can

be characterized by an axis. From this, one can write a rotation in three dimensions from

u→ u′ like 


u′1

u′2

u′3




=




r11 r12 r13

r21 r22 r23

r31 r32 r33







u1

u2

u3




or better yet, just

u′i = rijuj

so long as one agrees to sum over repeated indices. Since we are rotating a vector, we know

that it’s length must be preserved by the rotation—that is

u′iu
′

i = uiui or (rijuj)(rikuk) = uiui
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rearranging this expression gives

uiui = (rijuj)(rikuk)

= rij(ujrik)uk

= rijrikujuk

which is true so long as

rijrik = δjk

where δjk is the Kronecker delta. The above statement is known as the orthogonality condi-

tion, and it is one way of saying

R̃R = 1 or R−1 = R̃

where R is the matrix made from rij . This relationship between the transpose of a rotation

matrix and it’s inverse becomes particularly convenient when one wishes to change the direc-

tion of a rotation in three dimensional space. If one knows the rotation matrix for a clockwise

rotation around some axis, she need only take the transpose to rotate counterclockwise about

that axis.

One property of all groups is that one can form composite rotations by multiplying one

group element (matrix) by another. Since the group SO(3) is non-Abelian, it’s members do

not commute, ie.

RxRy 6= RyRx

which, in the case of this work, means that a rotation around y followed by a rotation around

x does not necessarily leave one in the same place as rotating around x then around y.

The matrices corresponding to spatial rotations about the x, y, and z axes can be written
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as

Rx+
=




1 0 0

0 cosβ sinβ

0 −sinβ cosβ



Ry+

=




cosθ 0 −sinθ

0 1 0

sinθ 0 cosθ



Rz+

=




cosφ sinφ 0

−sinφ cosφ 0

0 0 1




and, should it be of interest, the matrix that was of most importance to my simulation is

just

Rz
−

Ry
−

=




cosθcosφ −sinφ sinθcosφ

cosθsinφ cosφ sinθsinφ

−sinθ 0 cosθ




which is the matrix used to rotate the standard configuration to the detector coordinate

system from section 3.3.1.
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Appendix B

∆φ Distribution Dependence on

Cone’s Opening Angle

In section 3.3.2 I mentioned that it was important to note that the angular distributions in

my simulation are dependent upon αopen, the angle at which the cone of associated particles

opens. To better illustrate this point, I have included 12 more histograms showing the

∆φ distributions before and after the PHENIX detector acceptance cuts for αopen = 0.4 to

αopen = 1.4 in steps of 0.2.

The most important thing to notice from this collection of histograms is the relative

location of the peaks and ridges in each. Specifically, before acceptance cuts they all follow

the general trends expected from the discussion in section 2.2.1, which is to say that there

are peaks near the opening angles at all four corners, and ridges along the sides of the square.

After detector acceptance cuts are imposed, it is interesting to observe that the number of

distinguishable peaks depends heavily on the opening angle of the cone. As is evidenced by

the following histograms, cones with αopen between 0.8 and 1.2 are left with only two easily

distinguishable peaks, while cones with opening angles on either side of this range begin to

show four.
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αopen = 0.8
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αopen = 1.2
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Appendix C

Mapping the Detector Acceptance

int phitest1();

#ifndef __CINT__

#include "TROOT.h"

#include "TFile.h"

#include "TH1.h"

#include "TH2.h"

#include "TRandom.h"

#include "TF1.h"

#include <cmath>

#include <iostream>

using namespace std;

int main()

{

TROOT test("test","phi tests");

return phitest1();

}

#endif
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int phitest1()

{

//gotta open a root file:

TFile hfile("phitest1.root","RECREATE","the phi tests");

//were gonna need to plot the differences in phi...

TH2F*h1 = new TH2F("h1","phitest1",100,0,6.2831,100,0,6.2831);

TH2F*h2 = new TH2F("h2","phitest2",100,0,6.2831,100,0,6.2831);

TF1*phi = new TF1("phi","5",0,6.2831);

for (int bin = 1; bin <=1000000; bin++)

{

//first get all the angles we need

double phi1 = phi->GetRandom();

double phi2 = phi->GetRandom();

double phi3 = phi->GetRandom();

//then find the differences needed being careful to redefine

//phi1 as zero

//each time

double dphi12 = 0;

double dphi13 = 0;

if( phi1 <= phi2)

{

dphi12 = phi2 - phi1;

}

if( phi1 > phi2)

{

dphi12 = 6.2831 - (phi1-phi2);

}
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if( phi1 <= phi3)

{

dphi13 = phi3 - phi1;

}

if( phi1 > phi3)

{

dphi13 = 6.2831 - (phi1-phi3);

}

//then fill the histogram with these guys

h1 ->Fill(dphi12,dphi13);

//we also need to see what the detector would find--taking only the

// angles within its sight leaves

if( ((phi1>0 && phi1<1.5707) || (phi1>2.7053 && phi1<4.2761))

&& ((phi2>0 && phi2<1.5707) || (phi2>2.7053 && phi2<4.2761)) &&

((phi3>0 && phi3<1.5707) || (phi3>2.7053 && phi3<4.2761)))

{

h2 ->Fill(dphi12,dphi13);

}

}

//finally throw it all in a file

cout<<"the phi test::Writing out histograms"<<endl<<endl;

hfile.Write();

hfile.Close();

return 0;

}
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Appendix D

The Primary Simulation

int conevec();

#ifndef __CINT__

#include "TROOT.h"

#include "TFile.h"

#include "TH1.h"

#include "TH2.h"

#include "TRandom.h"

#include "TF1.h"

#include <cmath>

#include <iostream>

using namespace std;

int main()

{

TROOT cone("cone","simple cone2");

return conevec();

}

#endif

int conevec()

{
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//open the root file

TFile hfile("conevec.root","RECREATE","the simple cone2");

//here are all the histograms and fn’s needed

double pi = acos(-1.0);

int pick = 0;

TF1*beta = new TF1("beta","1",0,2*pi);

TF1*tphi = new TF1("tphi","1",0,2*pi);

TF1*ttheta = new TF1("ttheta","sin(x)",0,pi);

TH2F*h1 = new TH2F("h1","alldphi",100,0,2*pi,100,0,2*pi);

TH2F*h2 = new TH2F("h2","postcuts",100,0,2*pi,100,0,2*pi);

TH2F*h3 = new TH2F("h3","check1",1000,-2*pi,2*pi,1000,-2*pi,2*pi);

TH1F*h4 = new TH1F("h4","dbetacut",100,0,2*pi);

TH2F*h5 = new TH2F("h5","check2",1000,-2*pi,2*pi,1000,-2*pi,2*pi);

TH1F*h6 = new TH1F("h6","check3",100,0,2*pi);

TH1F*h7 = new TH1F("h7","check4",100,0,2*pi);

TH2F*h8 = new TH2F("h8","check5",1000,-2*pi,2*pi,1000,-2*pi,2*pi);

cout<<"Select Jet Geometry (type 0 for cone, 1 for bent)"<<endl;

cin>>pick;

cout<<"This will take a moment..."<<endl;

for (int run = 1; run <= 1E7; run++)

{

//here, standard setup means the cone axis is along z

//in this case the x,y,z components of secondaries look like

double alpha = 0.8; //opening angle, can be changed to whatever

float beta2 = beta->GetRandom(); //angle of secondary around axis

double beta3 = beta->GetRandom();

if (pick == 1)

{

beta3 = beta2;
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}

h7->Fill(beta2);

double xastd2 = sin(alpha)*cos(beta2);

double yastd2 = sin(alpha)*sin(beta2);

double zastd2 = cos(alpha);

double xastd3 = sin(alpha)*cos(beta3);

double yastd3 = sin(alpha)*sin(beta3);

double zastd3 = cos(alpha);

h3->Fill(xastd2,yastd2);

//it will help to look at whats going on with the beta angles as well

double dbeta = 0;

if(beta2 <= beta3)

{

dbeta = beta3-beta2;

}

if(beta2 > beta3)

{

dbeta = 2*pi - (beta2-beta3);

}

h6->Fill(dbeta);

//the above is the benchmark that any cone will be compared to

//i think i can get the dphi from here if im careful...

//the expressions below are trivial, but emphasize the rotations

double floor = pi/2;

double xfloor2 = xastd2*cos(floor) - zastd2*sin(floor);

double yfloor2 = yastd2;

double zfloor2 = xastd2*sin(floor) + zastd2*cos(floor);

double xfloor3 = xastd3*cos(floor) - zastd3*sin(floor);

double yfloor3 = yastd3;

double zfloor3 = xastd3*sin(floor) + zastd3*cos(floor);
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h8->Fill(yfloor2,zfloor2);

double phifloor2 = atan2(yfloor2,xfloor2);

double phifloor3 = atan2(yfloor3,xfloor3);

if(phifloor2<0)

{

phifloor2 = 2*pi + phifloor2;

}

if(phifloor3<0)

{

phifloor3 = 2*pi +phifloor3;

}

h1->Fill(phifloor2,phifloor3);

//next lets play with the high pt trigger

double phitrig = tphi->GetRandom();

double thetatrig = ttheta->GetRandom();

//here are the components of the trigger particle’s vector

double xtrig = sin(thetatrig)*cos(phitrig);

double ytrig = sin(thetatrig)*sin(phitrig);

double ztrig = cos(thetatrig);

//now we can worry about the rotations

//the simple cone axis is pi from the trigger

double bend = pi;

double thetarotate = (bend - thetatrig);

double phirotate = (pi + phitrig);

//using the appropriate rotation operator one finds

double xarot2 = xastd2*cos(phirotate)*cos(thetarotate) -

yastd2*sin(phirotate) + zastd2*cos(phirotate)*sin(thetarotate);

double yarot2 = xastd2*sin(phirotate)*cos(thetarotate) +

yastd2*cos(phirotate) + zastd2*sin(phirotate)*sin(thetarotate);
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double zarot2 = -xastd2*sin(thetarotate) + zastd2*cos(thetarotate);

double xarot3 = xastd3*cos(phirotate)*cos(thetarotate) -

yastd3*sin(phirotate) + zastd3*cos(phirotate)*sin(thetarotate);

double yarot3 = xastd3*sin(phirotate)*cos(thetarotate) +

yastd3*cos(phirotate) + zastd3*sin(phirotate)*sin(thetarotate);

double zarot3 = -xastd3*sin(thetarotate) + zastd3*cos(thetarotate);

//you can check that this part is working by uncommenting

//the following lines...

// double dot1 = (xtrig*xarot2)+(ytrig*yarot2)+(ztrig*zarot2);

// cout<<"the dot product of the secondary and the trigger

//is" << acos(dot1) <<endl<<endl;

// weve now got the true vectors of the trigger and associated

//particles

// using this one can find their corresponding theta and phi

//for cuts...

double phiarot2 = atan2(yarot2,xarot2);

double thetarot2 = atan2(sqrt((xarot2*xarot2)+(yarot2*yarot2)),

zarot2);

double phiarot3 = atan2(yarot3,xarot3);

double thetarot3 = atan2(sqrt((xarot3*xarot3)+(yarot3*yarot3)),

zarot3);

if(phiarot2<0)

{

phiarot2 = 2*pi + phiarot2;

}

if(phiarot3<0)

{

phiarot3 = 2*pi + phiarot3;

}

if(thetarot2<0)

{

thetarot2 = 2*pi + thetarot2;
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}

if(thetarot3<0)

{

thetarot3 = 2*pi + thetarot3;

}

//this should be everything

//now lets worry about the phenix acceptance

//in phi there are two 90deg sections separated by 65deg...

//below are a bunch of angles that describe the detectors limits

// in phi (should de-hardcode numbers)

double tcut = 2*atan(exp(-0.3));

if( ((phitrig>0 && phitrig<1.5707)||(phitrig>2.7053 &&

phitrig<4.2761))&&

((phiarot2>0 && phiarot2<1.5707)||(phiarot2>2.7053 &&

phiarot2<4.2761))&&

((phiarot3>0 && phiarot3<1.7507)||(phiarot3>2.7053 &&

phiarot3<4.2761)))

{

//now the cuts in theta

if( (thetatrig>(pi/2)-tcut && thetatrig<(pi/2)+tcut) &&

(thetarot2>(pi/2)-tcut && thetarot2<(pi/2)+tcut) &&

(thetarot3>(pi/2)-tcut && thetarot3<(pi/2)+tcut))

{

h2->Fill(phifloor2,phifloor3);

h4->Fill(dbeta);

h5->Fill(xastd2,yastd2);

}

}

}

//sending to file...
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cout<<"the vectorcone::Writing out histograms"<<endl<<endl;

hfile.Write();

hfile.Close();

return 0;

}
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