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OVERVIEW

● Local rotation and Oort constants
● Rotation curve
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1 – LOCAL ROTATION

● We will only consider the local rotation
Around R0 ~ 8 kp the rotation curve is slightly “descending”
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● Differential rotation
 objects closer to Galactic→

   center rotate faster



  

LINE OF SIGHT VELOCITY

● Velocity along to line of sight (vLOS), seen from Sun:
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α

l
l

● I   quadrant  v→ LOS > 0
● II  quadrant  v→ LOS < 0
● III quadrant  v→ LOS > 0
● IV quadrant  v→ LOS < 0



  

LINE OF SIGHT VELOCITY

● In general, vLOS goes roughly as sin(2l):
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TANGENTIAL VELOCITY

● Similarly, we can show that vPOS (tangential velocity) ≥ 0
(Independently of quadrant)
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LINE OF SIGHT VELOCITY -
EXACT FORMULATION

● We will now on assume:
- the Galactic disk is infinitesimally thin
- stars move on circular orbits

● In Galactic coordinates, but from p.o.v. of the Sun:
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TANGENTIAL VELOCITY -
EXACT FORMULATION

● Tangential velocity:
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LINE OF SIGHT VELOCITY
AS A FUNCTION OF DISTANCE FROM SUN

● Keep in mind that, for R > 1 kpc,  monotonically decreasesω

● Let's suppose to move along a given l, starting from quadrant I:
-  grows until the ω tangential point (  > ω ω0)
-  decreases after the ω tangential point (  > ω ω0)
- at some point  < ω ω0 (and vLOS < 0)
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Tangential point



  

LINE OF SIGHT VELOCITY
AS A FUNCTION OF DISTANCE FROM SUN

● Keep in mind that, for R > 1 kpc,  monotonically decreasesω

● Let's suppose to move along a given l, starting from quadrant II:
-  monotonically decreasesω  (  < ω ω0)
  (and vLOS always < 0)
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LINE OF SIGHT VELOCITY
AS A FUNCTION OF DISTANCE FROM SUN

● For the quadrant IV and III, the behavior is like quadrant I and II
(but sign reversed)
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OORT CONSTANTS

● Can we infer the local Galaxy rotation curve from nearby stars?
 → yes if we observe vLOS , vPOS , distance and l

● We manipulate previous equations to get to a formulation which 
allows a direct measurement  Oort constants→

● NOTE: the Oort approach allowed to confirm and measure the 
(local) differential rotation (1927)
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OORT CONSTANTS -
VLOS

● We will consider the Solar neighborhood:
 ~ ω ω0 (d < 1 kpc << R0)

● Considering the geometry  →
Taylor expansion of (  – 0) at R0ω ω
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Sun

Star

GC



  

OORT CONSTANTS - A

● We define Oort constant A:

● And then, considering that:

… we finally write:

NOTE: In case of rigid rotation d /dR = 0  A = 0θ →

NOTE: We confirm the assumption that VLOS is a sinusoidal function of l
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(seen before)



  

OORT CONSTANTS -
VPOS
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(same as before)

● Taylor expansions:

assumption that  ~ ω ω0

(solar neighborhood)



  

OORT CONSTANTS - B

● We define Oort constant B:

● And then, we finally write:

NOTE: Even in case of rigid rotation θ0/R0 != 0  B != 0→
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OORT CONSTANTS -
CONSIDERATIONS

● Summary:

where:

 so we can obtain A and B by measuring → vLOS , vPOS , d, and l
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● The Oort constants directly give:

 → local rotational velocity

 → local velocity gradient (shear)



  

OORT CONSTANTS -
INTERPRETATION W/R TO VELOCITY CURVE

● Let's assume an hypothetical rotation curve (quite realistic):
-   tangent angleβ →

-   angle to pointα →

-  =  + δ α β

-  =  – γ α β

→ the Oort constants help constraining the functional form of
the Galaxy rotation curve (by studying the local neighborhood) !
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tangent



  

OORT CONSTANTS -
PROPER MOTION

● Let's write the proper motion  [“/sec] with Oort constantsμ

● For a motion in the galactic disk (b=0), the assumptions of the Oort 
constants are valid, and we can say:

vl = μl d = vPOS
μl = vPOS / d

If using units of [km/sec] and [“/year]:
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tangential velocity (previous class)



  

OORT CONSTANTS -
MEASUREMENTS

● We can get A and B from:

NOTES:
-           = (A-B) & Θ0 ~ 220 km/sec  R→ 0 ~ 8 kpc (while used 8.5 km) 
Hipparchos: Feast & Whitelock (1997)
Gaia data: Bovy 2017, MNRAS, 468, 63
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measurables

Hipparchos Gaia

A 14.8 (±0.8) km/s/kpc 15.3 (±0.4) km/s/kpc

B -12.4 (±0.6) km/s/kpc -11.9 (±0.4) km/s/kpc

A – B (ω0) 27.2 km/s/kpc 27.2 km/s/kpc

 +  (-d /dR | RΑ Β Θ 0) 2.4 km/s/kpc 3.4 km/s/kpc



  

OORT CONSTANTS -
FINAL REMARK

● A more accurate Taylor expansion, and relaxing the b = 0 
assumption leads to more constants:
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Bovy 2017, MNRAS, 468, 63



  

2 – ROTATION CURVE

● To study the rotation curve we will use the ISM, in particular:
- HI (neutral)
- CO (tracing H2 – we will see it later)

● ISM has a larger distribution than stars, hence it traces the 
rotation to larger radii
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[Dame, Hartmann, and Thaddeus (2001)]



  

POSITION-VELOCITY DIAGRAM

● One way to look at the rotation curve is using the (v,l) diagram
Compressing the b coordinate around |b| < 2°
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HI CO



  

UNDERSTANDING THE POSITION-VELOCITY 
DIAGRAM

● Let's understand the  shape of the rotation curve
● Remember the expression for vPOS:

 for each concentric gas ring,  = CONST  v→ ω → R ~ sin( l )
 → each ring appears as a sinusoidal curve
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UNDERSTANDING THE POSITION-VELOCITY 
DIAGRAM – OUTER ORBITS

● Outer rings are visible at all l (-180° < l < 180°)
- velocities  = ω ω = ω ω00 to  ωMAX (always  < ω ω0) 
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UNDERSTANDING THE POSITION-VELOCITY 
DIAGRAM – INNER ORBITS

● Inner rings are visible between lmin < l < lMAX
- velocities  = 0ω  to  = ω ω = ω ω0  0  (always  > ω ω0) 
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UNDERSTANDING THE POSITION-VELOCITY 
DIAGRAM – INNER ORBITS

● Inner rings are visible between lmin < l < lMAX
NOTE: intensity of inner orbits is stronger  crossed twice along LOS←
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UNDERSTANDING THE POSITION-VELOCITY 
DIAGRAM – SUB-STRUCTURE

● Additional sub-structure is due to spiral arms/bar (see later)
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THEORETICAL POSITION-VELOCITY 
DIAGRAM

● Theoretical prediction of a disk gas distribution rotating as:

 close to real distribution!→  (more on this later)
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VELOCITY OF INNER MOLECULAR CLOUDS

● There are several clouds along a given LOS, with different ω
– how we can associate a radius to the velocity?
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● If we obtain a spectrum along 
the LOS, we will see peaks of 
emission at different redshift



  

VELOCITY OF INNER MOLECULAR CLOUDS

● We can convert the redshift into radial velocity
● For cloud A:

 - vLOS = v
 - vLOS is MAX (vLOS,MAX closer to center)
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 →   R = Rω ↔ 0 sin(l)

A has also the
highest density



  

ROTATION OF INNER MOLECULAR CLOUDS

● … by repeating at different l, we get the inner vLOS,MAX (= v):
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●  → quadrant I
o  → quadrant II



  

SWITCHING TO ROTATION CURVE

● To get to the actual rotation curve (  VS. R), we need to:θ

- use Rmin instead of l
- convert v (LSR_sun) to  (SFR)θ

  General conversion formula (see before):

  for vLOS,MAX , cos( ) = 1:α

  Finally:
 = θ vLOS,MAX + θ0 sin(l)

   → the normalization will depend on θ0
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INNER ROTATION CURVE

● This way, we get the [2-to-8 kpc] rotation curve:
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Θ0 = 180km/sec
Θ0 = 220km/sec

Oscillations: spiral arms



  

OUTER ROTATION CURVE

● Outside the solar circle, we cannot use the same technique

● We need to use objects for which we can measure both:
- distance
- velocity

● Possible objects:
- Cepheids
- Planetary/HII nebulae of “known” size
- Gas associated with young clusters
   gas radio emission yields velocity→

   → main-sequence fitting yields distance modulus
● All these are affected by large uncertainties
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FULL ROTATION CURVE

● Et volià:
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Notice the large
uncertainties

Range seen before

[Sofue et al. 2009, PASJ, 61, 227]



  

ROTATION CURVE –
CONSTRAINTS BY OORT CONSTANT

● Let's do an exercise: use the Oort constants to constrain the 
rotation curve derived with the method above
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In the solar neighborhood: R0 ~ R╨

 we can perform the Taylor expansion:→

And it holds:

vLOS =     



  

ROTATION CURVE –
CONSTRAINTS BY OORT CONSTANT

● Let's do an exercise: use the Oort constants to constrain the 
rotation curve derived with the method above
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                                      So we can write:

as:

 measuring  v→ LOS we obtain info about AR0
   i.e. about the rotation curve

vLOS =     



  

MEASURING DISTANCE FROM
GAS CLOUDS

● How to measure distance d from a gas cloud?
Differently from stars, the intrinsic L of a cloud is practically impossible 
to estimate (depends on T, , etc.)τ

 cannot measure distance modulus→

● Alternatives:
- measure absorption of a background star
- assume a rotation curve (R) and (R)Θ ω , and circular orbits

DYNAMICS AND STRUCTURE OF GALAXIES – GALACTIC ASTRONOMY



  

MEASURING DISTANCE FROM
GAS CLOUDS – ROTATION CURVE

● For an inner cloud, there are two possible distances along LOS:
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● We know from before that:

where  = ( R) is known, and is ω ω

monotonic with R (for R > 0.5 kpc)

 there is only one value of R→

    which solves the equation
    (we can solve it numerically)

 → we need R 



  

SPIRAL STRUCTURE FROM GAS ROTATION -
NON-CIRCULAR ORBITS

● Non-circular orbits in the (v,l) diagram
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● From Galactic Astronomy, chap.9.1.1 on on:
 circular orbits (inner and outer)→

 → elliptical orbit ~ closed inner orbit

 spiral orbit ~ non-closed elliptical orbit→



  

SPIRAL STRUCTURE FROM GAS ROTATION

● As we saw before, we can trace any point on (v,l) diagram into R 
 features in the (v,l) refect into space (assuming circular orbits)→
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simulation



  

SPIRAL STRUCTURE FROM GAS ROTATION

● As we saw before, we can trace any point on (v,l) diagram into R 
 features in the (v,l) refect into space (assuming circular orbits)→
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real gas data



  

SPIRAL STRUCTURE FROM GAS ROTATION

● HI gas map of the Milky Way (behind the nucleus is obscured)
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