DYNAMICS AND STRUCTURE OF GALAXIES GALACTIC ASTRONOMY

2.3 Galactic Rotation

OVERVIEW

- Local rotation and Oort constants
- Rotation curve

1 – LOCAL ROTATION

• We will only consider the local rotation Around $R_0 \sim 8$ kp the rotation curve is slightly "descending"

LINE OF SIGHT VELOCITY

• Velocity along to line of sight (v_{POS}), seen from Sun:

LINE OF SIGHT VELOCITY

• In general, v_{LOS} goes roughly as sin(21):

TANGENTIAL VELOCITY

• Similarly, we can show that v_{POS} (tangential velocity) ≥ 0 (Independently of quadrant)

LINE OF SIGHT VELOCITY -EXACT FORMULATION

- We will now on assume:
 - the Galactic disk is infinitesimally thin
 - stars move on circular orbits
- In Galactic coordinates, but from p.o.v. of the Sun:

$$v_{LOS} = \Theta \cos \alpha - \Theta_0 \sin l$$

$$\frac{\sin l}{R} = \frac{\sin(\alpha + \pi/2)}{R_0} = \frac{\cos \alpha}{R_0}$$

$$v_{LOS} = \left(\frac{\Theta R_0}{R}\right) \sin l - \Theta_0 \sin l$$

$$\omega = \Theta/R$$

$$v_{LOS} = (\omega - \omega_0) R_0 \sin l$$

TANGENTIAL VELOCITY -EXACT FORMULATION

• Tangential velocity:

LINE OF SIGHT VELOCITY AS A FUNCTION OF DISTANCE FROM SUN

- Keep in mind that, for R > 1 kpc, ω monotonically decreases
- Let's suppose to move along a given *l*, starting from quadrant *l*:

LINE OF SIGHT VELOCITY AS A FUNCTION OF DISTANCE FROM SUN

- Keep in mind that, for R > 1 kpc, ω monotonically decreases
- Let's suppose to move along a given *l*, starting from quadrant II:

Ш

Π

- ω monotonically decreases ($\omega < \omega_0$)

(and v_{LOS} always < 0)

LINE OF SIGHT VELOCITY AS A FUNCTION OF DISTANCE FROM SUN

 For the quadrant IV and III, the behavior is like quadrant I and II (but sign reversed)

OORT CONSTANTS

- Can we infer the local Galaxy rotation curve from nearby stars? \rightarrow yes if we observe v_{LOS} , v_{POS} , distance and l
- We manipulate previous equations to get to a formulation which allows a direct measurement → Oort constants
- NOTE: the Oort approach allowed to confirm and measure the (local) differential rotation (1927)

OORT CONSTANTS - V_{LOS}

• We will consider the Solar neighborhood:

$$\omega \sim \omega_0$$
 (d < 1 kpc << R₀)

• Considering the geometry \rightarrow

Taylor expansion of ($\omega - \omega 0$) at R0

$$(\omega - \omega_0) \cong \left(\frac{d\omega}{dR}\right)_{R_0} (R - R_0) \longrightarrow R - R_0 \approx -d \cos l$$

$$(\omega - \omega_0) \cong (R - R_0) \longrightarrow R - R_0 \approx -d \cos l$$

$$\frac{d\omega}{dR} = \frac{d}{dR} \left(\frac{\Theta}{R}\right) = \frac{1}{R} \frac{d\Theta}{dR} - \frac{\Theta}{R^2}$$

$$\left(\frac{d\omega}{dR}\right)_{R_0} = \frac{1}{R_0} \left(\frac{d\Theta}{dR}\right)_{R_0} - \frac{\Theta_0}{R_0^2}$$

$$(\omega - \omega_0) = -\left(\frac{1}{R_0} \left(\frac{d\Theta}{dR}\right)_{R_0} - \frac{\Theta_0}{R_0^2}\right) d \cos l$$

OORT CONSTANTS - A

$$v_{LOS} = (\omega - \omega_0) R_0 \sin l$$
(seen before)
$$v_{LOS} = -\left(\left(\frac{d\Theta}{dR}\right)_{R_0} - \frac{\Theta_0}{R_0}\right) d\cos l \sin l$$

• We define Oort constant A:

$$A = \frac{1}{2} \left[\frac{\Theta_0}{R_0} - \left(\frac{d\Theta}{dR} \right)_{R_0} \right]$$

• And then, considering that:

$$2\sin l\cos l = \sin(2l)$$

... we finally write:

$$v_{LOS} = Ad\sin(2l)$$

NOTE: In case of rigid rotation $d\theta/dR = 0 \rightarrow A = 0$ NOTE: We confirm the assumption that V_{LOS} is a sinusoidal function of l

OORT CONSTANTS - V_{POS}

OORT CONSTANTS - B

$$v_{POS} = -\frac{1}{2} \left(\left(\frac{d\Theta}{dR} \right)_{R_0} - \frac{\Theta_0}{R_0} \right) d\cos(2l) - \frac{1}{2} \left[\left(\frac{d\Theta}{dR} \right)_{\circ} + \frac{\Theta_{\circ}}{R \circ} \right] d$$

• We define Oort constant B:

$$B = -\frac{1}{2} \left[\frac{\Theta_0}{R_0} + \left(\frac{d\Theta}{dR} \right)_{R_0} \right]$$

• And then, we finally write:

$$v_{POS} = Ad\cos 2l + Bd$$

NOTE: Even in case of rigid rotation $\theta_0/R_0 \mathrel{!=} 0 \rightarrow B \mathrel{!=} 0$

OORT CONSTANTS -CONSIDERATIONS

• Summary:

$$v_{POS} = Ad \cos 2l + Bd$$
 $v_{LOS} = Ad \sin(2l)$

where:

$$A = \frac{1}{2} \left[\frac{\Theta_0}{R_0} - \left(\frac{d\Theta}{dR} \right)_{R_0} \right] \qquad \qquad B = -\frac{1}{2} \left[\frac{\Theta_0}{R_0} + \left(\frac{d\Theta}{dR} \right)_{R_0} \right]$$

 \rightarrow so we can obtain A and B by measuring v_{LOS} , v_{POS} , d, and l

• The Oort constants directly give:

$$A - B = \frac{\Theta_0}{R_0} = \omega_0 \quad \rightarrow \text{local rotational velocity}$$
$$A + B = -\left(\frac{d\Theta}{dR}\right)_{R_0} \quad \rightarrow \text{local velocity gradient (shear)}$$

OORT CONSTANTS -INTERPRETATION W/R TO VELOCITY CURVE

• Let's assume an hypothetical rotation curve (quite realistic):

 \rightarrow the Oort constants help constraining the functional form of the Galaxy rotation curve (by studying the local neighborhood) !

OORT CONSTANTS -PROPER MOTION

- Let's write the proper motion μ ["/sec] with Oort constants

 $v_l = \mu_l \cos(b)d$ tangential velocity (previous class)

 For a motion in the galactic disk (b=0), the assumptions of the Oort constants are valid, and we can say:

> $v_l = \mu_l d = v_{POS}$ $\mu_l = v_{POS} / d$

If using units of [km/sec] and ["/year]:

$$\mu_l = \frac{v_l}{4.74d}$$
$$\mu_l = \frac{A\cos 2l + B}{4.74}$$

OORT CONSTANTS -MEASUREMENTS

measurables

• We can get A and B from:

 $v_{POS} = Ad \cos 2l + Bd$ $v_{LOS} = Ad \sin(2l)$

	Hipparchos	Gaia
А	14.8 (±0.8) km/s/kpc	15.3 (±0.4) km/s/kpc
В	-12.4 (±0.6) km/s/kpc	-11.9 (±0.4) km/s/kpc
$A - B (\omega_0)$	27.2 km/s/kpc	27.2 km/s/kpc
$A + B (-d\Theta/dR R_0)$	2.4 km/s/kpc	3.4 km/s/kpc

NOTES:

- $\frac{\Theta_0}{R_0} = \omega_0 = (A-B) \& \Theta_0 \sim 220 \text{ km/sec} \rightarrow R_0 \sim 8 \text{ kpc}$ (while used 8.5 km) Hipparchos: Feast & Whitelock (1997)

Gaia data: Bovy 2017, MNRAS, 468, 63

OORT CONSTANTS -FINAL REMARK

 A more accurate Taylor expansion, and relaxing the b = 0 assumption leads to more constants:

$$2A = \bar{v}_{\phi}/R_0 - \bar{v}_{\phi,R} - \bar{v}_{R,\phi}/R_0$$

$$2B = -\bar{v}_{\phi}/R_0 - \bar{v}_{\phi,R} + \bar{v}_{R,\phi}/R_0$$

$$2C = -\bar{v}_R/R_0 + \bar{v}_{R,R} - \bar{v}_{\phi,\phi}/R_0$$

$$2K = \bar{v}_R/R_0 + \bar{v}_{R,R} + \bar{v}_{\phi,\phi}/R_0$$

Bovy 2017, MNRAS, 468, 63

2 - ROTATION CURVE

- To study the rotation curve we will use the ISM, in particular:
 - HI (neutral)
 - CO (tracing H2 we will see it later)
- ISM has a larger distribution than stars, hence it traces the rotation to larger radii

[Dame, Hartmann, and Thaddeus (2001)]

POSITION-VELOCITY DIAGRAM

• One way to look at the rotation curve is using the (v,l) diagram Compressing the b coordinate around $|b| < 2^{\circ}$

UNDERSTANDING THE POSITION-VELOCITY DIAGRAM

- Let's understand the shape of the rotation curve
- Remember the expression for v_{POS} :

$$v_R = (\omega - \omega_0) R_0 \sin l$$

- \rightarrow for each concentric gas ring, ω = CONST \rightarrow v_R \sim sin(l)
- \rightarrow each ring appears as a sinusoidal curve

UNDERSTANDING THE POSITION-VELOCITY DIAGRAM – OUTER ORBITS

- Outer rings are visible at all l (-180° < l < 180°)
 - velocities $\omega = \omega_0$ to ω_{MAX} (always $\omega < \omega_0$)

UNDERSTANDING THE POSITION-VELOCITY DIAGRAM – INNER ORBITS

- Inner rings are visible between $l_{min} < l < l_{MAX}$
 - velocities $\omega = 0$ to $\omega = \omega_0$ (always $\omega > \omega_0$)

UNDERSTANDING THE POSITION-VELOCITY DIAGRAM – INNER ORBITS

Inner rings are visible between l_{min} < l < l_{MAX}
 NOTE: intensity of inner orbits is stronger ← crossed twice along LOS

UNDERSTANDING THE POSITION-VELOCITY DIAGRAM – SUB-STRUCTURE

• Additional sub-structure is due to spiral arms/bar (see later)

Fig 2.20 (D. Hartmann) 'Galaxies in the Universe' Sparke/Gallagher CUP 2007

THEORETICAL POSITION-VELOCITY DIAGRAM

• Theoretical prediction of a disk gas distribution rotating as:

$$v_R = (\omega - \omega_0) R_0 \sin l$$

→ close to real distribution! (more on this later)

DYNAMICS AND STRUCTURE OF GALAXIES - GALACTIC ASTRONOMY

VELOCITY OF INNER MOLECULAR CLOUDS

- \bullet There are several clouds along a given LOS, with different ω
 - how we can associate a radius to the velocity?

 If we obtain a spectrum along the LOS, we will see peaks of emission at different redshift

VELOCITY OF INNER MOLECULAR CLOUDS

- We can convert the redshift into radial velocity
- For cloud A:

ROTATION OF INNER MOLECULAR CLOUDS

• ... by repeating at different l, we get the inner $v_{LOS,MAX}$ (= v):

SWITCHING TO ROTATION CURVE

• To get to the actual rotation curve (θ VS. R), we need to:

- use $R_{\mbox{min}}$ instead of l
- convert v (LSR_sun) to θ (SFR)

General conversion formula (see before):

 $v_{R} = \Theta \cos \alpha - \Theta_{0} \sin l$

for $v_{LOS,MAX}$, $cos(\alpha) = 1$:

$$v_{\rm max} = \Theta - \Theta_0 \sin l$$

Finally:

$$\theta = v_{\text{LOS,MAX}} + \theta_0 \sin(l)$$

 \rightarrow the normalization will depend on θ_0

INNER ROTATION CURVE

• This way, we get the [2-to-8 kpc] rotation curve:

OUTER ROTATION CURVE

- Outside the solar circle, we cannot use the same technique
- We need to use objects for which we can measure both:
 - distance
 - velocity
- Possible objects:
 - Cepheids
 - Planetary/HII nebulae of "known" size
 - Gas associated with young clusters
 - \rightarrow gas radio emission yields velocity
 - → main-sequence fitting yields distance modulus
- All these are affected by large uncertainties

FULL ROTATION CURVE

• Et volià:

ROTATION CURVE – CONSTRAINTS BY OORT CONSTANT

 Let's do an exercise: use the Oort constants to constrain the rotation curve derived with the method above

$$v_{\text{LOS}} = v_{\perp} = \Theta(R_{\perp}) - \Theta_0 \sin l$$

In the solar neighborhood: $R_0 \sim R \bot$ \rightarrow we can perform the Taylor expansion: $\Theta(R_{\bot}) \approx \Theta_0 + \left(\frac{d\Theta}{dR}\right)_{R_\circ} (R_{\bot} - R_\circ) + O(2)$ And it holds:

$$R_{\perp} - R_0 = -R_{\circ} (1 - \sin l)$$

ROTATION CURVE – CONSTRAINTS BY OORT CONSTANT

• Let's do an exercise: use the Oort constants to constrain the rotation curve derived with the method above

MEASURING DISTANCE FROM GAS CLOUDS

- How to measure distance d from a gas cloud? Differently from stars, the intrinsic L of a cloud is practically impossible to estimate (depends on T, τ, etc.)
 - \rightarrow cannot measure distance modulus
- Alternatives:
 - measure absorption of a background star
 - assume a rotation curve $\Theta(R)$ and $\omega(R)$, and circular orbits

MEASURING DISTANCE FROM GAS CLOUDS – ROTATION CURVE

• For an inner cloud, there are two possible distances along LOS:

 \rightarrow we need R

• We know from before that:

$$v_{LOS} = (\omega - \omega_0) R_0 \sin l$$

where $\omega = \omega(R)$ is known, and is monotonic with R (for R > 0.5 kpc)

→ there is only one value of R which solves the equation (we can solve it numerically)

SPIRAL STRUCTURE FROM GAS ROTATION - NON-CIRCULAR ORBITS

• Non-circular orbits in the (v,l) diagram

- From Galactic Astronomy, chap.9.1.1 on on:
 - \rightarrow circular orbits (inner and outer)

 \rightarrow elliptical orbit \sim closed inner orbit

 \rightarrow spiral orbit \sim non-closed elliptical orbit

SPIRAL STRUCTURE FROM GAS ROTATION

As we saw before, we can trace any point on (v,l) diagram into R
 → features in the (v,l) reflect into space (assuming circular orbits)

simulation

SPIRAL STRUCTURE FROM GAS ROTATION

As we saw before, we can trace any point on (v,l) diagram into R
 → features in the (v,l) reflect into space (assuming circular orbits)

SPIRAL STRUCTURE FROM GAS ROTATION

• HI gas map of the Milky Way (behind the nucleus is obscured)

