DYNAMICS AND STRUCTURE OF GALAXIES GALACTIC ASTRONOMY

2.2 Local Kinematics

OVERVIEW

- Aim of the following classes
- Solar neighborhood & disk structure
- Distance measurements
- Velocities of nearby stars
- Frames of reference
- Local kinematics

AIM

- Going from the small scale to the large scale of the Galaxy
- Acquire observational data to build the picture of the formation of the Galaxy (not give it for granted)

NOTE: In astronomy, Galaxy, with "G" always refers to the Milky Way, while galaxy refers to a general galaxy (the title of this class is ambiguous!)

1 - SOLAR NEIGHBORHOOD AND DISK STRUCTURE

- "Neighborhood" vary according to the context
 (~200-300 pc, where the dust limits observations)
- Components of the Milky Way (see previous classes):

THE SOLAR NEIGHBORHOOD – MASS CONTENT

• Stars

differences:

- Initial Mass Function (IMF)
- stellar evolution

Tipo	Densidad [M _o pc ⁻³]
Estrellas de SP O-F	0.014
Estrellas de SP G-M	0.036
Estrellas del halo	0.0001
Enanas blancas	0.005
Total	0.055

- Interstellar medium (ISM) ~ 0.04 M_sun/pc^3 (gas and dust)
- Dark matter ~ 0.01 M_sun/pc^3

```
=> TOTAL ~ 0.1 M_sun/pc^3
```

THE SOLAR NEIGHBORHOOD – VERTICAL DISTRIBUTION

• Stars

- exponential

$$n(z) = n_0 e^{-|z|/z_0}$$
.

	2
Тіро	z_{θ} (pc)
O-B	50
А	120
F	190
dG	340
dK	350
dM	350

depends on stellar

class

- Interstellar medium (ISM) thin disk (gas and dust)
- Dark matter spherical halo

THE SOLAR NEIGHBORHOOD – VERTICAL DISTRIBUTION

• Stars

exponential

$$n(z) = n_0 e^{-|z|/z_0}.$$

depends on stellar

class

- Interstellar medium (ISM) h ~50 pc (gas and dust)
- Dark matter spherical halo

	~
Тіро	<i>z</i> _θ (pc)
O-B	50
А	120
F	190
dG	340
dK	350
dM	350

THE SOLAR NEIGHBORHOOD – DISK (VERTICAL SCALE)

More hints about disk evolution:

- The double profile of the disk
 - thin disk (h~250 pc) (95% of stars)
 - thick disk (h~1000 pc)
- Metallicity:
 - thin disk <[Fe/H]> \sim -0.3
 - thick disk <[Fe/H]> \sim -0.6

thin disk:

- hosts younger stars
- Same h as the gas
- narrower (as the name says)
- metal richer

THE SOLAR NEIGHBORHOOD – DISK EVOLUTION

Possible disk evolution:

- Stars are born in the same place (where is the gas), but their obits evolve in via interactions with gas clouds and spiral arms
 - → interactions not sufficient to "puff-up" thick disk to 1 kpc (?)
- Old galaxy interaction "heated" ALL the thin disk, and later the gas fell back to the plane, where young stars now form
 - \rightarrow gas relaxes faster than stars because of viscosity

THE SOLAR NEIGHBORHOOD – CAVEATS ABOUT DISK EVOLUTION

Keep in mind:

- thick/thin disks are commonly found in spiral galaxies
 e.g. Yoachim (2005; arXiv:astro-ph/0508460v1)
- the separation thick/thin might be artificial: it could be a series of components e.g. Bovy (2012, ApJ, 753, 148)

2 – DISTANCE MEASUREMENTS

Distance measurement for the local stars

• Parallax (trigonometric):

 $d(pc) = \frac{1AU}{\pi(\text{''})}$

Hipparchos (1989 – 1993) Gaia (first data release 2017)

	Hipparchos	Gaia
mag limit (V)	12	20
Effective distance	1 kpc	10 Mpc
Observed objects	~10^5	~10^9
Distance accuracy	~5-10%	<1%

SPECTROSCOPIC PARALLAX

- Parallax (spectroscopic):
 - for a given spectral class we know L
 - compare L (model) VS F (observed)
 - \rightarrow find distance:

 $L = 4\pi d^2 F$

- Features:
 - less accurate than trigonometric parallax
 - valid up to larger (pre-Gaia era) distances (~100 kpc)
 - affected by dust absorption
 - luminosity class difficult to disentangle for distant stars

OTHER STELLAR DISTANCE MEASUREMENTS

- Stellar peculiar characteristics:
 - Cepheids (supergiants):
 - L Period

- RR Lyrae (horizontal branch)
 spectroscopic parallax
 (they have an extremely constant L)

3 - VELOCITIES OF NEARBY STARS

- Proper motion μ [rad/sec] = motion of an object in the sky
- ... but 3D velocity v has more components:
 - tangential component (proper motion)
 - radial component (doppler)

• In galactic coordinates, v_t can be further projected as:

VELOCITIES OF NEARBY STARS -HELIOCENTRIC CARTESIAN SYSTEM

• Switching to the "comfortable" heliocentric Cartesian system:

$$W = \frac{dz}{dt} = r\sin b + r\dot{b}\cos b$$

From previous slide:

 $r = v_r$ $r \dot{l} \cos b = v_l$ $r \dot{b} = v_b$

 $U = v_r \cos b \cos l - v_b \sin b \cos l - v_l \sin l$ $V = v_r \cos b \sin l - v_b \sin b \sin l + v_l \cos l$ $W = v_r \sin b + v_b \cos b$

VELOCITIES OF NEARBY STARS -HELIOCENTRIC CARTESIAN SYSTEM

• Switching to the "comfortable" heliocentric Cartesian system:

VELOCITIES OF NEARBY STARS -HELIOCENTRIC CARTESIAN SYSTEM

 $\upsilon_r = U \cos b \cos l + V \cos b \sin l + W \sin b$ $\upsilon_b = -U \sin b \cos l - V \sin b \sin l + W \cos b$ $\upsilon_l = U \sin l + V \cos l$

Reverse (we will need them later)

 $U = v_r \cos b \cos l - v_b \sin b \cos l - v_l \sin l$ $V = v_r \cos b \sin l - v_b \sin b \sin l + v_l \cos l$ $W = v_r \sin b + v_b \cos b$

4 – FRAMES OF REFERENCE

• Galacto-centic system is the natural system (!= galactic coordinates!):

 However, to study the Sun's neighborhood is more convenient to adopt a "local" frame of reference:

4 – FRAMES OF REFERENCE

IF stars were really on perfectly circular orbits

Local Standard of Rest (LSR)

Kinematic LSR

heliocentric, rotates at the

average velocity of local stars

(no assumptions on why)

Dynamic LSR

defined at any point, rotates on

circular orbit with a velocity Θ_0

imposed by axisymmetric potential

PECULIAR VELOCITY

• **Peculiar velocity** = velocity (u,v,w) of a star w/r to its dyn. LSR (LSR*)

Variable	Descripción	Z	
<i>X,Y,Z</i>	Coordenadas de un objeto en el SFR		
П,Ө,Ζ	Velocidad de un objeto en el SFR	$\Pi = dR/dt$	
(0, O ₀ ,0)	Velocidad del LSR en el SFR	$\Omega = D d\Omega/dt$ Star	
и, v, w	Velocidad peculiar, i.e., velocidad de una	$\Theta \equiv K d\theta/dt$ z –	Rotation
	estrella respecto a sus SLR.	Z = dz/dt	
U,V,W	Velocidad de un objeto respecto al Sol	Sun	· Galactic center
v_{Θ}'	Velocidad acimutal del Sol respecto al LSR		
	cinemático		
v _e	Velocidad acimutal del Sol respecto al LSR		
	dinámico	$u_* = 11_* - 11_{SLR} = 11$	
\mathcal{U}_r	Velocidad de un objeto respecto al Sol, a lo	5.5.1	Peculiar
	largo de la visual	$v_* = \Theta_* - \Theta_{ISP} = \Theta - \Theta_0$	
\boldsymbol{v}_l , \boldsymbol{v}_b	Velocidad de un ojbeto respecto al Sol, en	LSR 0	velocity
	dirección l, b, respectivamente	$W_* = Z_* - Z_{ISR} = Z$	velocity

- To convert this to heliocentric coordinates we need to:
 - \rightarrow find the peculiar velocity of Sun w/r to its LSR (LSR_sun)
 - \rightarrow find the differential velocity between LSR_sun and LSR*

PECULIAR VELOCITY

• **Peculiar velocity** = velocity (u,v,w) of a star w/r to its dyn. LSR (LSR*)

Variable	Descripción	Z	
<i>X,Y,Z</i>	Coordenadas de un objeto en el SFR		
П,Ө,Ζ	Velocidad de un objeto en el SFR	$\Pi = dR/dt$	
(0, Θ ₀ ,0)	Velocidad del LSR en el SFR	$\Theta = \mathbf{P} d\theta/dt$ Star	
и, v, w	Velocidad peculiar, i.e., velocidad de una	$\Theta \equiv R d\theta/dt$ z I	Rotation
	estrella respecto a sus SLR.	$Z \equiv dz/dt$	Ciluisanta
U,V,W	Velocidad de un objeto respecto al Sol	Sun	· Galactic center
v_{Θ}'	Velocidad acimutal del Sol respecto al LSR		
	cinemático		
vo	Velocidad acimutal del Sol respecto al LSR		
	dinámico	$u_* = 11_* - 11_{SLR} = 11$	
\mathcal{U}_r	Velocidad de un objeto respecto al Sol, a lo		Peculiar
	largo de la visual	$v_* = \Theta_* - \Theta_{ISP} = \Theta - \Theta_0$	
\boldsymbol{v}_l , \boldsymbol{v}_b	Velocidad de un ojbeto respecto al Sol, en	Lon 0	velocity
	dirección <i>l</i> , <i>b</i> , respectivamente	$w_* = Z_* - Z_{LSR} = Z$	velocity

- To convert this to heliocentric coordinates we need to:
 - \rightarrow find the peculiar velocity of Sun w/r to its LSR (LSR_sun)
 - → find the differential velocity between LSR_sun and LSR*

(we ignore this assuming no differential rotation – nearby stars)

PECULIAR VELOCITY – HELIOCENTRIC COORDINATES

• Velocity of a star w/r to the Sun:

$$U_{*} = u_{*} - u_{\Theta} - (\Pi_{LSR^{*}} - \Pi_{LSR\Theta})$$

$$V_{*} = v_{*} - v_{\Theta} - (\Theta_{LSR^{*}} - \Theta_{LSR\Theta})$$

$$W_{*} = w_{*} - w_{\Theta} - (Z_{LSR^{*}} - Z_{LSR\Theta})$$

$$U_{*} = u_{*} - u_{\Theta} = \Pi_{*} - \Pi_{\Theta}$$

$$V_{*} = v_{*} - v_{\Theta} = \Theta_{*} - \Theta_{\Theta}$$

$$W_{*} = w_{*} - w_{\Theta} = Z_{*} - Z_{\Theta}$$

$$W_{\Theta} = W_{\Theta} \otimes USR_{sun}$$

$$W_{\Theta} \otimes USR_{sun}$$

• Adopting a sample of nearby stars, we can say:

$$\langle U_* \rangle = \langle u_* \overline{\rangle}^{-} u_{\Theta} = -u_{\Theta}$$
$$\langle W_* \rangle = \langle w_* \rangle - w_{\Theta} = -w_{\Theta}$$

- But we cannot say: $\langle v_*
 angle = 0$
 - that is true in the kinematic LSR (actually it's the definition)
 - ... but now we are using the dynamic LSR

ESTIMATING <v*>

- A = Sun's orbit
 - B = random star orbit
 - C = circle around Galaxy center

(where LSR is defined)

• Consider that stars passing near the Sun when it is at the apocenter:

- are slower

C

- come from the outskirts of the Galaxy

(where density is lower)

 \rightarrow on average stars are slower than the Sun!

Asymmetric drift $\rightarrow \langle v^* \rangle < 0$

We will therefore write: $\langle V_* \rangle = \langle v_* \rangle - v_{\Theta}$ and define the velocity of Sun w/r to the kinematic LSR v_{Θ}' : $v_{\Theta}' = -\langle V_* \rangle$

FORMULATION OF PECULIAR MOTION OF THE SUN

Finally, the peculiar motion (u, v, w) of the Sun (in dyn. LSR_sun) is:

$$\begin{split} u_{\Theta} &= -\langle U_{*} \rangle \\ v_{\Theta} &= -\langle V_{*} \rangle + \langle v_{*} \rangle = v_{\Theta}^{'} + \langle v_{*} \rangle \\ w_{\Theta} &= -\langle W_{*} \rangle \end{split}$$

- while (u_0, v'_0, w_0) defines the motion of the Sun in the kin. LSR
- Let's now see how to measure it:

 $\upsilon_r = U \cos b \cos l + V \cos b \sin l + W \sin b$ $\upsilon_b = -U \sin b \cos l - V \sin b \sin l + W \cos b$ $\upsilon_l = U \sin l + V \cos l$

Star velocity w/r Cartesian heliocentric (seen previously) for each star i in a sample: $v_{ri} = U_i \cos l_i \cos b_i + V_i \sin l_i \cdot \cos b_i + W_i \sin b_i$ By grouping stars in sub-samples with (l,b) ~ CONST :

$$\upsilon_{ri} = \alpha U_i + \beta V_i + \gamma W_i$$

$$\langle \upsilon_{ri} \rangle = -\alpha \cdot u_{\Theta} - \beta \cdot v_{\Theta} - \gamma \cdot w_{\Theta}$$

MEASUREMENT OF PECULIAR MOTION OF THE SUN

$$\langle \upsilon_{ri} \rangle = -\alpha \cdot u_{\Theta} - \beta \cdot v_{\Theta} - \gamma \cdot w_{\Theta}$$

- This equation holds for each sub-sample (1,b) \sim CONST
 - \rightarrow for M sub-samples (j = 1 ... M), we have M equations of the type:

$$\alpha_{j}u_{\Theta} + \beta_{j}v_{\Theta}' + \gamma_{j}w_{\Theta} = k_{j}$$

- Solving the equations (3 sub-samples are sufficient)
 - \rightarrow we obtain the (u₀, v'₀, w₀) motion of the Sun in the kinematic LSR

 \rightarrow we can now obtain the motion of any star

Values measured:

Sun is moving

north and inward,

faster than LSR_sun

 $u_{\Theta} = 10.0 \quad km \cdot s^{-1}$ $v_{\Theta}' = 5.2 \quad km \cdot s^{-1}$ $w_{\Theta} = 7.2 \quad km \cdot s^{-1}$

MEASUREMENT OF PECULIAR MOTION OF THE SUN

• Let's switch to the (u_0, v_0, w_0) motion of the Sun in the dynamic LSR (i.e., let's find v_0)

• We can assume that v_{θ} depends on how many elliptical obits there are Observationally, this is given by the dispersion on radial velocities Π :

$$\langle v_*
angle \sim < \Pi^2 >$$

MEASUREMENT OF PECULIAR MOTION OF THE SUN

MOTION OF THE LSR_sun IN THE GALAXY (SFR)

- We can use the apparent movement of the radio source SgrA* (AGN)
- Radio interferometry (e.g. VLBI) can achieve high (µarcsec) resolution
- Assuming $R_0 = 8.5 \text{ kpc}$
 - \rightarrow relative velocity $\Theta_0 \sim 235$ km/sec
- Can repeat with any non-rotating object:
 - halo GCs $\rightarrow \Theta_0 \sim 220$ km/sec
 - other galaxies (big uncertainties)

5 – LOCAL KINEMATICS -DISK

- Distribution of stellar velocity around u, v, w \sim Gaussian
- The distribution changes with:
 - the axis u, v, w
 - the stellar type

Tipo	$< u^2 > 0.5$	$< v^2 > 0.5$	$<_W^2>^{0.5}$	<i>l</i> _v (°)
Enanas				
B0	10	9	6	-50
A0	15	9	9	15
F0	24	13	10	19
G0	26	18	15	21
K0	28	16	11	2
M0	32	21	10	3
Gigantes				
A	22	13	9	27
F	28	15	9	14
G	26	18	15	12
K0	31	21	16	14
Súpergigantes				
Cefeidas	13	9	5	-
O-B5	12	11	9	36

LOCAL DISK KINEMATICS - VELOCITY DISTRIBUTIONS

- We observe:
 - distribution is tighter for more massive (younger) stars
 - later stellar types along M-S include stars of a wider range of ages

(hence their distributions are intrinsically wider)

- Consistent with the picture that stars form in the gas disk, with:
 - small vertical separation
 - similar peculiar velocities
- ... and their obits evolve by interactions with molecular clouds and spiral arms NOTE: still not enough to create thick disk!

LOCAL DISK KINEMATICS -VELOCITY DISTRIBUTIONS 2D

- Distribution around u, w \sim symmetric
- Distribution around v !~ symmetric and <v> < 0 (asymmetric drift)
- Alternative view:

LOCAL DISK KINEMATICS -VELOCITY DISTRIBUTIONS 2D

- dispersion u > dispersion v > dispersion w (why? under debate)
- smaller mass ↔ higher dispersion
- dispersion v asymmetric, $\langle v \rangle < 0$

LOCAL DISK KINEMATICS -VELOCITY ELLIPSOID

Co-moving groups

- can be identified on the u, v, w hyperplane (see e.g. work of A. Binks)
- mostly composed by massive (young) stars

(they get dispersed by interactions)

Examples:

Pleiads, Hyades, Sirio group

• We define:

- the velocity ellipsoid (it's 3D)
- the vertex deviation (angle l_v)

LOCAL DISK KINEMATICS -VELOCITY ELLIPSOID

How to write the velocity Probability distribution Function P(V)?
 If the distributions were independent & symmetric Gaussians:

$$P(V) = P_u(u)P_v(v)P_w(w)$$
$$= \frac{1}{(2\pi)^{1.5}\sigma_u\sigma_v\sigma_w} \exp\left[-\left(\frac{u^2}{2\sigma_u^2} + \frac{v^2}{2\sigma_v^2} + \frac{w^2}{2\sigma_w^2}\right)\right]$$

... but the only symmetric Gaussian is w, while u and v are correlated !

• We choose new axis set: • $\mathbf{u_1} \leftarrow \text{rotating } \mathbf{u}, \mathbf{v} \text{ by } \mathbf{l_v}$ • $\mathbf{v_2}$ • $\mathbf{w} \leftarrow \text{we keep this axis}$ $\frac{1}{(2\pi)^{1.5}\sigma_1\sigma_2\sigma_w} \exp\left[-\left(\frac{u_1^2}{2\sigma_1^2} + \frac{v_2^2}{2\sigma_2^2} + \frac{w^2}{2\sigma_w^2}\right)\right]$ Schwarzschild distribution (somebody call this "velocity ellipsoid")

LOCAL DISK KINEMATICS -VERTEX DEVIATION

- Considerations on vertex deviation:
 - 1- is more significant for younger stars
 - 2- in an axi-symmetric system, u would be a principal axis

Tipo	$< u^2 > 0.5$	$< v^2 > 0.5$	$< W^2 > 0.5$	$l_{\rm v}$ (°)
Enanas				
B0	10	9	6	-50
A0	15	9	9	15
F0	24	13	10	19
G0	26	18	15	21
K0	28	16	11	2
M0	32	21	10	3
Gigantes				
A	22	13	9	27
F	28	15	9	14
G	26	18	15	12
K0	31	21	16	14
Súpergigantes				
Cefeidas	13	9	5	-
O-B5	12	11	9	36

- Possible origins of vertex deviation:

 initial formation condition
 few nearby co-moving groups strongly
 influence the (u,v) distribution
 (stochastic occurrence)
 - 2- local potential is **not** axi-symmetric attraction by e.g. spiral arms

LOCAL HALO KINEMATICS

- Characteristics of halo stars:
 - large peculiar velocities (i.e. velocity w/r to their LSR)
 - → a.k.a. high-velocity stars
 - large asymmetric drift (i.e. <v*>)
 - \rightarrow large difference w/r to a circular orbit

(halo is a sphere with almost no rotation)

• For halo, better use the Galcto-centric (SFR) velocities (Π , Θ , Z)

	Tipo	$<\!\Theta\!\!>\!\!-\Theta_0$	< 0>	σ_{Π}	σ_{Θ}	σ_{Z}	Calacta
	Cúmulos	-165	55	145	-	-	Galacio-
LSR sun	globulares						centric
-	Sub-enanas	-185	35	170	90	65	
	RR Lyraes	-220	0	210	120	90	(SFR)

(Θ_0 = velocity of LSR_sun in the SFR) ~ 220 km/sec

LOCAL HALO KINEMATICS

• Additionally:

- large velocity dispersions (σ_{Π} , σ_{Θ} , σ_{Z})
- milder rotation than disk (< Θ >)

inner halo \rightarrow prograde 0÷60 km/sec

outer halo \rightarrow retrograde -40÷-70 km/sec

Frank & White (1980), Carollo (2007, Nature, 450, 1020)

• We will also see that halo stars are:

- old
- metal poor

Tipo	$<\!\!\Theta\!\!>$ - $\!\Theta_0$	$<\!\!\Theta\!\!>$	σ_{Π}	σ_{Θ}	σ_{Z}
Cúmulos	-165	55	145	-	-
globulares					
Sub-enanas	-185	35	170	90	65
RR Lyraes	-220	0	210	120	90

KINEMATICS – BIG PICTURE

