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Abstract

In this project we are going to deal with propagation of electro-
magnetic waves, not in free space, but in the more interesting case,
this with boundary conditions. We will examine the cases with rectan-
gular, cylindrical and elliptical geometry. Also we are going to study
what is happening inside the surface, i.e. energy losses, skin depth.
Finally we will discuss some cases where the theory of wave guides
and this of resonant cavities is used.
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1 Introduction

Nowdays most of the civil technology is using Maxwell’s theory. One of
the predictions, is the existence of electromagnetic waves (EM). These waves
are not to be concerned in the same way as the common acoustic or sea
waves. They have two very important differences. The first is that they
are travelling with the largest velocity in the universe (at least locally) and
second they don’t need ”help” to propagate! As known, acoustic(sea) waves
propagate because of the air(water) molecules. Well, Maxwell’s theory tells
us that an EM wave that is created by a space and time modification of the
electric and magnetic fields, can even be transmitted in vacuum. The expla-
nation that this waves don’t need help to propagate, comes from Maxwell’s
four equations. Theory tells us that any change of one of the fields, has as a
consequence, a change in the other field. Is like the greek prompt1:

”Two hands are better than one”

1.1 Electrodynamics in vacuum

In physics, when we are trying to solve a problem, i.e. find the energy
levels of the Hydrogen atom, we separate the problem in parts of different
difficulty levels. In electrodynamics, we begin by considering the static case,
of a charge distribution for example, and then we study the dynamic case,
where the time dependence is considered.

When we want to study the propagation of EM waves we first see how
they propagate in vacuum and then we study the case where propagation
takes place, i.e. in a solid. Vacuum is an ideal state of matter in nature,
which is defined as the state with no elementary particles nor any bound
states of them.

So Maxwell’s electrodynamic equations in vacuum are

∇ · E = 0
∇ × E = −1

c
∂B
∂t

∇ · B = 0
∇ × B = 1

c
∂E
∂t

(1)

1In greek :
”Kράταµε να σε κρατώ,

να ανεβoύµε τo βoυνó.”
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Now if we have charge and current distributions, which are responsible for
the electromagnetic fields, we have the following equations,

∇ · E = 4π%
∇ × E = −1

c
∂B
∂t

∇ · B = 0
∇ × B = 4π

c
J + 1

c
∂E
∂t

(2)

There is also the equation of continuity

∂%

∂t
+ ∇ · J = 0

which has encoded the charge conservation. In general, first we find the
scalar and vector potentials from2

Φ(r, t) =
1

4πεo

∫

V

%(r, tr)

τ
dV

A (r, t) =
µo

4π

∫

V

J(r, tr)

τ
dV

and then we find the fields from,

E = −∇φ− ∂A
∂t

B = ∇ × A

The four equations (1) are hiding the information of the existence of electro-
magnetic waves, with velocity3 ,4

c ≡ 1√
µoεo

= 299, 792, 458 m/s

2In the following equations,inside the integrals, the time dependance has a subscript, r.
This time is known as the retarded time. Is a consequence of the finite travelling velocity
of light, large enough, but finite. [3, p. 195-216], [2, p. 225,654-657]

3Permittivity, , is a physical quantity that describes how an electric field affects and is
affected by a dielectric medium, and is determined by the ability of a material to polarize
in response to an applied electric field, and thereby to cancel, partially, the field inside the
material. Permittivity relates therefore to a materials ability to transmit (or ”permit”)
an electric field. The permittivity of free space (ε0) is 8, 85 · 10−12 F/m. If the medium
is isotropic, then is a scalar. Otherwise it is a 3 × 3 matrix. Permittivity, taken as a
function of frequency, can take on real or complex value. In general it is not a constant, as
it can vary with the position in the medium, the frequency of the field applied, humidity,
temperature and other parameters. In a nonlinear medium, the permittivity can depend
upon the strength of the electric field.

4In electrodynamics, permeability is the degree of magnetization of a material that
responds linearly to an applied magnetic field. Magnetic permeability is represented by
the symbol . This term was coined in September, 1885 by Oliver Heaviside.
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From equations (1) we have that electromagnetic waves are a superposition
of an electric and magnetic field, which are,

E(r, t) = Eoe
i(~k·~r−ωt)

B(r, t) = Boe
i(~k·~r−ωt)

(3)

Because we don’t have boundary conditions, we can show that the electric,
the magnetic field and the norm in the direction of propagation are perpen-
dicular to each other.

1.2 Electrodynamics in matter

If we want to study electrodynamics in matter we have to change equa-
tions (2). These were the equations that Maxwell wrote in his work, the four
equations that unifies electric and magnetic theories. So the equations are,

∇ · D = 4π%
∇ × E = −1

c
∂B
∂t

∇ · B = 0
∇ × H = 4π

c
J + 1

c
∂D
∂t

(4)

where we define,

D ≡ εoE + P ≡ Electric Displacement

H ≡ 1

µo
B + M ≡ Magnetic field

As in vacuum, the fields satisfy the inhomogeneous wave equations,

(∂µ∂
µ + k2)A = 0 (5)

where A ≡ (E, B).

1.3 Boundary Conditions

Now we will see what is happening to the fields while the EM wave travels
via different mediums. The interface in general, will have a charge %(r, t) and
current J(r, t) distribution. The divergent form of Maxwell’s equation’s is,

∇ · D = 4π%
∇ × E = −1

c
∂B
∂t

∇ · B = 0

∇ × H = 4π
c
J + 1

c
∂D
∂t

(6)
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Then applying divergent and Stoke’s theorems, we find four integral equa-
tions which are equivalent of the Maxwell’s equations,

∮

S
D · n̂da = 4π

∫

V
%dV (7)

∮

S
B · n̂da = 0 (8)

∮

C
E · dl = −1

c

∫

S

∂D

∂t
· t̂da (9)

∮

C
H · dl =

∫

S

(
4π

c
J +

1

c

∂D

∂t

)

·t̂da (10)

We can let the surface, to move with velocity v [6].
From the first and second integral, we find

(D2 − D1)·n̂ = 4πσ (11)

(B2 − B1)·n̂ = 0 (12)

Now the third integral is
∮

C
E · dl = (t̂ × n̂)·(E2 − E1)∆l

because [2, p.21]

I1 =
∫

1

c

dB

dt
·t̂da = 0

We finally have

t̂·[n̂×(E2 − E1 )] = t̂·[n̂ · β(B2 − B1 )]

Similarly we have for the final integral

t̂·[n̂×(H2 − H1 ) + n̂ · β(D2 − D1)] =
4π

c
K · t̂

because

I2 =
∫

1

c

dD

dt
·t̂da = 0
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If the interface has no velocity then the boundary conditions become setting
β = 0,

n̂·(D2 − D1) = 4πσ (13)

n̂·(B2 − B1) = 0 (14)

n̂×(E2 − E1) = 0 (15)

n̂×(H2 − H1) =
4π

c
K (16)

2 Propagation in a hollow waveguide

Waveguides can be constructed to carry waves over a wide portion of
the EM spectrum, but are especially useful in the microwave and optical
frequency ranges5. Depending on the frequency, they can be constructed from
either conductive or dielectric materials. Waveguides are used for transferring
both power and communication signals.

Waveguides used at optical frequencies are dielectric waveguides, struc-
tures in which non-conductive material with high permittivity, and this high
index of refraction, is surrounded by a material with lower permittivity. The
structure guides optical waves by total internal reflection. The most common
optical waveguide is optical fiber.

In this part we will consider different geometries for the waveguide,
rectangular, cylindrical and elliptical. We are going to derive the cutoff
frequencies, for TM and TE modes.

2.1 Rectangular Geometry

Here we are going to derive the TE and TM modes for a rectangular
waveguide. We suppose here that the propagation takes place in the x-
direction, and that a ≥ b. Combining the second and the fourth equation of
(1) we get the following results

~E(x, y, z, t) = ~E0(y, z)e
i(kx−ωt)

5The waveguide concept was first proposed by J.J.Thomson in 1893 and experimen-
tally verified by O.J.Lodge in 1894 using electromagnetic waveguides. The mathematical
analysis of the EM propagating modes within a hollow metal cylinder, was first performed
by Lord Rayleigh in 1897, [4].



8

~B(x, y, z, t) = ~B0(y, z)e
i(kx−ωt)

Solving Maxwell’s equations (1) we find

∂Ez

∂y
− ∂Ey

∂z
= iωBx

∂Ex

∂z
− ikEz = iωBy

ikEy −
∂Ex

∂y
= iωBz

∂Bz

∂y
− ∂By

∂z
= − iω

c2
Ex

∂Bx

∂z
− ikBz = − iω

c2
Ey

ikBy −
∂Bx

∂y
= − iω

c2
Ez

Combining the above equations we find

Ey =
i

(
ω
c

)2 − k2

[

k
∂Ex

∂y
+ ω

∂Bx

∂z

]

By =
i

(
ω
c

)2 − k2

[

k
∂Bx

∂y
− ω

c2
∂Ex

∂z

]

Ez =
i

(
ω
c

)2 − k2

[

k
∂Ex

∂z
− ω

∂Bx

∂y

]

Bz =
i

(
ω
c

)2 − k2

[

k
∂Bx

∂z
+
ω

c2
∂Ex

∂y

]

Combining the above with the remaining equations of (1) we find6

[
∂2

∂y2
+

∂2

∂z2
+
(ω

c

)2 − k2
]

Ψx(y, z) = 0 (17)

6Ψx = (Ex, Bx).
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• TE - modes : Ex = 0

[
∂2

∂y2
+

∂2

∂z2
+
(ω

c

)2 − k2
]

Bx(y, z) = 0 (18)

By seperation of variables

Bx = Y (y)Z(z)

we conclude

Y ′′

Y
︸︷︷︸

−k2
y

+
Z ′′

Z
︸︷︷︸

−k2
z

+
(ω

c

)2 − k2 = 0

or

Y ′′ + k2
yY = 0 (19)

Z ′′ + k2
zZ = 0 (20)

where

k2
y + k2

z =
(ω

c

)2 − k2 (21)

From the boundary condition (13) we have that

~B⊥ = 0 =⇒
{

Bz(z = 0) = Bz(z = b) = 0
By(y = 0) = By(y = a) = 0

}

=⇒

=⇒






∂Bx

∂z

∣
∣
∣
z=0

= ∂Bx

∂z

∣
∣
∣
z=b

= 0
∂Bx

∂y

∣
∣
∣
y=0

= ∂Bx

∂y

∣
∣
∣
y=a

= 0






=⇒

=⇒







dBx

dz

∣
∣
∣
z=0,b

= 0

dBx

dy

∣
∣
∣
y=0,a

= 0







(22)

The solutions of the ordinary differential equations (19) and (20) are

Y (y) = Ay cos
mπy

a
, m = 0,±1,±2,±3, . . . (23)

Z(z) = Az cos
nπz

b
, n = 0,±1,±2,±3, . . . (24)
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So the solution is

Bx,mn(x, y, z, t) = B0 cos
mπy

a
cos

nπz

b
ei(kx−ωt) (25)

From equation (21) we find that

k2 =
ω2

c2
− k2

y − k2
z ⇒ kmn =

√

ω2

c2
− π

(
m2

a2
+
n2

b2

)

⇒ kmn =
1

c

√

ω2 − ω2
mn

where we defined

ωmn ≡ cπ

√

m2

a2
+
n2

b2
(26)

So we see that the frequencies are quantized. If

ω < ωmn

we don’t have propagation of the EM wave7,

kmn =
1

c

√

ω2 − ω2
mn =

ω

c

√

1 − ω2
mn

ω2
=
ω

c

√

−|βmn| ⇒ kmn =
iω|βmn|

c

and for that we call the ωmn, cutoff frequencies8. The ground cutoff frequency
is9

ω10 =
πa

c

The phase velocity of the wave is

vp ≡ ω

k
=

cω
√

ω2 − ω2
mn

=
c√
βmn

> c

and the group velocity (which sows us, how fast energy is transfered) is10

vg ≡ dω

dk
=

1

dk/dω
= c

√

βmn < c

7βmn ≡ 1 −
(

ωmn

ω

)2

< 0
8The fields will be proportional to

eikmnx = e
−ωβmnx

c

9Because a ≥ b.
10The idea of a group velocity, distinct from a wave’s phase velocity, was first proposed

bt W.R.Hamilton in 1839, and the first full treatment was by Lord Rayleigh in his ”Theory
of Sound”, in 1877.
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For completeness the components of the fields are

Ex = 0

Ey =
−iωB0c

2

ω2
mn

(nπ

b

)

cos
mπy

a
sin

nπz

b
e−i(kx−ωt)

Ez =
iωB0c

2

ω2
mn

(mπ

a

)

sin
mπy

a
cos

nπz

b
e−i(kx−ωt)

Bx = B0 cos
(mπy

a

)

cos
nπz

b
e−i(kx−ωt)

By =
−ikB0c

2

ω2
mn

(mπ

a

)

sin
mπy

a
cos

nπz

b
e−i(kx−ωt)

Bz =
−ikB0c

2

ω2
mn

(nπ

b

)

cos
mπy

a
sin

nπz

b
e−i(kx−ωt)

• TM - modes : Bx = 0

In the same way, we find

Ex = E0 sin
mπy

a
sin

nπz

b
e−i(kx−ωt)

Ey =
−ikE0c

2

ω2
mn

(mπ

a

)

cos
mπy

a
sin

nπz

b
e−i(kx−ωt)

Ez =
ikE0c

2

ω2
mn

(nπ

b

)

sin
mπy

a
cos

nπz

b
e−i(kx−ωt)

Bx = 0

By =
iωE0c

2

ω2
mn

(mπ

a

)

sin
mπy

a
cos

nπz

b
e−i(kx−ωt)

Bz =
iωE0c

2

ω2
mn

(mπ

a

)

cos
mπy

a
sin

nπz

b
e−i(kx−ωt)
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2.2 Cylindrical Geometry

Now are are going to do the same thing for a cylindrical waveguide. Here
the propagation takes place in the z-direction. Combining the second and
the fourth equation of (1) we get the following results

~E(r, θ, z, t) = ~E0(r, θ)e
i(kz−ωt)

~B(r, θ, z, t) = ~B0(r, θ)e
i(kz−ωt)

From Maxwell’s equations (1) we find,

1

r

∂Ez

∂θ
− ikEθ = iωBr

ikEr −
∂Ez

∂r
= iωBθ

1

r

(
∂

∂r
(rEθ) −

∂Er

∂θ

)

= iωBz

1

r

∂Bz

∂θ
− ikBθ = −i ω

c2
Er

ikBr −
∂Bz

∂r
= −i ω

c2
Eθ

1

r

(
∂(rBθ)

∂r
− ∂Br

∂θ

)

= −i ω
c2
Ez
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Combining the above equations we find

Eθ =
ik

(ω
c
)2 − k2

(
1

r

∂Ez

∂θ
− ω

k

∂Bz

∂r

)

Br =
−i

(ω
c
)2 − k2

( ω

rc2
∂Ez

∂θ
− k

∂Bz

∂r

)

Bθ =
ik

(ω
c
)2 − k2

(1

r

∂Bz

∂θ
+

ω

kc2
∂Ez

∂r

)

Er =
i

(ω
c
)2 − k2

(ω

r

∂Bz

∂θ
+ k

∂Ez

∂r

)

Combining the above with the remaining equations of (1) we find

(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+
(
ω

c

)2

− k2

)

Ψz = 0 (27)

• TE - modes : Ez = 0

(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+
(
ω

c

)2

− k2

)

Bz = 0 (28)

By seperation of variables

Bz(r, θ) = R(r)Θ(θ)

we conclude

Φ′′ = −m2Φ

and

r2R′′ + rR′ +

[

r2
(
ω2

c2
− k2

)

−m2

]

= 0

The general solutions are11

Θ(θ) =

{

eimθ

e−imθ

}

11n2 ≡ ω
2

c2 − k2
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and12

R(nr) =

{

Jm(nr)
Nm(nr)

}

So, the general solution is

Bz,m(r, θ, z, t) =
(

ArJm(nr) +BrNm(nr)
)

·
(

Aθe
imθ +Bθe

−imθ
)

· e−i(kz−ωt)

The boundary conditions in this problem are:
1) the fields are not infinite in r=R,
2) the field have the same value for angles and +2,
3) E//(R, θ) = 0,
4) B⊥(R, θ) = 0.

We must say that we can have only TE or TM modes. From the first
boundary condition we have that Br = 0. Now in r=R and for any we have
Ez(R) = 0. So the condition is

Jm(nr) = 0

From the above equation, because R is fixed, we see that only some values
of n are permitted and these values are the roots of Jm. On the other hand
we have that

∂Bz

∂r

∣
∣
∣
∣
r=R

= 0, ∀ θ.

This condition is satisfied if

J ′

m(nR) = 0

From the last two conditions we see that either

Ez 6= 0 and Bz = 0

or
Bz 6= 0 and Ez = 0

can exist. So we conclude that the solution is

Bz(r, θ, z, t) =
∑

m

Bz,m(r, θ, z, t) =
∑

m

Jm(nr)
(

Aeimθ +Be−imθ
)

· e−i(kz−ωt)

where A and B are in general complex numbers. So the components are

12Here Jm(x) are the Bessel equations of the first kind and integral order m and Nm(x)
are the Bessel equations of the second kind and integral order m or Neumann equations
of m order. The second solutions (Nm(x)), where x = nr, goes to infinity as r goes to 0,
so we keep only the first solution, Jm(x).
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Er =
mω

k2
cr
B0Jm(nr)(Aeimθ − Be−imθ)e−i(kz−ωt)

Eθ =
iωB0J

′

m(nr)

k2
c

(Aeimθ +Be−imθ)e−i(kz−ωt)

Ez = 0

Br =
−ikB0J

′

m(nr)

k2
c

(Aeimθ +Be−imθ)e−i(kz−ωt)

Bθ =
kmB0Jm(nr)

k2
cr

(Aeimθ − Be−imθ)e−i(kz−ωt)

Bz = B0Jm(nr)(Aeimθ +Be−imθ)e−i(kz−ωt)

• TM - modes : Bz = 0

In the same way, the components for the TM modes are

Er =
−ikE0J

′

m(nr)

k2
c

(Aeimθ +Be−imθ)e−i(kz−ωt)

Eθ =
mkE0Jm(nr)

k2
cr

(Aeimθ − Be−imθ)e−i(kz−ωt)

Ez = E0Jm(nr)(Aeimθ +Be−imθ)e−i(kz−ωt)

Br =
−mωE0Jm(nr)

k2
cr

(Aeimθ +Be−imθ)e−i(kz−ωt)

Bθ =
−iωE0J

′

m(nr)

k2
c

(Aeimθ − Be−imθ)e−i(kz−ωt)

Bz = 0
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As we said before, A and B are not fixed. There are some interesting
cases, where

B = ±A
or

A = 0 or B = 0.

for each mode. In the first case, the expotential part gives us a sine or a
cosine. In the second case, where one of the numbers is vanishing, each
field depends on by a factor of e±imθ. This field can be represented us
a superposition of two different waves, for example we will have for the z-
component in TM modes,

Ez = E0Jm(nr)(cosmθ ± i sinmθ)e−i(kz−ωt).

Then by setting i ≡ e±
iπ
2 , we see that the sine wave has a phase difference of

/2 from the cosine wave. But we know that a wave that is a superposition
of two plane waves, which have local and time phase difference equal to 900,
has spiral polarization. So to conclude, the waves that instead of sines and
cosines, depend to by a factor of e±imθ, are cyclic polarized to the z axes
and are called spiral polarized waves.

2.3 Elliprical Geometry

Now are are going to do the same thing for an elliptical waveguide. Here
the propagation also takes place in the z-direction. The equation that we
have to solve now is

(

∇2 + k2
)

ψz = 0 ⇒
[

1

sinh2 r + sin2 θ

(
∂2

∂2r
+

∂2

∂θ2

)

+
∂2

∂z2
+ k2

]

ψz = 0

If we separate the variables

ψz = ψz(r, θ, z) = R(r)Θ(θ)Z(z)

we have

1

sinh2 r + sin2 θ

(
1

R

d2R

dr2
+

1

Θ

d2Θ

dθ2

)

︸ ︷︷ ︸

=m2

+
1

Z

d2Z

dz2
+ k2

︸ ︷︷ ︸

=−m2

= 0 ⇒

⇒







Z′′

Z
= −(k2 +m2) ⇒ Z ′′ = −(k2 +m2)Z = −φ2

kmZ

1
sinh2 r+sin2 θ

(

R′′

R
+ Θ′′

Θ

)

= m2 ⇒
(
R′′

R
−m2 sinh2 r

)

︸ ︷︷ ︸

=b

+
(

Θ′′

Θ
−m2 sin2 θ

)

︸ ︷︷ ︸

=−b

= 0







⇒
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⇒







Z ′′ = −φ2
kmZ

R′′

R
−m2 sinh2 r = b⇒ R′′ − (b +m2 sinh2 r)R = 0

Θ′′

Θ
−m2 sin2 θ = −b⇒ Θ′′ + (b−m2 sin2 θ)Θ = 0







⇒

⇒







Z ′′ = −φ2
kmZ

R′′ − (b + 1
2
m2[cosh(2r) − 1])R = 0 ⇒ R′′ −

[

(b− 1
2
m2) + 1

2
m2 cosh(2r)

]

R = 0

Θ′′ + (b− 1
2
m2[1 − cos(2θ)])R = 0 ⇒ Θ′′ −

[

(b + 1
2
m2) + 1

2
m2 cos(2θ)

]

Θ = 0







Now if we set

p ≡ b− m2

2
, q ≡ −m

2

4
, sinh2 r =

1

2
[cosh(2r) − 1], sin2 θ =

1

2
[1 − cos(2θ)]

we have

Z ′′ = −φ2
kmZ

R′′ − (p− 2q cosh 2r)R = 0, (modified Mathieu differential equation)

Θ′′ + (p− 2q cos 2θ)Θ = 0, (Mathieu differential equation)

with solutions13 [12] [4]

Z(z) = Aze
iφkmz +Bze

−iφkmz

R(r) = ArC(p, q,−ir) +BrS(p, q,−ir)

Θ(θ) = AθC(p, q, θ) +BθS(p, q, θ)

The difference with the cylindrical problem is that because the solutions
are Mathieu functions, which are even and odd, we are going to write them
for example eTM01 or oTM01.

13Here C(p,q,x) and S(p,q,x) are Mathieu’s even and odd functions. These functions ap-
pear in physical problems, involving elliptical shapes and were first introduced by Mathieu
in 1868, when analyzing the motion of elliptical membranes.
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3 Skin Depth and Energy Losses Inside a

Waveguide

In the last section we saw the modes of the fields in three different geome-
tries. In this section, we will see what is happening inside, the lateral surface
of the waveguide. To be more specific, we will study the skin depth of the
wave guides and the energy losses of the waves that are passing through the
interface.

3.1 Skin Depth

If we want to call ourselves realists, we have to admit that equations

E = E0e
i(~k·~r−ωt)

B = B0e
i(~k·~r−ωt)

with k real, is not correct when the EM wave is travelling inside matter.
In these equations, permeability () and permittivity () are assumed to be
independent of frequency. This is the reason that EM waves have constant
velocity of propagation in vacuum, but in reality, all media show some dis-
persion. For most media, we can consider the permeability equal to this of
vacuum,

µ ' 1

To find the relation between permittivity and frequency we need to develop a
simple model of dispersion. The relation is [2, p.284 − 298], [3, p.145 − 155]

ε(ω) = ε0 + i
4πNe2f0

mω(γ0 − iω)
= ε0 + i

4πσ

ω

where we define the conductivity

σ ≡ Ne2f0

mω(γ0 − iω)

If the above relation stands, then we have also to change ~k, which is given
by the equation

k =
ω

v
=
√

µε(ω)
ω

c
⇒ k2 = µε(ω)

ω2

c2
= µε0

ω2

c2

(

1 + i
4πσ

ωε0

)

∈ C



19

We see that k is a complex number. So we can in general write it as

k = β + i
α

2
⇒ k2 =

(

β2 − α2

4

)

+ iβα = µε
ω2

c2
+ iµε

ω2

c2
4πσ

ωε

The only thing we have to do now is to find the real and imaginary part of
k. After some algebra, the solutions are

α

2
=

√
µε
ω

c

√
√
√
√

√

1 + (4πσ
ωε

)2 − 1

2

β =
√
µε
ω

c

√
√
√
√
√

√

1 +
(

4πσ
ωε

)2
+ 1

2

For poor conductors, we have

4πσ

ωε
<< 1

and k approximately becomes

k = β + i
α

2
' √

µε
ω

c
+ i

2π

c

√
µ

ε
σ

correct to first order in σ/ωε. In this case, the attenuation of the wave, the
imaginary part, is independent of frequency. On the other hand, for a good
conductor

4πσ

ωε
>> 1

we have that the real and the imaginary part of k are approximately (in first
order in ωε/σ) equal,

k ' (1 + i)

√
2πωµσ

c

So we see, that in good conductors EM are proportional to

( ~E, ~B) ∼ ei(~k·~r−ωt) = e−
α
2

n̂·~r
︸ ︷︷ ︸

attenuation part

· ei(βn̂·~r−ωt)
︸ ︷︷ ︸

propagation part

Because of the attenuation part we can define the penetration depth of the
conductor considered,

δ ≡ 2

α
' c√

2πωµσ
, (skin depth)
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Just to see for what numbers we are speaking of,

Frequency Skin Depth

60 Hz 8,57 mm
10 kHz 0, 66 mm

100 kHz 0, 21 mm
1 MHz 66 µm

10 MHz 21 µm
110 MHz 7, 1 µm

3.2 Energy Losses

Until now we have seen what is happening in the hollow part of the
waveguide. Here we are going to study the energy losses inside the boundary,
conductive surface. The boundary conditions are

n̂·D = 4πΣ

n̂×H =
4π

c
K

n̂×(E − Ec) = 0

n̂·(B − Bc) = 0

Maxwell’s equations give’s us

∇ × Ec = −1

c

∂H

∂t
=
iω

c
Hc ⇒ Hc =

−ic
µcω

∇ × Ec

and14

∇ × Hc =
4π

c
J +

1

c

∂D

∂t
︸ ︷︷ ︸

'0

' 4πσ

c
Ec ⇒ Ec ' c

4πσ
∇ × Hc

Now by substituting

Hc = H//e
−iωt

14Here we used Ohm’s equation
J = σE
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and

∇ ' −n̂
∂

∂ξ

we have

Ec ' − c

4πσ
n̂×

∂Hc

∂ξ
⇒ ∂Ec

∂ξ
= − c

4πσ

∂2

∂ξ2

(

n̂ × Hc

)

and

Hc =
ic

µvω
n̂×

∂Ec

∂ξ

From the last equation we see that

n̂ · Hc =
ic

µcω
n̂·

(

n̂×
∂Ec

∂ξ

)

= 0 (29)

and

n̂ × Hc = − ic2

4πµcωσ
n̂×

[

n̂×
∂2

∂ξ2

(

n̂ × Hc

)]

⇒

⇒ n̂×

[

n̂×
∂2

∂ξ2

(

n̂ × Hc

)]

=
i4πµcωσ

c2

(

n̂ × Hc

)

= − ∂2

∂ξ2

(

n̂ × Hc

)

⇒

⇒ ∂2

∂ξ2

(

n̂ × Hc

)

+
i4πµcωσ

c2

(

n̂ × Hc

)

= 0 ⇒

⇒ ∂2

∂ξ2

(

n̂ × Hc

)

+
2i

δ

(

n̂ × Hc

)

= 0 (30)

where

δ ≡ c√
4π

√

2

µcωσ

which is the skin depth of the conductor. The solution of (30) is

Hc = H// e
−ξ/δ eiξ/δ (31)
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and from that we find the electric field

∂Hc

∂ξ
= −(1 − i)

δ
H// e

−ξ/δ eiξ/δ ⇒

⇒ Ec '
√
µcω

8πσ
(1 − i)

(

n̂ × H//

)

e−(1−i)ξ/δ (32)

The existence of a small tangential component of E outside the surface, in
addition to the normal E and tangential H, means that there is a power
flow into the conductor. The time-average power absorbed per unit area is

dPloss

dS
= −Re

[

n̂ · S
]

= − c

8π
Re
[

n̂·

(

E × H∗

)]

=
1

4π

µcωδ

4

∣
∣
∣H//

∣
∣
∣

2

This result can be given a simple interpretation as ohmic losses in the body of
the conductor. The above equation will allow us to calculate approximately
the resistive losses for practical cavities, transmission lines, and waveguides,
provided we have solved for the fields in the idealized problem of infinite
conductivity.
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4 Applications

Until now, we have seen the basic theory of waveguides. Naturally, there
are many applications for this part of electrodynamic theory, from trans-
ferring a huge amount of information through fiber optics to understanding
sleep patterns and relaxation levels of human beings.

Because of the rotation symmetry, of a cylindrical waveguide, it is allowed
a rotation of the polarization plane round the z-axis. The above application
is very useful in many optical experiments.

Waveguides with elliptical geometry, are useful to know, because there
are some cases where waveguides with cyclic cross section distort and their
cross section becomes elliptic.

On the other hand, it is technically useful to know the value of skin depth
for the conductor that we use, because we may want to allow a magnetic field
to pass through a conductive surface, but in same the time we don’t want to
lose the modes inside the waveguide.

One of the most important applications are the so called resonant cavities.
The basics of this theory is the same with this of waveguides, which we
have analyzed above, with only one difference. We add two more boundary
conditions, by inserting two end surfaces vertical to the axis, so that we have
stationary solutions. Resonant cavities have many applications, with most
used, this of accelerators and this of the model where we take the Earth-
ionosphere system as a spherical resonant cavity. We will discuss these two
applications in the following subsections.

4.1 Resonant Cavities and Accelerators

In accelerators, resonant cavities are used to accelerate the bundles of
particles. The idea is simple and is the same for linear and cyclic accelerators
(topically a cyclic accelerator can be considered as linear). What we have to
do is to apply an electric field in the resonant cavity with such a frequency,
so that when the bundle enters the cavity will accelerate and not decelerate.

As an application we are now going to study resonant cavities produced by
cylindrical waveguides with end surfaces vertical to the axis of the cylinder.
We have infinite conductivity at the cavity walls and a dielectric material
inside a cylinder of length d.

So we get field components that of standing waves on the z axis

A sin kz +B cos kz
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The boundary conditions for the cylinder of length d gives us that

k = n
π

d
, n = 0, 1, 2, . . .

• TM modes: Hz = 0

As

~Et = 0

on the boundary surfaces z=0, z=d the solutions of ~Ez are

Ez = E0(x, y) cos
nπz

d
, n = 0, 1, 2, . . .

• TE modes: Ez = 0

The magnetic field has solutions

Hz = H0(x, y) sin
nπz

d
, n = 1, 2, 3, . . .

Combining the

Ht =
±1

Z
~k × ~Et

where Z is the wave impendance of the conductor

Z =

{
k
k0

√
µ
ε

, TM
k0

k
µ
ε

, TE

}

with

TM : Et = ± ik
γ2

~∇tψ

TE : Ht = ± ik
γ2

~∇tψ

we get the equations for the transverse fields







~Et = − nπ
γ2d

sin nπz
d
~∇tψ

~Ht = iεω
γ2c

cos nπz
d
k̂ × ~∇tψ






, TM (33)
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~Et = − iωµ
γ2c

sin nπz
d
k̂ × ~∇tψ

~Ht = nπ
γ2d

cos nπz
d
~∇tψ






, TE (34)

where

γ2 = µε
ω2

c2
−
(nπ

d

)2

For each n we get a different γλ which gives us an eigenfrequency

ω2
λn =

c2

µε

[

γ2
λ +

(nπ

d

)2
]

The resonance frequencies can be determined graphically on the figure of
axial wave number k versus frequency in a waveguide by demanding that

k =
nπ

d
.

It is usually expedient to choose the various dimensions of the cavity so that
the resonant frequency of operation lies well separated from other resonant
frequencies. Then the cavity will be stable in operation and insensitive to
perturbing effects associated with frequency drifts, changes in loading, etc.
For example we can allow the frequencies to change by applying a piston in
a cylindrical resonant cavity so that by changing the height. The field inside
the resonant cavity will be

ψ = E(ρ, φ) = E0Jm(γmlρ)e
±imφ

where

γmn =
xml

R

and xmn is the lth root of the equation, Jm(x) = 0. The integers m and l
take on the values m = 0, 1, 2, . . . and l = 1, 2, 3, . . .. The first three values
are

m = 0, x0l = 2.405, 5.520, 8.654, . . .
m = 1, x1l = 3.832, 7.016, 10.173, . . .
m = 2, x2l = 5.136, 8.417, 11.620, . . .

For higher roots, the asymptotic formula is

xml ' lπ +
(

m− 1

2

)π

2
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The resonance frequencies are given by

ωmln =
1√
µε

√

x2
ml

R2
+
n2π2

d2

The lowest TM mode is TM010 with resonance frequency

ω010 =
2, 405√
µε

c

R

The components are

Ez = E0J0

(2, 405ρ

R

)

e−iωt

Hφ = −i
√

ε

µ
E0J1

(2, 405ρ

R

)

e−iωt

For TE modes the difference is that now from the boundary condition we
have

γml =
x′ml

R

where x′ml is the lth root of J ′

m(x) = 0. Some values are

m = 0, x′0l = 3.832, 7.016, 10.173, . . .
m = 1, x′1l = 1.841, 5.331, 8.536, . . .
m = 2, x′2l = 3.054, 6.706, 9.970, . . .
m = 3, x′3l = 4.201, 8.015, 11.336, . . .

In this case the resonant frequencies are given by

ωmln =
1√
µε

(
x′2ml

R2
+
n2π2

d2

)1/2

The lowest TE mode is TE111 and its resonance frequency is

ω111 =
1.841√
µε

c

R

(

1 + 2.912
R2

d2

)1/2

while the fields are derived from

ψ = Hz = H0J1

(
1.841ρ

R

)

cos φ sin
πz

d
e−iωt
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by substituting in (34). For d large enough (d > 2.03R), the resonance
frequency ω111 is smaller than that for the lowest TM mode. Then the TE111

mode is the fundamental oscillation of the cavity. Because the frequency
depends on the ratio d/R, it is possible to provide easy tuning by making the
separation of the end faces adjustable. Finally, we must fix the accelerating
electric field that we apply in the resonant cavities, so that we won’t have
deceleration. We suppose that

E = E0 sinωEt

If we take the radius of the cyclic accelerator to be

r ' 17 m

then the bundle will have a period

Ta =
2πr

v
' 0.357 µs

and frequency
ωa ' 17.588 MHz.

So from this qualitative calculation the electric frequency must be

ωE = 2kπωa, k = 0,±1,±2, . . .

The above result is a theoretical result. In reality we cannot achieve this val-
ues for the electric frequency. The result is that we have a stability problem
in the simultaneity of the frequencies.

4.2 Earth and Ionosphere : A Big Resonant Cavity

In first order approximation, the Earth-atmosphere system can be seen
from an electromagnetic point of view as a radial shell of three layers of
conductivity. The Earth and the Ionosphere, in about 100km height, appear
as a perfect conductor with the air of negligible conductivity in between.
They form a spherical shell of conductivity, denoted Earth-Ionosphere cavity,
in which EM radiation is trapped.

Lightning bolts containing a wide spectrum of frequencies act as sources
of radial electric fields and lightning strikes within the troposphere, radiate
energy into this system. So the Earth as one boundary surface and the
ionosphere as the other, perform a spherical resonant cavity.

If we consider them as perfectly conducting concentric spheres of radii

a = 6400 km
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for Earth and
b = a+ h = 6500 km

for Ionosphere, since the second one, as we mentioned before, is approxi-
mately at a

h = 100 km

height above the Earth, all we have to do is solve the math problem.
Furthermore, if we are concerned about only the lowest frequencies, we

can focus our attention on the TM modes, with only tangential magnetic
fields. The reason for this is that the lowest frequencies of TE modes are of
the order of

ωTE ∼ πc

h
,

a lot higher than the lower frequencies of TM modes15

ωTM ∼ c

a
.

This higher price can be explained because of the fact that the TE modes,
with only tangential electric fields, must have a radial variation of half a
wavelength between r = a and r = b.

So combining the two Maxwell equations we get

ω2

c2
~B − ~∇× ~∇× ~B = 0

The φ component of the above is

ω2

c2
(rBφ) +

∂2

∂r2
(rBφ) +

1

r2

∂

∂θ

[
1

sin θ

∂

∂θ
(sin θrBφ)

]

= 0

The last part can be transformed into

∂

∂θ

[
1

sin θ

∂

∂θ
(sin θrBφ)

]

=
1

sin θ

∂

∂θ

(

sin θ
∂

∂θ
(rBφ)

)

− rBφ

sin2 θ

We see that the θ dependence is given by the associated Legendre polynomials

Pm
l (cos θ), with m = ±1

A solution will be

Bφ(r, θ) =
ul(r)

r
P 1

l (cos θ)

15To understand this, one has first to solve the problem and find the modes with the
resonant frequencies.
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Substituting the above into the differential equation we now have a differen-
tial equation for ul

d2ul(r)

dr2
+
[
ω2

c2
− l(l + 1)

r2

]

ul(r) = 0

The radial and tangential electric fields are

Er =
ic

ωr sin θ

∂

∂θ
(sin θBφ) = − ic

ωr
l(l + 1)

ul(r)

r
P 1

l (cos θ)

Eθ = − ic

ωr

∂

∂r
(rBφ) = − ic

ωr

∂ul(r)

∂r
P 1

l (cos θ)

As Eθ = 0 at r = a , r = b we see that the boundary condition for the
differential equation of ul(r) is

dul(r)

dr

∣
∣
∣
∣
r=a,b

= 0

With the last boundary condition, a solution for ul(r) is

ul(r) = A cos[q(r − a)]

where
qh = nπ .

Only for n = 0 we get the very low frequencies. If n = 0, then q = 0 and

ul = constant .

So the characteristic resonant frequencies are

ωl =
√

l(l + 1)
c

a
(35)

These resonant frequencies are the so called Schumann resonances. The
first seven values are the following 8, 14, 20, 26, 32, 37 and 43. Now one will
ask:

”What all this has to do with...understanding sleep patterns and
relaxation levels of human beings??”
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The natural frequencies of the Human Brain are:

• Beta waves (14-30 Hz)

• Alpha waves (8-13 Hz)

• Theta waves (4-7 Hz)

• Delta waves (1-3 Hz)

Alpha frequencies have been associated with meditation and relaxation. Theta
frequencies have been associated with dreamy and creative states. According
to a web page related to an October 2002 Physics News Update:

”... EEGs can now record brainwaves without the need for elec-
trodes to be inserted into the brain or even for them to be placed
on the scalp. The figure shows a brainwave trace for periods when
the eyes are open and when they are closed. The red regions re-
spond to the alpha wave (eyes closed) at a frequency of around 9
Hz. (Courtesy University of Sussex) ...”.

The Beta and Alpha waves (8-30 Hz) seem to correspond to the Schumann
resonances: 8, 14, 20, 26, 32, 37 and 43 Hertz.

The 30 Hz high end of the Beta waves is roughly coincident with the
frequency of cats’ purrs: According to an 18 March 2001 article in the London
Telegraph by David Harrison:

”... the purring of cats is a ”natural healing mechanism” ... be-
tween 27 and 44 hertz ... was the dominant frequency for a house
cat, and 20-50 Hz for the puma, ocelot, serval, cheetah and cara-
cal. This reinforces studies confirming that exposure to frequen-
cies of 20-50 Hz strengthens human bones and helps them to grow.
... Almost all cats purr, including lions and cheetahs, though not
tigers. ...”.

Some experiments show connections between the brain states and res-
onant electromagnetic waves, raising the possibility that the Human Brain
has evolved to be ”in tune” with Planet Earth. Dolphin and Human Brains
may contain BioMagnetite that could give them an electromagnetic sense
that could provide a link between Brains and many types of electromagnetic
phenomena, including but not limited to Schumann Resonance Phenomena.

Related Mind and Consciousness phenomena include Parapsychological
Phenomena such as found by the Princeton Engineering Anomalies Research,
the Boundary Institute, the Cognitive Sciences Laboratory (STARGATE),
and such as described by Jack Sarfatti, Brian Josephson, and Jessica Utts.
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