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Abstract

Discrete breathers or intrinsic localized modes are nonlinear localized states that appear in several classical extended systems, such as for
instance the Fermi—Paste—Ulam (FPU) model. In order to probe the quantum states that correspond to discrete breathers, we quantize the §-FPU
model using boson quantization rules, retain only number conserving terms, and analyze the two-quanta sector of the model. For both attractive
and repulsive nonlinearity, we find the occurrence of biphonons in two forms, on-site and nearest-neighbor site, and analyze their properties. We
comment on the use of this model as a minimal model for extended molecular and biomolecular systems.
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1. Introduction

The one dimensional nonlinear model introduced by Fermi,
Pasta and Ulam in 1955 has proved to be a workhorse of
nonlinear dynamics during the last half century [1]. In addition
to showing that the use of computers can lead to new physics,
it has assisted in generating a wealth of new results on
solitons, integrable systems, thermal conductivity, etc. The
same model was also used for the introduction of the concept
of intrinsic localized modes or discrete breathers (DBs), i.e. the
nonlinear localized modes that appear in discrete lattices with
nonlinearity [2]. Discrete breathers appear in a variety of lattice
models where we have the coexistence of nonlinearity with
discreteness, i.e. weak interaction between different constituent
parts of the system [3]. The existence theorem of MacKay and
Aubry placed on solid mathematical ground the existence of
DBs in nonlinear lattices with on-site nonlinearity [4], while
some mathematical and physical aspects of discrete breathers in
FPU-type lattices have also been investigated [5,6]. Numerous
features of DBs in lattices have been studied through the use
of the exact numerical construction procedure introduced by
Aubry and coworkers [7,8].
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The presence of DBs in classical models raises the
issue of quantum aspects of these modes in the models,
as well as the investigation of quantum breathers in
physical systems. Regarding model systems, one may use
a semiclassical approach and quantize classical DBs using
the Bohr—Sommerfeld procedure [7]. An alternative approach
is to perform direct quantization in the model Hamiltonian
and derive as well as classify the resulting states; in the
present work, we will use the latter approach. Specifically,
we will consider the classical B-FPU model, quantize it using
boson quantization rules, and subsequently analyze the two-
quanta sector of this model in the context of the boson
conserving approximation. Our analysis is analogous to the
approach followed in the context of a model with an on-site ¢*
potential that, within a number preserving approximation, leads
to a quantum version of the Discrete Nonlinear Schrodinger
(DNLS) equation [10-12]. In the following sections, we will
first introduce the basic model as well as the quantization
rules, and discuss the linear modes of the system. Subsequently,
we will perform an analytical investigation of the two-boson
sector of the number preserving model and show the regime
of existence as well as the nature of two-boson bound states.
Analysis of the regime of validity of these findings follows,
by comparison with other works as well as the possible
applications of the findings in real systems.
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2. The B Fermi—Pasta—Ulam model and its quantization

We consider a one dimensional system of identical particles,
each of mass M described through the Hamiltonian:
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where x, is the position and p, is the momentum of the
n-th particle, while C, b denote the strength of the linear
and nonlinear acoustic nearest-neighbor coupling, respectively.
This Hamiltonian corresponds to the classical B-FPU model
and has been investigated in numerous works ever since its
initial introduction in 1955. It is known that, in a certain
parameter regime, the model can support mobile DBs or
ILMs [2]. These modes are nonlinear vibrational modes that
are localized in space and periodic in time; their quantum
counterparts are expected to be bound states of arbitrary
numbers of phonons. In order to quantize Eq. (1), we may
introduce phonon creation and annihilation operators, either in

real space, viz. ai, ap respectively, or in momentum space, i.e.

a;, ay respectively. The position and momentum operators of
the Hamiltonian in the discrete position are:

C[EMw
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while, in terms of collective modes in the momentum

representation, they are written as follows:
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where Ry is the lattice spacing and N is the total number of
oscillators. The frequencies @ and w, will be specified below.

2.1. Quantization schemes and analysis of linearized modes

In order to estimate the error that may be introduced due to
the quantization in terms of local modes or within the number
conserving approximation, we compare the spectrum of the
linear part of Eq. (1) quantized in terms of (i) local modes
labeled by the site index n and (ii) extended, collective modes
labeled by g. For that purpose, we rewrite Eq. (1) for » = 0 as
follows:

—Z

using Egs. (2) and (3) with v =,/ % and, after some algebra,
Eq. (6) becomes
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Fig. 1. Dispersion of linearized modes for the two quantization schemes with
on-site (dotted line) and delocalized modes (continuous line), respectively. We
note that the use of number conserving terms introduces a gap in the linear
spectrum, when the latter is obtained through position representation operators.
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Disregarding number nonconserving terms (NNC) and

performing the Fourier transformation of the oscillator
1 ignRo :

operators as day i > q© a,, we arrive at the final

expression:
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where @ = w(l — coquo) Quantization in terms of

collective modes of Eqs. (4) and (5), on the other hand, results
in a similar expression for the linear Hamiltonian, viz.
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but with w; = w+/(1 — cos g Rp). The comparison of the linear
mode dispersion relations for the linearized Hamiltonians of
Egs. (8) and (9) are shown in Fig. 1. We observe that the use
of local modes within the number conserving approximation
introduces a gap in the linear spectrum at long wavelengths,
while direct use of the g-space modes retains the acoustic
nature of the Hamiltonian of Eq. (1). In the remainder
of this work, we will consider only number conserving
terms in the Hamiltonian, since we are primarily interested
in coherent phenomena induced by resonant spectroscopy
experiments [9].

2.2. Quantization of the nonlinear terms

We now proceed with the inclusion of the nonlinear terms of
the Hamiltonian; we use the following auxiliary relations:

Z(X" _xn71)2 Zx +an I—ZZX,,X,,,1
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which, by virtue of lattice periodicity and assuming N — oo,
becomes

Z(xn - xn—l)z = ZZXI% - 2an(xn+l + Xp—1).

n n n
Similarly,
DG —xa )t =2 x =4 ) g+ Xa1)

n n n

+3 Zx,zl(x,%ﬂ + x,zl_l).
n

Upon substitution of oscillator momentum and displacement
relations as defined in Egs. (2) and (3), we obtain a set of

exact expressions that are further simplified by retaining only
the number preserving terms:
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Using these expressions, we arrive at the following quantized
number conserving FPU Hamiltonian:
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Let us discuss briefly the physics of the terms appearing in
the quantum Hamiltonian of Eq. (10); since the meaning of
the linear terms is clear we comment only on the nonlinear
terms. The on-site and intersite repulsion (B > 0) or attraction

(B < 0) defined through the terms aZzafl and aTaiilanilan,

12

an aﬁ 4, correspond to simultaneous tunneling of two phonons
(or vibrons) between neighboring sites, i.e. they describe
the simultaneous creation of two vibrons at site n with a
simultaneous annihilation of two vibrons at sites n £ 1; these
terms may give rise to direct bivibron tunneling. The term

a,];za,,anil corresponds to the simultaneous creation of two
vibrons on the same site, where one of them is annihilated at
the same site while the other one tunnels to the neighboring
site. Since this term effectively describes the single vibron
tunneling, it may be treated in a mean field manner as an

effective intersite transfer term and replaced by a,?ananil

~ (aian)aianil. Its Hermitian conjugate also has the same

form. As a result of the use of the mean field approximation for
these terms, the last two terms of the effective Hamiltonian of
Eq. (10) may be included in a single vibron tunneling term in
which J' is replaced by J = J' + 2B{a'a).

3. Two-vibron bound states

In the analysis of the bivibron solutions, we shall follow the
well-known procedure introduced by Wortis in the analysis of
two-magnon bound states and latterly utilized extensively in the
examination of biexcitons and biphonons [13—15]. The first step
is the choice of state vector in the form:

) = Z Wm,na;&aho%
m,n

where ¥, , are the occupation probability amplitudes of the
sites m and m, respectively. The boson nature of vibrons
imposes the condition:

(v|¥) =1 (13)

Wm,n = ¥n,m>

while the normalization condition yields
2

D 1 nl® =
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Substitution of the state vector of Eq. (13) into the
Schrédinger equation H|V¥) = E|V¥), where H is the
Hamiltonian of Eq. (10), as well as the use of the above
intermediate expression lead to the following equation for
bivibron amplitudes:

(E = 20) U +J Y Upnss + Umisn
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s==%1
(14)
Using lattice periodicity, we may express the amplitudes ¥, ,
in the following form:
1 . K(m+n)Rg
ﬁ D—n e 2 s

where K = ki + ko denotes the total quasi-momentum
associated with the motion of the bivibron center of mass

Wm,n =
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and belonging in the first Brillouin zone. Due to the
indistinguishability of vibrons, @,,_, = ®,_,, i.e. ? is the
function of distance between two vibrons and may be written as
Dy—n = 9, where l = m — n. As aresult of lattice periodicity,
the equation for the two-boson states of Eq. (14) may be written
as follows:

(E —2hw) d; + 2J cos

KR
5 O @4 - 2B (1 1 cos KRy
s==*1
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—2cos ) D181,0 — 2B P1(8141,0 + 81-1,0)

KRy
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8.0 =0. (15)

The expression in Eq. (15) represents a system of linear
algebraic equations for amplitudes @; for each / and has the
form of a two dimensional Schrodinger equation in the tight-
binding approximation. This equation is equivalent to the one
obtained by Pouthier in the approximate analysis of a Davydov-
like Hamiltonian applied to the problem of amide I vibrational
self-trapping [16]. Eq. (15) is quite complicated and, in order
to proceed with its analysis, we now perform the mean field
replacement of the single vibron tunneling term, as explained
previously; we obtain:

KR
(E —20@) B +2J cos —= > Py
2 s==*1
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We proceed by expanding @; in Fourier series:

1 .
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and upon substitution in Eq. (15) we obtain:
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with

- KRy
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The function (K, q) denotes the energy of two free vibrons.
The final Eq. (16), which describes the eigenvalue problem
for the two-boson sector of the Hamiltonian of Eq. (10), is an
integral equation for the functions f; and may be solved using
standard techniques. Before proceeding with its solution, we
first analyze the conditions for bivibron state existence.

4. Bivibron spectrum: Analytical considerations for free
and bound states

In order for a bound state (BS) to exist, it must be outside the
free state continuum lying between the minimum and maximum

values of e(K, q) of Eq. (17). As aresult, for a fixed total quasi-
momentum K, the BS energy must lie either below the lower
energy bound

KRy

2ho — |4J cos

’

or above the higher energy bound

KR()‘

In order to distinguish these two different branches of free two-
phonon states, we may rewrite Eq. (17) as follows:

2h® + |4J cos

K Ry

eT(K,q) = 2hd +4J cos cos g Ro. (18)

Introducing Eq. (18) into Eq. (16), the lower (upper) bivibron
branch may be written, respectively, as follows:

(E* —e5(K,q)) f, = 2B(1 4 cos KRO)% >ty
q/
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Eq. (19) may be recast in the more convenient form by
dividing by cos % and introducing the following notation:

E —2ho

K= —— (20)
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X=Xt V=g Ceosat @
= — , = — cosqfy,
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A 2B K Ry B 2B 22)
= — cos , = —.
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The final form of Eq. (19) is then:
(Ak =2cosqRo) fy = Ak X + Bk cosqRgY. 23)

In terms of the newly introduced parameters, the lower free
two-vibron branch is obtained for Ax < —2, while for Ax > 2
we have the corresponding upper branch. In other words, A is
negative for the lower branch and positive in the upper branch
and, as a result, both conditions simplify to |Ag| > 2.

From Eq. (23) we obtain the formal solution for the
amplitude f;:

_ Ak Bk cosqg Ry
- Ax £ 2cosgRy Ax £ 2cosgRy

fa (24)
Multiplication of Eq. (24) by % and summation over ¢ results
in the following homogeneous system of linear algebraic
equations:

(1—-Aglp)X — Bxk1L,Y =0 (25)
(A —Ag)X+2Y =0 (26)
where

1 1
Iy = — _ 27
0 ;AK + 2cosgRop @7
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cosq Ry
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The nontrivial solutions of the system of Egs. (25) and (26) are
obtained when the determinant is set equal to zero, leading to

Ak —Ag)Bg i +2(1 — Aglp) = 0. (29)

The Eq. (29) that needs to be solved for the the unknown
parameter Ax cannot be handled very easily. It may be solved
numerically but, since the numerical solution needs to be
obtained for each value of the quasi-momentum K, this cannot
be done straightforwardly either. Instead of following a direct
numerical approach, in the present work we choose to find
approximate analytical solutions of the equation that will give
an understanding of the various biphonon regimes. A complete
numerical solution will be given in the future.

Bivibron spectrum in the regime Ax < 0

Let us investigate the energy regime below the free two-
vibron band, where Ax < 0; in this case integral Iy becomes

1 1
Ip=——oy —
0 N;)\—FZcoquo

where, for convenience, we set A = —Ag. We use the
1 Ry [7/Ro :

correspondel}ce rgle N - = 2w Ry .dg in order to

turn summations into integrations and obtain
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The integral 1 follows from the relation connecting it with /g
of Eq. (28). Using these facts, we may write the determinant
Eq. (29) as follows:

—(A+ Ag)Bx 1 +2(1 — Axlo) = 0. (30)

Iy = —

We observe that Eq. (30) has solutions only for the case of
attractive interaction, viz. only when B < 0. In the opposite
case of B > 0, both Iy and I; are negative, and Eq. (30)
becomes a sum of positive terms and can never become zero.

Due to the fact that the parameters Ax and Bk are not
independent, the only parameter determining the bivibron
spectrumisa = 2% We may now discuss for which values of a
the eigenvalue Eq. (30) has physically meaningful solution(s).
For that purpose, we consider the eigenvalue problem for only
specific characteristic values of bivibron momentum and, in
particular, we focus on the case K = 0. For this value of total
bivibron momentum, Eq. (30) becomes

a0+ )= Va2 — A +da+V22—4)=0. 31)

Although Eq. (31) cannot be solved explicitly for A as a function
of the parameter a, viz. A(a), one may, however, easily obtain
the inverse relation of a as a function of A, viz. a = a(A),
due to the quadratic nature of the equation in a. Solution and
numerical inversion leads to the results shown in Fig. 2, where
it is shown that the bivibron spectrum for K = 0 consists of
two bands that may be associated with the two types of pairing,

[A]

lal

Fig. 2. Regimes of allowed values of a = 28 for the two types of bound
biphonons: on-site (left-hand curve) and adjacent site (right-hand curve).

on-site and intersite, respectively. We note that the formation of
either type of bound states demands a different minimal value
of a. The first branch appears for values a > 0.05, while the
second one appears for larger values, viz. a > 4.

The physical difference between the two branches can be
understood through simple considerations of the eigenvalue Eq.
(30); the term Ak plays an on-site role, while Bx plays an
inter-site role. By setting the latter equal to zero, viz. Bx ~ 0,

we obtain Ax = —,/)\%( — 4 and thus recover the results of
reference [15] regarding a single on-site bivibron. The later
exists only in the regime a > 2 and thus corresponds to the
left-hand curve of Fig. 2. It is the inclusion of the inter-site term
Bk that induces the appearance of the second branch.

In order to give a clearer picture of the bivibron spectrum,
we concentrate on the regime for Ay > 2. For this case,
we may use the approximate expression Ip — —1/A = I
= 1/2(14+Alyp) — 0, and consequently the eigenvalue Eq. (30)
becomes

(A + Ak)Bg

A
o +2 (1 - TK> =0. (32)

In the limit of large A, the eigenvalue problem becomes a simple
quadratic equation in A that may be solved easily and provides
the following simple expression for the bivibron spectrum:

e(K) —2hw K Rg
T = —acos > (fk i\/ﬁ) (33)

KRy 1
Je= <cos + ) . (34)

2 2 cos %

Bivibron spectrum in the regime Agx > 0

The regime for Ax > 0 is obtained in an exactly similar
manner to the preceding analysis; specifically, for attractive
interaction (@ < 0) we have Ax < 0 and Bx < 0, while the
integral I becomes
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1 1
Iy = — —
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and the eigenvalue equation now becomes
—(A + Ak DIBk |1 +2(1 + [Ag |Io) = 0. (35)

Since I1 < 0, Eq. (35) cannot be satisfied as a sum of positive
terms and, as a result, there is no upper branch bound states
for attractive interaction. For repulsive interaction (@ > 0), on
the other hand, we follow exactly the analysis of the Ax < 0
case and obtain the same two branches shown in Fig. 2. We thus
find that the cases Ax < 0 and Ag > 0 lead each to two sets
of bound states placed symmetrically below and above the free
bivibron band, respectively.

The two-vibron band picture in the context of the present
scheme is presented in Fig. 3 for two values of the parameter a,
leading to bound biphonons for @ = 2 (higher grey continuous
and dotted lines (red in the web version)) and a = 3 (lower
black continuous and dotted lines (blue in the web version)).
The central dark-shaded region bounded by two continuous
dark lines corresponds to the band of two free vibrons, while the
two sets of lines below this band correspond to bound bivibron
states. The continuous lines correspond to an on-site bound
bivibron, while the dotted-lines correspond to next-neighboring
bivibrons. We observe that the on-site bivibron always has
lower energy than the nearest neighbor bivibron, while the latter
may be inside the two-vibron band for some wavenumbers.
Eq. (33) has two sets of solutions, one is always equal to —a
while the other is equal to —2a cos?(K Ry/2); for |[KRo| >
/2, the former, representing the on-site bivibron, has lower
energy than the latter, viz. the two-site bivibron. At KRy =
4 /2, the two solutions collide and, in the regime —m/2 <
KRy < m/2, they switch symmetry and the dispersive branch
now becomes the on-site bivibron, thus retaining the lowest
energy for the whole momentum range. This behavior is
attributed to the approximate nature of the analytical solutions
found, and it would be interesting to analyze the effect
numerically through exact diagonalization. We note that the
biphonon spectrum for repulsive interaction (not shown in the
figure) is exactly symmetric to the present one for attractive
interaction, but above the free two-phonon band.

5. Conclusions

The quantization of the B-FPU model with boson
quantization rules and the subsequent analysis of the
two-quanta sector within the boson conserving approximation
leads to the appearance of biphonons. These states may be
considered as the lowest states arising from the acoustic
nonlinearity of the Hamiltonian and may be thought of as
quantum counterparts of the classical FPU discrete breathers.
Analytical calculations showed that two types of states
may appear within the two-quanta sector, corresponding to
on-site biphonons as well as adjacent-site biphonons. The
latter states have higher energy than the former ones, as
expected. The presence of two types of biphonons may result
in higher mobility for the two-quanta states compared with

Fig. 3. Energy spectrum for |A| > 2. The black lines and the dark region in
between them correspond to free two-vibron states, i.e. delocalized two-vibron
state. For attractive nonlinearity shown here, the two sets of lines correspond
to the bound bivibron band and dotted lines to two-site bivibrons, while
continuous lines correspond to on-site bivibrons. The nonlinearity parameter
values used are |a| = 2 (grey curves (red in the web version)) and |a|] = 3
(black curves (blue in the web version)).

the case where only a single on-site two-boson state existed.
Our analysis shows that biphonon states appear in the number
conserving B-FPU model below the band of free two-phonon
states in the case of attractive nonlinearity, viz. for b < 0, while
for repulsive nonlinearity they appear above the free band. We
thus find that both attraction and repulsion may lead to effective
binding of the single quanta states. We note that in quantum
DNLS-like models [10-12], as well as quantum Klein—Gordon
models [17], on the other hand, there is only on-site nonlinearity
with a linear intrasite coupling. This fact generally favors
the formation of single site multi-vibron states, and in the
two-quanta sector does not lead to the formation of an intersite
bivibron.

The introduction of the boson conserving approximation
is compatible with the rotating wave approximation at the
classical level. Within the latter, Sievers and Takeno showed
the existence of classical discrete localized modes in the FPU
model, viz. IMLs or DBs. The biphonon states found within
the context of the number conserving FPU may be considered
as the quantum analogs of these classical states. Clearly, there
are many more quantum breather states that are labeled by
the number of quanta they contain; a complete study for an
arbitrary number of quanta may be performed numerically
using techniques such as those in ref [17]. As we pointed out
in the second section of the paper, quantization of the number
conserving Hamiltonian using local variables introduces an
artificial gap in the linear spectrum, leading to an effective
on-site term in the Hamiltonian of Eq. (10). As a result, the
biphonon states found here may not be very long-lived if used as
initial states in the complete quantum FPU model. It is therefore
worthwhile investigating via numerically exact procedures if
quantum breather states can form in the quantum FPU model
without the number conserving approximation, as well as what
is the lifetime of the biphonon states found here.
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The work presented here may be viewed as describing
a minimal model for phenomena occurring in quasi-one
dimensional chains of molecular crystals and biological
materials. We note that multiphonon states have been observed,
as well as analyzed semiclassically, in certain metal-oxide
materials [18,19]. On the other hand, a multiphonon analysis
was performed in an extension of the Davydov model for quasi-
one dimensional macromolecules and applied to the case of
C = O stretching vibrations in acetanilide [16]. The latter
model and analysis were further used in the fitting of infrared
pump-probe experiments in a certain protein, except for the
N—H vibrational states [20]. Although the Davydov model
used in these works is much more sophisticated than the FPU
models in terms of the details it encompasses, the latter is much
simpler and, due to the straightforwardness of the calculations
it involves, may assist in the understanding of these complex
phenomena. In order to make the FPU model compatible
with the physics of the aforementioned phenomena, we may
introduce an on-site potential term in the Hamiltonian of Eq.
(1) of the form H' = H + Y 5 V(x,), where H' is the new
Hamiltonian and V (x,) ~ 1/2M ng,% + higher terms, viz., a
generally nonlinear on-site potential at the n-th oscillator site
with linear frequency (2. In the boson conserving Hamiltonian
of Eq. (10), the new on-site term simply shifts the frequency
term w to

p=oto(1+2 (-
e=Te a \2Mw ) )"

All results represented in Section 3 are still valid, except that the
energy spectrum will be shifted by (2; if additional nonlinear
terms of the potential V (x,) are included, some changes may
result, as we discuss below.

Let us now use the FPU model with on-site potential
to analyze quasi-one dimensional chains of proteins or
similar materials such as acetanilide. The bare frequency (%
corresponds to the optical C = O or N-H mode, while
the linear coupling between adjacent masses corresponds to
dipole—dipole coupling, as in the Davydov model. Let us
first consider the case of b = 0, viz. only linear coupling
terms; then no self-localization may occur, since the model is
purely linear, except if the optical mode additionally has some
anharmonicity. In the latter case, a localized mode may appear
almost generically, but it will be only of the on-site type, viz. all
bosons on the same site. If, however, we allow for the nonzero
FPU nonlinear coupling, i.e. b # 0, then, as we saw in the
previous sections, both on-site and next-nearest site biphonon
states may appear, as a direct consequence of the attractive

nonlinear intersite coupling. The possible presence of some on-
site anharmonicity does not change this feature drastically. The
acoustic-type nonlinear terms in the Hamiltonian of Eq. (10)
enable the binding of delocalized phonon modes into states
effectively localized in one or two adjacent sites. We observe
that the FPU model provides an adequate qualitative picture
for the experiments in ACN as well as proteins, and may be
used as a minimal model to fit the results of these experiments.
On the other hand, biphonons may be considered as the lowest
quantum states corresponding to classically localized states, i.e.
they can be thought of as the simplest quantum breather or
quantum soliton states [21].
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