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We study analytically as well as numerically the role that large-amplitude vibrations play during
the process of molecular dissociation. Our model consists of a linear three-atom molecule composed
of identical atoms interacting with their nearest neighbors by the Morse potentials. We find a close
relation between energy localization and bond breaking and evaluate numerically the corresponding
reaction paths.

I. INTRODUCTION

The familiar normal mode model has long been used to describe vibrations of polyatomic molecules. [1] As a zeroth-
order description, it works well as long as the anharmonicity of molecular vibrations is negligibly small compared to
harmonic vibrations. A general vibrational state of a given molecule can then be expressed as a superposition of
normal-mode-vibrations, in terms of which the standard theory can be formulated both in classical and quantum
levels. In a certain sense, normal coordinates extends over whole regions of molecules. Simplicity and transparency
of situations in vibrational properties of molecules as well as solids cease to hold as soon as we enter into the regime
where linearity as well as anharmonicity coexist. This regime must be handled through solving nonlinear equations of
motion for the dynamics of atomic displacement in the classical level for which no general standard procedure exists.
In the quantum level, anharmonicity is usually taken care of by employing perturbation-theoretic methods which are
generally involved, giving different results for different cases.

On the other hand, a local mode (LM) model being counter-intuitive to the normal mode model was put forward

in chemistry long time ago to explain the overtone absorption spectra of polyatomic molecules. [2], [3] It presumes
the existence of vibrational modes in which the motion (and the energy) are more or less confined to a single bond. It
has been argued that the local mode can exist even when they are embedded in a dense manifold of other vibrational
modes, sometimes referred to as a "bath”. In spite of its long history and accumulation of a wealth of spectroscopic
data, the concept of the LM itself in chemistry appears to have remained in empirical or phenomenological stage.
It should be remarked in this connection that a concept somewhat similar to the local mode model in chemistry,
viz. that of an intrinsic localized mode (ILM) or a discrete breather (DB), has been employed in solid state and
mathematical physics since 1988 [4], [5], [6]. An ILM or DB is a time-periodic, spatially localized mode in ”pure”
nonlinear lattices for which many theories and numerical experiments have been developed [7]. In spite of extensive
works on ILMs or DBs, little attention has been paid on the interrelationship between the ILM in physics and the
LM in chemistry except for a few exceptional cases. It is the purpose of this paper to apply the concept of the ILM to
molecular vibrations with a spirit entirely different from that in chemistry. We are concerned with formulating a non-
perturbative theory of anharmonic molecular vibrations from first principles and performing numerical calculations
to solve coupled nonlinear differential equations. Our particular concern in doing this is to explore general principles
for large-amplitude molecular vibrations leading eventually to molecular dissociation. To achieve our objective, we
confine ourselves to a very simplified model of a 3-atom molecule composed of linearly arranged identical atoms; Little
is known about a model of this type in the physics community.

II. EQUATIONS OF MOTION AND BOND ENERGY

We consider vibrations of a linear molecule composed of three identical atoms A, B, C with atomic mass m. Let
the displacement of the A, B, and C atoms from their equilibrium position be u;, us and us, respectively. We assume
that each atom interacts only with its nearest neighbors. The interatomic potential between the A and B atoms, Uq,
and that between the B and C atoms, U; is taken to be of the form

U15U1(|U1—U2|), U2 EU2(|U2—U3|) (1)

Here an explicit expression for the U; (i = 1,2)’s is chosen as the Morse potential, i.e.



Ui(Jui — wip1|) = Di(1 — exp[—a;|u; — ui1[])®, i=1,2 (2)

where D; and a; are constants. Equations of motion for the atoms in the molecule are then written in terms of the
relative displacements

L1 = Uy — Up, L2 = U3z — U2 (3)
as
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where 4 = m/2 is the reduced mass. Under the nearest neighbor approximation, we have reduced our three-body
problem to a pair of coupled nonlinear differential equations, Egs. (4) and (5), that are generally non-integrable.
We introduce the bond energy for the bond A-B (B-C) referring to 21 (z2) by the equation
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Equation for z;, when multiplied by the factor #; (i = 1,2), yields
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From Egs.(7) and (8), we obtain
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Several formal results on the dynamical properties of the system can be obtained from Eq.(10). These are given below
in succession:

1. Identical oscillators

If entirely the same initial condition is given to the oscillator 1 and the oscillator 2 governed by Eqs.(4) and (5), re-
spectively, these two oscillators become identical. Dropping the subscripts for the quantities z;, h;, U;, a5, D; (1 = 1,2),
we then obtain

h(t)=+L0@) o i:—(lrpﬂ)dUd—ff) (11)
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Thus, the coupled nonlinear oscillator equations reduce to a pair of single Morse oscillator equations in which the

coefficient of the Morse potential changes from ¢ to (1 + ﬂ)c.
m



2. A pair of uncoupled oscillators under fluctuating field

Equation (10) can be rewritten as
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Equations (13) show that each of the oscillators 1 and 2 is under fluctuating force. In spite of being of separable form,
they are non-integrable and intractable. In this case, we must go back to Egs.(4) and (5).

8. Fnergy localization and bond breaking

We note that Egs. (7) and (8) gives useful information on the relationship between the energy localization and
bond breaking. Suppose that breaking of the bond B-C takes place at ¢ = ¢¢. This implies that

—
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Then, we obtain
h2 > h1 as t— t() (15)

Equation (15) shows that energy localization takes place is generally associated with bond breaking.

III. POTENTIAL ENERGY LANDSCAPE AND REACTION PATH

Let us introduce the two-dimensional potential function and the potential energy surface
U(zi,22) = Ur(z1) + Ua(z2) and  f(z1,22) = U(z1,22) —c =0 (16)

where ¢ is a constant. Three-dimensional plot of the potential function U(z1,z2) and the equi-potential energy line
corresponding to various value of ¢ in f(z1,z32), the potential energy contour, referred here to as a potential energy
landscape (PEL) are depicted in Fig.1 (three dimensional portrait as well as the projection onto the z1, z, axes) for
the specific values a; = a3 = D1 = Dy = 1. The global properties of the contour is described by the existence of two
kinds of curves, closed ones around the point (0,0) and open ones, the former and the latter being separated by a
separatrix which is not shown here. It is seen that there exists two trenches starting from the bottom (0,0) of the
potential function and running in parallel to the z;-and zs-axis, the former and the latter being perpendicular to the
extrema (c,0) and (0,¢) of the contour curves. Natural question here is: What is the trajectory of the representative
point in our dynamical system which is defined as a locus of the two-dimensional phase-space point (z1(t), z2(?)) as ¢
evolves, where z1(t) and z5(t) are solutions to Egs.(4) and (5) for a given initial condition, respectively. By physical
intuition, it is presumed that the trajectory tends to run along these two trenches as the amplitude of molecular
vibrations get large. Such a trajectory may be considered as going eventually over to the reaction path associated
with the chemical dissociation due to bond breaking; these paths are visible in Figure 1.
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FIG. 1. Potential energy landscape for the linear three mass molecule. On the left the three dimensional structure is depicted
while on the right we show the corresponding projection onto the two relative position coordinates z; and zs designated in
the figures as 1 and z2 respectively. The dissociation trenches consist of the two paths parallel to the coordinate axes. The
parameters used are a; = a2 = D) = Dy = 1.

IV. NUMERICAL CALCULATIONS

Keeping the above qualitative arguments in mind, we solved Egs.(4) and (5) numerically by setting
a1 = a3 = D1 = Dy = 1 under the initial condition

z1(t =0)=22(to) =0 and #;(t=0)=10.5, =22(t=0)=u, (17)

taking v as a parameter. Our particular concern here is: (1) What are the general properties of the trajectory of the
representative points (z1(t), z2(t) and how they change as v increases. (2) How does the bond energy change as v
increases and (3) whch orbits can be identified as reaction paths associated with bond breaking. Results of numerical
calculations are shown in conjunction with the potential energy landscape U(z1,z3) in Figures 2 and 3 for several
specific cases. We classify the results into three typical groups designated respectively as type-I, IT and III motions
respectively. In Figure 2 we show the potential landscape projections for type-I motion with v = 0.4 (a), v = 0.8 (b),
v = 1.5 (c) as well as type-II motion with v = 1.9 (d), while in Fig 3 we have type-III motion with v = 1.935 (a) and
(ITI-2) v = 1.95 (b). It is seen that from case I (a) to (c) that the area covered by the trajectory around the origin
at (0,0) changes from a cross section of a cone lying along the (1,1)-direction to a domain which covers almost the
whole region enclosed by a potential-energy contour. In the separating type-II case, the domain covered by the orbit
tends to extends almost equally in the direction of the rays of the potential function. In type-III motion shown in
Fig. 3, the trajectory elongates indefinitely along the x5 direction, showing that breaking of bond 2 takes place. This
line is identified as a reaction path. We conclude that the molecular orbits can be classified broadly into three cases,
viz. (I), (II) and (III). It is only in the case (I) that the conventional normal mode concept holds, where energy are
equally partitioned in the bond 1 and the bond 2 as exemplified by Fig. 4 for case (I).

FIG. 2. Molecular trajectories in the potential energy landscape of the linear three atom molecule for various initial relative
velocities in bond 2. We show here two types of trajectories, viz. type I with (a) v = 0.4, (b) v = 0.8, (¢) v = 1.5 as well as
type II with (d) v = 1.9. Conventional normal mode theory applies only to type I trajectories corresponding to fast exchanges
between the two oscillators. The type-II trajectory delimits the separation between the stable linearized energy exchange
between the oscillators and the unbounded motion.
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FIG. 3. Molecular trajectories in the potential energy landscape for unbounded motion leading to bond breaking and disso-
ciation. Type-III motion with v = 1.935 (left panel) and v = 1.95 (right panel).

We are now concerned with seeking general principles, if any, in the bond breaking process. Prior to this, let us
first investigate more closely the vibrational properties from the point of view of the energy exchange. In Figure 4
we show the energy quantities h1(¢) and hz(t) as a function of time for the various cases discussed previously. In Fig.
4 we have type-I (top and bottom figures on lhs) and type-II (top and bottom figures on rhs) motion; the first pair
clearly shows a rapid energy exchange between the bonds, as expected by the analysis done previously. For type-II
motion we display the quantities h1(t), ho(t) for 1250 > ¢ > 1300 and observe, in contrast to the type-I regime energy
localization in each bond that is subsequently transfered to the other one. The process of energy exchange proceeds
now in ”packets” and not in the continuous manner of the type-I linearized motion. This process of exchange of
localized energy between the bonds continues indefinitely and, as a result, we may consider this case as the pre-bond
breaking regime. A critical value v, of v above which bond breaking takes place is given by v, & 1.92. For v slightly
larger than v., a very small change in the value of v induces alternation of the breaking at bond 1 and bond 2. In
this sense, type-II motion may be related to a quasi-chaotic regime. As v increases further, the system goes over
to type-IIT motion displayed in Figure 5. From the numerical calculation of hq(¢) and ha(?) we observe that bond
2 breaks definitely even though almost complete transfer of energy from bond 2 to bond 1 may take place. These
bouncing exchanges become less pronounced as v and thus the initial energy increases. Physically, breaking of a bond
in chemical dissociation is equivalent to transition from bounded motion to unbounded one. In the latter case equi-
partition of the system energy between kinetic energy and the potential energy breaks down and almost all system
energy is transformed into potential energy localized in the breaking bond. This accumulation of potential energy in
bond 2 at the expense of kinetic energies and potential energy in bond 1 leads to molecular dissociation.
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FIG. 4. Total energies h(t) and h2(¢) accumulated in each bond as a function of time. The left two plots correspond to
type-I motion (v = 0.8) while the right two figures correspond to type-II, intermittent motion (v = 1.9). The continuous energy
exchange seen in the linearized regime is sharply contrasted by the intermittent predissociation exchange in type-II motion.
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FIG. 5. Total energies hi(t) and ho(t) accumulated in each bond as a function of time for type-III motion. The left panels
correspond to v = 1.935 while the right panels to v = 1.5. Dissociation occurs after initial energy localization and exchange of
the localized energy between the two bonds. As initial energy increases, bond breaking occurs faster and with less or eventually
no exchange of the localized energy.

V. CONCLUDING REMARKS

In this work we studied analytically and numerically classical vibrational states of a linear three-atom molecule
composed of three identical atoms in mutual interaction via Morse potentials. Our emphasis was to understand the
onset of molecular dissociation and isolate general mechanisms that lead to it. Due to the large parameter space of
the problem, we focused on a specific set of initial conditions where one of the two bonds is initially at rest while
the second acquires a variable initial kinetic energy. We found three vibrational regimes of which the lowest energy
one does not lead to dissociation; in this regime the masses vibrate around the stable bond lengths with linear or
quasilinear oscillations and with energy exchanged in a continuous fashion between the bonds. The second regime is
more interesting and leads to intermittent bond oscillations that proceed through initial bond energy accumulation
while the resulting transfer is not continuously varying as in the type-I motion. This dynamical vibrational state
of the molecule can be seen as a chaotic pre-dissociation regime. Further increase of bond energy takes us to the
third regime where there is a transition from bounded to unbounded motion associated with the breakdown of the
Louiville theorem. Dissociation occurs then through system energy concentration to potential energy of a given bond
at the expense of kinetic energy. Numerics show large bond openings accompanied by some type of resonant transfer
of this accumulated energy between the bonds that is somehow reminiscent of targeted energy transfer [8]. This
resonant energy accumulation and exchange may take place for a substantially long time before leading to molecular
dissociation. This process is clearly dependent on the initial bond energy; as the initial kinetic energy becomes larger,
localized energy oscillations become less frequent leading to an almost instantaneous bond breaking at very large
initial energies.

Even though the system we studied is small, we found that the dynamics is quite rich and that molecular dissociation
may proceed via energy accumulation and localization in a given bond and subsequent resonant energy exchange
between the bonds. Although it would be interesting to find specific precursors to dissociation, as discussed in
the melting of solids [9,10], such precursors were hard to quantify in the present study. Furthermore, it would be
interesting to connect the specific process for dissociation through energy accumulation and transfer found here with
applications of dynamical systems approaches to dissociation [11]. These issues as well as corresponding processes in
larger molecules will be left for a subsequent study.
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