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Dissipative Discrete Breathers in rf SQUID Metamaterials
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The existence and stability of dissipative discrete breathers (DDBs) in rf superconducting quantum

interference device (SQUID) arrays in both one and two dimensions is investigated numerically.
In an rf SQUID array, the nonlinearity which is intrinsic to each SQUID due to the presence of
the Josephson junction (on-site nonlinearity), along with the weak coupling of each SQUID to
its nearest neighbors through magnetic forces, results in the appearance of discrete breathers. We
analyze several discrete breather excitations, both in one and two dimensions, which are subjected to
unavoidable losses. These losses, however, are counter-balanced by an external �ux source leading to
linearly stable discrete breather structures up to relatively large coupling parameters. We show that
DDB excitations may locally alter the magnetic response of array from paramagnetic to diamagnetic
or vice versa, and that they are not destroyed by increasing the dimensionality.
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1. Introduction

Discrete breathers (DBs), also known as intrinsic
localized modes (ILMs), are spatially localized, time-
periodic, and stable (or at least long-lived) excitations
in spatially extended, periodic, discrete, nonlinear
systems [1, 2]. They can be produced spontaneously
in a nonlinear lattice of weakly coupled elements
as a result of �uctuations [3, 4], disordered [5],
or by purely deterministic mechanisms [6, 7]. Since
their introduction [8], a large volume of analytical
and numerical studies have explored the existence
and the properties of DBs in a variety of nonlinear
mathematical models of physical systems. Rigorous
mathematical proofs of existence of DBs in both
energy conserved and dissipative lattices have been
given [9, 10], and numerical algorithms for their
numerically exact construction have been designed
[11�16]. They have been observed experimentally
in a variety of physical systems, including solid
state mixed-valence transition metal complexes [17],
quasi-one dimensional antiferromagnetic chains [18],
arrays of Josephson junctions [19], micromechanical
oscillators [20], optical waveguide systems [21], layered
crystal insulator at 300K [22], and proteins [23].

From the perspective of applications to
experimental situations where an excitation is
subjected to dissipation and external driving,
dissipative DBs (DDBs) are more relevant than their
Hamiltonian (i.e., energy conserved) counterparts.
Clearly, the dynamics of DDBs is governed by
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power balance, rather than energy conservation.
In that case, quasiperiodic and even chaotic DDBs
may exist [24, 25]. Recently, DDBs have been
demonstrated numerically in discrete and nonlinear
magnetic metamaterials (MMs) in both one and
two dimensions [26, 27]. The MMs are arti�cial,
composite, inherently non-magnetic materials that
exhibit electromagnetic (EM) properties not available
in naturally occurring materials. They are typically
made of subwavelength resonant elements like, for
example, the split-ring resonator. When driven by an
alternating EM �eld, the MMs exhibit large magnetic
response, either positive or negative, at frequencies
ranging from the microwave up to the Terahertz
(THz) and the optical bands [28�30]. Only a few
natural materials respond magnetically at those
frequencies, and that response is usually very weak
and within a very narrow band. Thus, the magnetic
response of materials at THz and optical frequencies
is particularly important for the implementation of
devices such as compact cavities, tunable mirrors,
isolators, and converters. The negative response of
MMs can be achieved above the resonance frequency,
resulting in an e�ectively negative value of the
magnetic permeability µ, the macroscopic parameter
characterizing the magnetic response of a system. In
a linear MM, the e�ective permeability µ does not
depend on the intensity of the propagating EM �eld.

In contrast to the linear case, the e�ective
parameters of MMs do depend on the intensity of
the propagating EM �eld. Thus, the nonlinearity
o�ers the possibility to achieve dynamic control over
the e�ective parameters of a MM in real time, and
thus tuning its properties by changing the intensity
of that �eld. It has been recently suggested that
periodic rf SQUID arrays can operate as nonlinear
MMs in microwaves, due to the resonant nature of
the SQUID itself and the nonlinearity inherent in
the Josephson element. In that case, the e�ective µ
of the rf SQUID array can be tuned by the applied
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FIG. 1. Schematic drawing of the rf SQUID array, along
with the equivalent circuit for a single rf SQUID in external
alternating �ux Φext.

�ux [31]. The combined e�ects of nonlinearity and
discreteness (also inherent in rf SQUID arrays), may
lead in the generation of nonlinear excitations in the
form of DDBs. In the present context of MMs, such
highly localized modes may alter locally the magnetic
response of those materials [27].

In the present work we investigate numerically
the existence and stability of DDBs in both one
dimensional (1D) and two-dimensional (2D) arrays
of rf superconducting quantum interference devices
(SQUIDs). In the next section we describe the two-
dimensional rf SQUID array model which consists a
simple realization of a planar MM, while in section
III we discuss its linear dispersion properties. In
section IV we construct and present several types of
DDBs both in one and two dimensions. In section
V we shortly discuss the magnetic response of the
rf SQUID arrays, showing that DDBs can locally
alter the magnetic response from paramagnetic to
diamagnetic (or vice versa). We �nish in section VI
with the conclusions.

2. rf SQUID array model

An rf SQUID, shown schematically in Fig. 1b,
consists of a superconducting ring interrupted by a
Josephson junction (JJ) [32, 33]. When driven by an
alternating magnetic �eld, the induced supercurrents
in the ring are determined by the JJ through the
celebrated Josephson relations [34]. Adopting the
resistively and capacitively shunted junction (RCSJ)
model for the JJ [32, 33], an rf SQUID in an
alternating magnetic �eld Hext ≡ H perpendicular
to its plane is equivalent to the lumped circuit
model shown in Fig. 1c. That circuit consists of
an inductance L in series with an ideal Josephson
element Ic (i.e., for which I = Ic sin φ, where Ic is
the critical current of the JJ and φ is the Josephson
phase) shunted by a capacitor C and a resistor R,
driven by an alternating �ux Φext(H). The rf SQUID
is a nonlinear oscillator which, in an alternating
magnetic �eld exhibits a resonant magnetic response
at a particular frequency ω0 ' 1/

√
L C = ωp/

√
βL

(for R →∞), where ωp is the plasma frequency of the
JJ and βL = 2πLIc/Φ0 is the SQUID parameter (with

Φ0 being the �ux quantum).
Consider a planar rf SQUID array consisting

of identical units as shown in Fig. 1a, arranged in
an orthogonal lattice with constants dx and dy in
the x and y directions, respectively. That system is
placed in a spatially uniform magnetic �eld H =
H0 sin(ωt) of amplitude H0 and frequency ω (t is the
time variable), perpendicular to the SQUID rings. The
�eld induces a supercurrent Inm in the nmth SQUIDs
through the �ux Φext = Φe0 sin(ωt) threading the
SQUID loop (Φe0 = µ0SH0ω, where µ0 is the
permeability of the vacuum and S the loop area
of the SQUID). The supercurrent Inm produces a
magnetic �eld which couples that SQUID with all
the others due to magnetic dipole-dipole interactions
through their mutual inductances. The behavior of
that magneto-inductively coupled SQUID array is
expected to deviate signi�cantly from directly coupled
SQUID arrays like, e.g. those studied in Ref. [35].
Assuming ring-shaped rf SQUIDs of radius a (so
that S = πa2), and using nearest-neighbor coupling
between them, the �ux Φnm trapped in the (n,m)−th
SQUID ring is given by

Φnm = Φext + L [Inm + λx(In−1,m + In+1,m)
+λy(In,m−1 + In,m+1)], (1)

where λx,y ≡ Mx,y/L are the coupling constants
between any two neighboring SQUIDs in the x and
y directions, coupled through mutual inductances Mx
and My, respectively. Both values of the Mx and
My are negative due to the fact that the magnetic
�eld generated by one SQUID crosses the neighboring
SQUID in the opposite direction. The supercurrent
Inm in the (n,m)−th SQUID ring is given, within the
RCSJ model, by

−Inm = C
d2Φnm

dt2
+

1
R

dΦnm

dt
+Ic sin

(
2π

Φnm

Φ0

)
. (2)

Due to the planar array geometry and for su�ciently
large separations dx and dy in the x and y directions,
we may assume that λx, λy << 1, and the nearest
neighbor approximation holds. For the same reasons,
we may neglect in the dynamical equations governing
the �uxes in the SQUIDs all those terms of higher
order, i.e., terms of the form λxλy, λ2

y, λ2
x, etc.

Solving Eq. (1) for the current Inm we get

Inm =
Φnm − Φext

L
− λx(In−1,m + In+1,m)

−λy(In,m−1 + In,m+1). (3)

Then we substitute Eq. (3), written for the currents
In±1,m and In,m±1, back into itself. Omitting
higher order terms in the couplings, we get after
rearrangement

Φnm = Φext + LInm + λx(Φn−1,m + Φn+1,m

−2Φext) + λy(Φn,m−1 + Φn,m+1 − 2Φext). (4)

Nonlinear Phenomena in Complex Systems Vol. 11, no. 2, 2008
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By replacing Inm in the earlier equations from Eq. (2) we get

C
d2Φnm

dt2
+

1
R

dΦnm

dt
+ Ic sin

(
2π

Φnm

Φ0

)
− λx(Φn−1,m + Φn+1,m)− λy(Φn,m−1 + Φn,m+1)

= [1− 2(λx + λy)]Φext. (5)

Using the relations fnm = Φnm/Φ0, fext = Φext/Φ0, β = βL/2π ≡ LIc/Φ0, γ = Lω0/R, τ = ω0t, equations (5)
can be written in the normalized form

d2fnm

dτ2
+ γ

dfnm

dτ
+ fnm + β sin(2πfnm)− λx(fn−1,m + fn+1,m)− λy(fn,m−1 + fn,m+1)

= [1− 2(λx + λy)]fext. (6)

Note that the time derivative of fnm corresponds to
the voltage vnm across the JJ of the (n,m)−th rf
SQUID, i.e.,

vnm =
dfnm

dτ
. (7)

The small parameter γ actually represents all of the
dissipation coupled to each rf SQUID, which may also
include radiative losses [36]. Equations (5) can be also
obtained from the Hamiltonian

H = e−t/τC

∑
n,m

Q2
nm

2C
+ e+t/τC

∑
n,m

[
1

2L
(Φnm − Φext)2 − EJ cos

(
2π

Φnm

Φ0

)

− λx

L
(Φnm − Φext)(Φn−1,m − Φext)− λy

L
(Φnm − Φext)(Φn,m−1 − Φext) ] , (8)

where EJ ≡ Ic Φ0/2π is the Josephson energy, τC =
R C, and

Qnm = e+t/τC C
dΦnm

dt
(9)

is the canonical variable conjugate to Φnm, and
represents the charge accumulating across the
capacitance of the JJ of each rf SQUID. The
Hamiltonian Eq. (8) is a generalization in the 2D lossy
case of that in Refs. [37, 38] used in the context of
quantum computation with rf SQUID qubits.

3. Single rf SQUID oscillator

The dynamic equation for a single rf SQUID is
given from Eqs. (6) for λx = λy = 0 and fnm → f

d2f

dτ2
+ γ

df

dτ
+ f + β sin(2πf) = fext, (10)

which has been studied extensively for more than two
decades both in the hysteretic (βL > 1) and the non-
hysteretic (βL < 1) regimes. The external driving fext
can be any time-dependent function, which may also
include a constant term. In the following, we assume
that the external �ux is of the form

fext = fDC + fe0 cos(Ωτ), (11)

where fe0 = Φe0/Φ0 and fDC = ΦDC/Φ0, with ΦDC
being a constant (DC) �ux resulting from a time-
independent and spatially uniform magnetic �eld. The
nonlinear dynamics of Eq. (10) with fext given by
Eq. (11) (with or without the DC term) is very rich,
exhibiting bifurcations and chaos in large portions of
the parameter space [39�41].

The properties of rf SQUIDs in an alternating
external �eld as a nonlinear resonant oscillator have
been investigated experimentally both for in hysteretic
and the nonhysteretic (dispersive) regimes [42�44].
The signal amplitude of the rf SQUID as a function of
the frequency of the applied rf �eld exhibits a strong
resonance at a speci�c frequency at (or close to) ω0.

Íåëèíåéíûå ÿâëåíèÿ â ñëîæíûõ ñèñòåìàõ Ò. 11, � 2, 2008
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FIG. 2. (a) The resonance curve of the induced
(super)current i as a function of the frequency of the
applied rf �eld Ω for a single rf SQUID with β = 1.27,
fDC = 0, fe0 = 1.0, and γ = 0.001 (high peaked
curve); γ = 0.01 (low peaked curve). (b) Enlargement of a
small region from Fig. 2a where several �ne steps on the
resonance curve are clearly observable.

Although here we focus on the DDB generation in rf
SQUID arrays, we shall refer shortly to the peculiar
resonance behaviour of the single rf SQUID. A typical
resonance curve for a hysteretic rf SQUID is shown
in Fig. 2a, for two di�erent values of the damping
coe�cient γ. Those symmetric, bell-shaped curves
represent the �ux amplitude of f(τ) as a function
of the frequency ω of the applied �eld. Apparently,
those curves have a maximum at ω = ω0, and they
are similar to those observed in high−Tc rf SQUIDs
in an alternating �eld (see for example �gure 2d
in Ref. [44]). Although these curves look smooth at
�rst glance, they actually show multivalued behaviour,
with jumps observed as �ne steps as shown in Fig.
Fig. 2b. For even lower rf power, however, we get
very di�erent resonance curves, as shown in Fig. 3.
Here, instead of the symmetric curves of Fig. 2a,
which are characteristic of linear resonance (in case we
forget the �ne steps), we see a curve with a hysteretic
loop, which most closely resembles a typical nonlinear
resonance curve. The hysteresis loops in Fig. 3 become
smaller with increasing damping coe�cient, as it could
be expected. Thus, for such low rf powers, we can
access the lowest energy states of the rf SQUID which
actually are greatly a�ected by the nonlinearity. This
behaviour is peculiar to the rf SQUID, where nonlinear
e�ects are stronger for low applied power.

FIG. 3. The resonance curve of the induced (super)current
i as a function of the frequency of the applied rf �eld Ω
for a single rf SQUID with β = 1.27, fDC = 0, fe0 =
0.5, and γ = 0.001 (high peaked curve); γ = 0.01 (low
peaked curve). For such low rf power, the lowest energy
but highly nonlinear state is accessed, which exhibits a
typical nonlinear resonance curve with a hysteretic loop.

4. Linear dispersion

The linear dispersion for small amplitude �ux
waves is obtained by the substitution of f =
A exp[i(κxn + κym−Ωτ)], into the linearized Eq. (6)
without losses and external �eld (γ = 0, fext = 0)

Ω =
√

1 + βL − 2(λx cosκx + λy cosκy), (12)

where κx,y = dx,y kx,y and Ω = ω/ω0. The
earlier equation describes the dispersion of a new
kind of guided waves, the magneto-inductive (MI)
waves, which are supported by periodic, discrete
arrays of magnetically coupled resonant elements
[45]. Considering a 1D array, the corresponding
dispersion (obtained by setting λy = 0 and dropping
the subscript m) has similar form with that of
electroinductive waves in chains of complementary
metamaterial elements [46]. Moreover, in the limit of
weak coupling (λx,y ¿ 1), the dispersion (12) has
similar form with that obtained for planar MI wave
transducers, both in one [47] and two [45] dimensions.
Typical Ω(κ) curves are shown in Fig. 4a for three
di�erent values of the coupling coe�cient λ = λx.
The bandwidth ∆Ω ≡ Ωmax − Ωmin decreases with
decreasing λx which leads, for realistic values of λx
(between 0.05 and 0.1), to a nearly �at band with
∆Ω ' 2λ

√
1 + βL (and relative bandwidth ∆Ω/Ω '

2λ). The corresponding phase and group velocities vph
and vg, respectively, for the red-dashed curve of Fig.
4a are shown in Fig. 4b. (Notice that the actual value
of vg has been multiplied by 250.) Importantly, the
group velocity vg, which de�nes the direction of power
�ow, is in a direction opposite to the phase velocity
vph. Typical dispersion curves (i.e., contours of the

Nonlinear Phenomena in Complex Systems Vol. 11, no. 2, 2008
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FIG. 4. (a) Frequency band Ω as a function of κx for a 1D
rf SQUID array, for β = 1.27, and λx = −0.05 (narrowest
band, black solid curve), λx = −0.1 (dashed curve), λx =
−0.3 (widest band, dotted curve). (b) Group velocity vg

(solid curve) and phase velocity vph (dotted curve), for a
1D rf SQUID array with β = 1.27 and λx = −0.1.

frequency as a function of κx and κy) for both isotropic
and anisotropic two-dimensional (2D) SQUID arrays
are shown in Figs. 5a and 5b, respectively. In that
case, vg is not, in general, in a direction opposite to
vph.
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FIG. 5. Contours of the linear dispersion Ω~κ in the κx−κy

plane for a two-dimensional rf SQUID array, with (i) λx =
−0.05, λy = −0.05 (isotropic coupling); (ii) λx = −0.05,
λy = −0.10 (anisotropic coupling). (β = 1.27).

5. Dissipative discrete breathers

Consider �rst the simpler case of a 1D �nite
rf SQUID array, consisting of N identical units. In
order to generate DDBs we start by solving Eq. (6)
in the anti-continuous limit [11], i.e., for λx ≡ λ = 0
when all SQUIDs are uncoupled. Then, the 1D Eqs.
(6) reduce to Eq. (10), the equation for a single
damped and driven rf SQUID [32]. We identify two
di�erent amplitude coexisting and stable attractors of
the single rf SQUID oscillator, with �ux amplitudes
fh and f` for the high and low amplitude attractor,
respectively, and corresponding voltages vh and v`,

-2 -1 0 1 2
f

0

1

2

u SQ

-2 -1 0 1 2
f

(a) (b)

FIG. 6. Potential function of a single rf SQUID uSQ as a
function of its �ux f , for (a) fext = 0, and β = 0.15 (solid
curve), β = 1.27 (dashed curve), β = 3 (dotted curve); (b)
β = 1.27, and fext = 0 (solid curve), fext = 0.25 (dashed
curve), fext = 0.5 (dotted curve), fext = 0.75 (dashed-
dotted curve).

respectively. Subsequently, we �x the �ux amplitude
and the voltage of one of the rf SQUIDs (say the
one at n = nb = N/2) to fh and vh, respectively,
and all the others to f` and v`, respectively. Using
this con�guration (usually referred to as "trivial
breather") as initial condition, we integrate the 1D
Eqs. (6) for a su�ciently small value of λ = δλ.
After integrating for a few hundred periods of the
alternating driving �eld, the system has approached a
stationary state. Then, we again increase λ by δλ and
start to integrate again the 1D Eqs. (6), using as initial
condition the previously obtained stationary state.
After integrating for a few more hundreds driving
periods, the system has approached again a stationary
state. Then, we increase again λ by δλ and so on.
Using this algorithm, we can construct DDBs up to
some maximum value of the coupling λ [11]. For the
integration of Eqs. (6) we use a standard fourth-order
Runge-Kutta algorithm with �xed time-stepping ∆t
(typically ∆t = 0.01). Since the DDBs presented here
are highly localized, the choice of boundary conditions
to be imposed on Eqs. (6) is not especially important.
Thus, we have chosen periodic boundary conditions
throughout the study. In the anti-continuous limit, all
the SQUIDs are subjected to the same potential

uSQ =
1
2
(f − fext)2 − β

2π
cos(2πf). (13)

Due to the form of uSQ shown in Fig. 6, it is a rather
obvious task to construct a "trivial breather i.e., a
DDB for λx = λy = 0, when there are more than
one local minimae. For example, when β = 1.27 and
fDC = 0 (read-dashed curve in Fig. 6a) one may
choose the approximate values f` ' 0 and fh ' 1
(with vh = v` ' 0. These values lead to stable states of
the single rf SQUID equation which are localized into
the left and the right local minimae of the potential,
respectively. Additionally, the choice of fe0 should be
such that both those states will remain localize around
the corresponding local minimum. By continuation of
this trivial DDB for λx, λy 6= 0 one may obtain DDBs
up to relatively high values of the coupling coe�cients,

Íåëèíåéíûå ÿâëåíèÿ â ñëîæíûõ ñèñòåìàõ Ò. 11, � 2, 2008
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FIG. 7. Time evolution of a discrete dissipative breather
during one period, for fDC = 0.5, fe0 = 0.2, β = 1.27,
α = 0.001, λ = 0.1, and Tb = 6.6. Only part of the array
(N = 30) is shown for clarity.

whose maximum depends on the speci�c value of fe0.
Such a DDB in a 1D rf SQUID array is shown in
Fig. 7, where the spatio-temporal evolution of the
induced currents in (n = 1, 2, 3, ..., N) are shown
during one DDB period. Both the background and
the central DDB site are oscillating with the same
frequency Ωb = 2π/Tb = Ω, i.e., a frequency equal to
the driving frequency. We should also notice in Fig. 5
the non-sinusoidal time-dependence of the oscillations.
When there are more than two local minimae in
uSQ (e.g., for β = 3, green-dotted curve in Fig. 6a)
we can construct more than one di�erent DDBs, by
combining any two of the di�erent coexisting and
stable states. These DDBs are extremely stable, since
they are constructed from stable and/or metastable
(with very long life-time) localized states of uSQ,
which can survive down to zero frequencies. This
is a characteristic example of a topological DDB.
However, one can also construct DDBs whose central
site crosses the zero level while oscillating. This
requires the use of high amplitude states of the single
rf SQUID oscillator, which may turn the SQUID into
the normal (i.e., not superconducting) state. At that
state, a rather large voltage di�erence appears along
the JJ of that SQUID. Two typical examples of such
DDBs, which may coexist, are shown in Fig. 8. Both
the background and the central DDB site oscillate
with the same frequency but di�erent amplitudes (low
and high amplitude current oscillation, respectively).
The frequency of the oscillations, and thus the DDB
frequency Ωb, is again equal to the driving frequency
Ω (Ωb = Ω). However, there is a di�erence between
the phases of the oscillation between the background
and the central DDB site which is almost π, and
that has profound consequences in the local magnetic
properties of the array (see below). Although here we
present only one-site, bright dissipative DBs, we can
construct, by choosing appropriate initial conditions,
many di�erent types of DDBs. The linear stability
of DDBs is addressed through the eigenvalues of

FIG. 8. Time evolution of two di�erent discrete dissipative
breathers during one period, for fDC = 0, fe0 = 0.6, β =
1.27, α = 0.001, λ = 0.1, and Tb = 6.6. Only part of the
array (N = 30) is shown for clarity.

the Floquet matrix (Floquet multipliers). A DDB
is linearly stable when all its Floquet multipliers
mi, i = 1, ..., 2N lie on a circle of radius Re =
exp(−αTb/2) in the complex plane [12]. The DDBs
shown in Figs. 7 and 8 (as well as those shown below),
are all linearly stable. The calculated eigenvalues for
the DDBs presented in Figs. and 8a and 8b are shown
in the complex plane in Fig. 9a and 9b, respectively.
Moreover, those DDBs were let to evolve for large
time intervals (i.e., more than 105 Tb) without any
observable change in their shapes.

We can also construct DDBs with periods
which are multiple of the that of the external driver
(subharmonic DDBs), for relatively weak coupling.
Such a period-3 DDB, which is linearly stable, is
shown in Fig. 10, while the Floquet spectrum of its
eigenvalues is shown in Fig. 11a. In order to check
directly its stability, this DDB was let to evolve for
more than 5× 105 Tb, without any observable change
of its pro�le. We conclude, thus, that this period-3
DDB is stable, or at least that it is very long-lived. In

Nonlinear Phenomena in Complex Systems Vol. 11, no. 2, 2008
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FIG. 9. Floquet spectra for the one-site bright dissipative
breathers shown in (a) the upper panel of Fig. 6; and (b)
the lower panel of Fig. 6. All eigenvalues lie on a circle
of radius Re = exp(−αTb/2) ' 0.996705 in the complex
plane.

FIG. 10. Time evolution of a discrete, dissipative, period-3
breather during three driver periods, for fDC = 0, fe0 =
1.2, β = 1.27, α = 0.001, λ = 0.0225, and Tb = 12.57.
Only part of the simulated array (N = 30) is shown for
clarity.

Fig. 11b we show the Poincar�e diagram (i.e., a diagram
of fn vs. vn = dfn/dτ at the end of each period of the
driver), for the central DDB site (n = nb = N/2),
as well as the site at n = 7 which is located in
the background. Clearly, the trajectory of the central
DDB site crosses the Poincar�e surface at three points
(red circles), while that of the site in the background
at one point (black square).

Most of the methodology and techniques for
DB construction has been developed for the 1D case.
However, a rigorous proof of the existence of DBs in
higher-dimensional nonlinear lattices was given in [9],
and several numerical studies of DBs in 2D nonlinear
lattices have been published [48�51]. Since rf SQUID
arrays are fabricated in planar (2D) technology, it is
necessary to extend the study of MI-DDBs in these
systems in two dimensions. We have seen that DDBs
are not destroyed by increasing the dimensionality
from one to two. Consider a 2D N × N rf SQUID
array consisting of identical units. Following the same
procedure that we used to construct one-dimensional
DDBs, we start from the anti-continuous limit by
solving the single rf SQUID equation with losses
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FIG. 11. (a) Floquet spectra for the one-site bright,
dissipative, period-3 breather shown in �g. 8; all
eigenvalues are in a circle of radius Re = exp(−αTb/2) '
0.993735. (b) Poincar�e surface of section for the central DB
site at n = nb (red circles), and the site at n = 7 located
in the background (black square), of the period-3 breather
shown in �g. 8.

and a driving term of the form of Eq. (11). We
identify two di�erent coexisting and stable attractors
of that oscillator with �ux amplitudes fh and f` and
corresponding voltages vh and v`, respectively. Then,
in order to construct a trivial breather, we �x the
�ux amplitude and voltage of one of the rf SQUIDs
(say the one at (n,m) = (nb, nb) = (N/2, N/2))
to fh and vh, respectively, and all the others to
f` and v`, respectively. Then we integrate the 2D
system of Eqs. (6) while increasing simultaneously the
coupling coe�cients λx and λy in small steps, as it
was described earlier. Using this algorithm we have
constructed several DDBs for an isotropic rf SQUID
array (λx = λy = λ), up to some maximum λ. A
snapshot of such a typical 2D isotropic DDB pro�le
(at maximum amplitude of the central site) is shown in
Fig. 12, for the same parameters used to construct the
one-dimensional DDB of the top panel of Fig. 8. Note
that the coupling coe�cients λx and λy may di�er in
magnitude leading to anisotropic rf SQUID arrays. We
have also constructed DDBs in anisotropic 2D arrays
where λx 6= λy (not presented here), for a wide range
of the anisotropy parameter λy/λx.

6. Magnetic response

It is apparent from Fig. 8 that the low and
high amplitude current oscillators have di�erent
phases with respect to the applied magnetic �eld.
Consequently, their magnetic response in that �eld
is expected to be di�erent. To see that, we cast the
normalized Eq. (1) in the form

β inm = f loc
nm − feff

ext , (14)

Íåëèíåéíûå ÿâëåíèÿ â ñëîæíûõ ñèñòåìàõ Ò. 11, � 2, 2008



Dissipative Discrete Breathers in rf SQUID Metamaterials 257

10
12

14
16

18
20

10
12

14
16

18
20
−1

0

1

2

3

4

5

nm

i n
,m

FIG. 12. A snapshot of a dissipative discrete breather (at
maximum amplitude of the central site) for the parameters
of �g. 6. Only part of the simulated array (30×30) is shown
for clarity.

where

f loc
nm = fnm − λx(fn−1,m + fn+1,m)

− λy(fn,m−1 + fn,m+1),
(15)

feff
ext = [1− 2(λx + λy)]fext. (16)

After division by the area of the unit cell d2 of the
2D array, the terms feff

ext , f loc
nm, and β inm in (14)

can be interpreted as the e�ective external (driving)
�eld, the local magnetic induction at cell (n,m),
and the magnetic response (magnetization) at cell
(n,m), respectively. Consider the DB shown in the top
panel of Fig. 10. The temporal evolution (during one
period) of β inm, f loc

nm, and feff
ext , which are directly

proportional to its magnetic response, the local
magnetic induction, and the external magnetic �eld,
respectively, are shown in Fig. 13 for two di�erent cells
of the array; the central (breather) cell at (n,m) =
(nb, nb), and the cell at (n,m) = (7, 7) (Fig. 13a
and Fig. 13b, respectively). The latter is chosen to
lie in the oscillating background, relatively far from
the central DDB site and the ends of the array. We
observe signi�cant di�erences in the magnetization
(red-solid curves) in those two cells; in the cell
containing the high current amplitude oscillator (i.e.,
the central DDB site) the magnetization is in phase
with the applied �eld, while in the other cell the
magnetization is in anti-phase with that. Thus, in
the present case, the DDB provides a diamagnetic
response in a strongly paramagnetic background. In
this sense, a DDB may alter locally the character of
the magnetic response (paramagnetic/diamagnetic) of
a SQUID array in an alternating magnetic �eld. In
some cases, the magnitude of the magnetization of the
DDB may exceed that of the applied �eld, leading to
extreme diamagnetic or negative magnetic response.

0 2 4 6
τ

-5

0

5

0 2 4 6
τ

-0.5

0

0.5
(a) (b)

FIG. 13. Temporal evolution of the response β in (solid
curve), the local �ux f loc

n (dashed curve), and the external
�ux fext (dotted curve) during one period Tb, for (a) the
central site of the dissipative discrete breather shown in the
top panel of Fig. 6 (n = nb = N/2); (b) the site with n =
7 (which is located in the background) of the dissipative
discrete breather shown in the top panel of Fig. 6 (n = 7).

7. Conclusions

In conclusion, we have shown using standard
numerical methods that both 1D and 2D periodic
rf SQUID arrays in an alternating external �ux
support several types of linearly stable DDBs. Those
arrays belong to the class of MI systems, since the
individual rf SQUIDs are weakly coupled through
magnetic interactions. Similar MI DDBs were found
to exist also in arrays of split-ring resonators [26,
27], which constitute the most common elements
for the construction of MMs. We speculate that
DDBs generically exist in discrete and nonlinear
MI systems, for rather wide parameter ranges, and
they are linearly stable for weak coupling between
their units. For the rf SQUID array we have also
obtained di�erent DDB excitations which may co-
exist as well as multiperiodic DDBs, which are linearly
stable. The latter are obtained only for relatively weak
coupling between SQUIDs. Moreover, DDBs may
alter locally the magnetization (magnetic response)
of an rf SQUID array in an alternating magnetic
�eld. The increasing of dimensionality does not, in
general, destroy the DDB solutions. Thus, it seems
possible to exploit dissipative multibreathers in order
to create strongly paramagnetic "islands"in a 2D
SQUID array, surrounded by a diamagnetic (or even
extreme diamagnetic) background. The co-existence
of several linearly stable DDB is a result of the
rich nonlinear dynamics of single SQUIDs, which
allows for multistability even for frequencies far from
resonance. The weak coupling modi�es only slightly
the amplitude of oscillation of those states in each
SQUID in the array. Thus, it is also possible to
get a multiplicity of uniform solutions in a wide
range of frequencies, which provide di�erent magnetic
responses (paramagnetic or diamagnetic).
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