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We have obtained exact analytical expressions in closed form, for the linear modes excited in finite and
discrete systems that are driven by a spatially homogeneous alternating field. Those modes are extended
for frequencies within the linear frequency band while they are either end-localized or end-avoided
for frequencies outside the linear frequency band. The analytical solutions are resonant at particular
frequencies, which compose the frequency dispersion relation of the finite system.
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1. Introduction

The calculation of the linear modes which can be excited in
finite and discrete systems that are driven by a spatially homo-
geneous alternating (AC) field is of great interest. That problem
arises in the low-amplitude limit of several model equations of
physical systems, which are comprised of elements that are either
directly or indirectly coupled (i.e., the so-called magnetoinductive
systems). In that limit, it is a common practice to omit the non-
linear terms ending up with a linear non-autonomous system of
equations that accept linear wave solutions called in the following
driven linear modes (DLM). Such a linearized problem may arise,
for example, from the AC driven Frenkel–Kontorova (FK) model [1–
3], which has been widely used to model rf-driven parallel arrays
of Josephson junctions (JJs) [4–6], or from more general models
of AC driven anharmonic lattices with realistic potentials [7,8].
It may also arise from models of inductively coupled AC driven
rf-SQUID arrays [9–11], from models of inductively coupled intrin-
sic Josephson junctions supplied by AC current [12–15], and also
from nonlinear magnetic metamaterial models that are comprised
of split-ring resonators placed in an AC magnetic field [16–19]. In
the latter case, those linear waves are known as (linear) magne-
toinductive waves [20,21], and they have phonon-like dispersion
curves [22] and many prospects for device applications [23–25].
In the present work we present analytical solutions that we have
obtained for DLMs in finite and discrete systems, with frequen-
cies either in the linear wave band (LWB) obtained in the usual
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way, or outside that band. We find that the former ones are ex-
tended modes as it is expected, while the latter ones are either
end-localized or end-avoided modes. The results are illustrated us-
ing as a paradigmatic example the driven FK chain [2], which in a
standard normalization form reads

q̈i + αq̇i + 1

2π
sin(2πqi)

= C(qi−1 − 2qi + qi+1) + fac sin(ωt), (1)

where qi is the ith ‘coordinate’ whose interpretations depend on
the particular system to which Eq. (1) is related, α is the loss co-
efficient, C is the coupling constant, fac is the amplitude of the
sinusoidal driver with frequency ω, and i = 1, . . . , N , with N being
the total number of elements in the chain.

2. The linearized problem

Linearization of Eq. (1) gives

q̈i + qi = C(qi−1 − 2qi + qi+1) + fac sin(ωt), (2)

where the losses have been omitted for simplicity. The earlier
equation accepts solutions of the form qi(t) = Q i sin(ωt), where
Q i is the time-independent mode amplitude at site i. By substitu-
tion of qi(t) into Eq. (2) we obtain a system of stationary equations

sQ i−1 + Q i + sQ i+1 = κ, (3)

where s and κ are real parameters given by

s = C

ω2 − (1 + 2C)
, κ = fac

(1 + 2C) − ω2
. (4)

In general, s and κ depend on the parameters of the particu-
lar model. Since we consider finite systems, Eq. (3) should be
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implemented with open–ended boundary conditions, i.e., Q 0 =
Q N+1 = 0, to account for the termination of the structure at both
ends. The formal solution of Eq. (3) can be written as

Q = κ Ŝ−11, (5)

where Q and 1 are N-dimensional vectors with components Q i
and 1, respectively, and Ŝ−1 is the inverse of the N × N coupling
matrix Ŝ. The latter is a real, symmetric tridiagonal matrix that has
diagonal elements equal to unity, while all the other non-zero el-
ements are equal to s. The need to find the inverse of tridiagonal
matrices like Ŝ arises in many scientific and engineering applica-
tions. Recently, Huang and McColl [27] related the inversion of a
general tridiagonal matrix to second order linear recurrences, and
they provided a set of very simple analytical formulae for the el-
ements of the inverse matrix. Those formulae lead immediately
to closed forms for certain, relatively simple tridiagonal matrices,
like Ŝ.

3. Analytical solutions

Following Huang and McColl [27] we can show that the ele-
ments of Ŝ−1 are given by (i � j)

(
Ŝ−1)

i j = μ
sinh( jθ) sinh[(N − i + 1)θ]

sinh θ sinh[(N + 1)θ] , (6)

for −1/2 < s < 1/2, where

μ = 1

|s|
(

−|s|
s

)(i− j)

, θ = ln
1 + √

1 − (2s)2

2|s| , (7)

and

(
Ŝ−1)

i j = μ
sin( jθ ′) sin[(N − i + 1)θ ′]

sin θ ′ sin[(N + 1)θ ′] , (8)

for s > 1/2 or s < −1/2, where

μ = 1

|s|
(

−|s|
s

)(i− j)

, θ ′ = cos−1
(

1

2|s|
)

. (9)

The elements of Ŝ−1 for i < j are given by the same expressions
as in Eqs. (6) and (10) by simply interchanging the indices i and j
(due to the symmetry). Although the above expressions are valid
for any N , in the following we assume that N is even.

For obtaining the solution Q, we first write Eq. (3) as

Q i = κ

N∑
j=1

(
Ŝ−1)

i j . (10)

It turns out that the sum in the right-hand side of the earlier equa-
tion can be calculated in closed form, using in an appropriate way
the summation formulae [28]

N−1∑
j=1

sinh( jy) = sinh

(
N − 1

2
y

)
sinh( N

2 y)

sinh y
2

, (11)

N−1∑
j=1

cosh( jy) = cosh

(
N − 1

2
y

)
sinh( N

2 y)

sinh y
2

− 1, (12)

for −1/2 < s < +1/2, and the formulae [28]

N∑
j=1

sin( jy) = sin

(
N + 1

2
y

)
sin( N

2 y)

sin y
2

, (13)

N∑
cos( jy) = cos

(
N + 1

2
y

)
sin( N

2 y)

sin y
2

, (14)

j=1
for s > 1/2 or s < −1/2. Then, using several identities for hyper-
bolic and trigonometric functions, we arrive, after long and tedious
calculations to the solution

Q i=odd = κ

2|s|D+
H

cosh

(
iθ

2

)
sinh

(
N − i + 1

2
θ

)
, (15)

Q i=even = κ

2|s|D+
H

sinh

(
iθ

2

)
cosh

(
N − i + 1

2
θ

)
, (16)

where

D+
H = cosh2

(
θ

2

)
sinh

(
N + 1

2
θ

)
, (17)

for 0 < s < +1/2,

Q i = κ

2|s|D−
H

sinh

(
iθ

2

)
sinh

(
N − i + 1

2
θ

)
, (18)

where

D−
H = sinh2

(
θ

2

)
cosh

(
N + 1

2
θ

)
, (19)

for −1/2 < s < 0,

Q i=odd = κ

2|s|D+
T

cos

(
iθ ′

2

)
sin

(
N − i + 1

2
θ ′

)
, (20)

Q i=even = κ

2|s|D+
T

sin

(
iθ ′

2

)
cos

(
N − i + 1

2
θ ′

)
, (21)

where

D+
T = cos2

(
θ ′

2

)
sin

(
N + 1

2
θ ′

)
, (22)

for s > +1/2, and

Q i = κ

2|s|D−
T

sin

(
iθ ′

2

)
sin

(
N − i + 1

2
θ ′

)
, (23)

where

D−
T = sin2

(
θ ′

2

)
cos

(
N + 1

2
θ ′

)
, (24)

for s < −1/2. The case where s = ±1/2 should be treated sepa-
rately. However, the solution of Eqs. (3) for that specific value of
the coupling parameter can be obtained by calculating the limit
s → 1/2 of the expressions Eqs. (15)–(16) and Eqs. (20)–(21) (for
s = +1/2). We find that the limits of those expressions are the
same, so that Q i (s = 1/2) is given by

Q i=odd = κ
N − i + 1

N + 1
, (25)

Q i=even = κ
i

N + 1
. (26)

In the same way, by calculating the limit s → −1/2 of the expres-
sions Eqs. (18) and (23) (for s = −1/2) gives for the Q i (s = −1/2)

the expression

Q i = κ i(N − i + 1). (27)

At this point we have given the solutions of Eqs. (3) for all real
values of the coupling parameter s.



N. Lazarides, G.P. Tsironis / Physics Letters A 374 (2010) 2179–2182 2181
Fig. 1. Driven linear modes for the finite Frenkel–Kontorova chain for C = 0.5, fac =
0.02, N = 50, and s > 0. The continuous lines serve as a guide to the eye. (a) End-
localized modes for ω = 2.646 (s = 0.1, κ = −0.004; black circles), ω = 1.915
(s = 0.3, κ = −0.012; red squares), ω = 1.744 (s = 0.48, κ = −0.0192; green tri-
angles). (b) Special case of ω = ωmax (s = +0.5, κ = −0.02). (c) Extended modes
for ω = 1.717 (s = 0.52589, κ = −0.021; black circles), ω = 1.459 (s = 3.8781,
κ = −0.0155; red squares). (For interpretation of colors in this figure, the reader
is referred to the web version of this Letter.)

4. Illustrative examples

For illustration we show in Figs. 1 and 2 (for s > 0 and s < 0,
respectively) plots of Q i as a function of i for an FK chain with N =
50, C = 0.5, fac = 0.02, and several frequencies. We should note
that those results were checked numerically. The linear dispersion
relation (LDR) for Eq. (2) is [2]

ω =
√

1 + 4C sin2(k/2), (28)

where k is the normalized wavenumber. The extends from ωmin =
1 to ωmax = √

1 + 4C , having gaps below and above ωmin and
ωmax , respectively. It is easy to see that the frequencies within
the LWB correspond to either s < −1/2 or s > +1/2, for ωmin <

ω < ωs and ωs < ω < ωmax , respectively, where ωs = √
1 + 2C .

Several DLMs are shown in Figs. 1(a), 1(b), and 1(c), correspond-
ing to 0 < s < +1/2, s = +1/2 and s > +1/2, respectively. We
observe that the modes in Fig. 1(a), with frequencies above the
LWB, exhibit weak localization at the end-points of the chain.
The mode shown in Fig. 1(b) corresponds to frequency ω = ωmax ,
exactly on the upper bound of the LWB, while those shown in
Fig. 1(c) are extended stationary solutions, with frequencies in the
LWB. The DLMs shown in Figs. 2(a), 2(b), and 2(c), correspond to
0 > s > −1/2, s = −1/2 and s < −1/2, respectively. The modes
shown in Fig. 2(a), with frequencies below the LWB, exhibit end-
avoidance. The mode shown in Fig. 2(b) corresponds to frequency
ω = ωmin , exactly on the lower bound of the LWB, while those
Fig. 2. Driven linear modes for the finite Frenkel–Kontorova chain for C = 0.5, fac =
0.02, N = 50, and s < 0. The continuous lines serve as a guide to the eye. (a) End-
avoided modes for ω = 0.2773 (s = −0.26, κ = 0.0104; black circles), ω = 0.5774
(s = −0.3, κ = 0.012; red squares), ω = 0.9428 (s = −0.45, κ = 0.018; green tri-
angles). (b) Special case of ω = ωmin (s = −0.5, κ = 0.02). (c) Extended modes for
ω = 1.016 (s = −0.51668, κ = −0.02067; black circles), ω = 1.089 (s = −0.61493,
κ = −0.02457; red squares). (For interpretation of colors in this figure, the reader
is referred to the web version of this Letter.)

shown in Fig. 2(c) are extended stationary solutions. From Figs. 1
and 2 we observe that the amplitude of the DLMs with frequencies
in the LWB increases with decreasing frequency.

5. Frequency dispersion and concluding remarks

Note that those amplitudes are determined uniquely from the
parameters of the system. Even though we have chosen a rather
weak driving amplitude fac , the DLMs close to the lower bound
of the LWB attain rather large amplitude (> 1 in some cases in
normalized units). Moreover, from the analytical solutions we in-
fer that the DLMs are resonant for particular values of frequencies
in the LWB. The frequencies of those resonances can be obtained
by zeroing the denominators of the solutions for the DLMs in
Eqs. (17), (19), (22), and (24). Specifically, by zeroing the denom-
inators D+

T and D−
T , for s > +1/2 and s < −1/2, respectively, we

get for the resonant values of s the relations

sR
m =

{
2 cos

(
2mπ

n + 1

)}−1

, (29)

for s > +1/2, where the integer 0 < m < (n + 1)/4, while

sR
m =

{
−2 cos

(
(2m + 1)π

)}−1

, (30)

n + 1
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Fig. 3. Frequency dispersion (eigen-frequencies vs. mode number m) for the fi-
nite Frenkel–Kontorova chain with N = 20 and C = 0.5. The black curve gives the
frequency dispersion for the infinite system while the red circles correspond to
the eigen-frequencies of the periodic system with N = 20. The green squares and
the blue rhombii are the eigen-frequencies of the finite system with open–ended
boundary conditions for m even and odd, respectively. (For interpretation of colors
in this figure, the reader is referred to the web version of this Letter.)

for s < −1/2, where the integer 0 � m < (n − 1)/4. The total num-
ber of resonances, which provide the frequency dispersion for a
finite chain, are n/2. The corresponding resonance frequencies ωm

are obtained from the first of Eqs. (4), as

ωm =
√

ω2
s + (

C/sR
m
)
, (31)

with sR
m given by either Eq. (29) (for s > +1/2) or Eq. (30) (for

s < −1/2). Since we ignored the loss term in Eq. (2), the mode
amplitudes go to infinity at the resonant frequencies. We should
note that both in Figs. 1(c) and 2(c), the values of ω were chosen
in between two neighboring resonances. If losses were taken into
account, the mode amplitudes would still reach considerably high
values, even for very weak driver. That example questions the va-
lidity of any linear approximation for DLMs at some part of the
LWB, which for the particular model lies between ωs and ωmin .
That situation get worse and worse as the lower bound is ap-
proached, and the large amplitude modes are expected to become
modulationally unstable for moderately high driving amplitudes
when nonlinearities are present.

We have presented analytical solutions in closed form for the
DLMs in finite and discrete systems whose elements are coupled
with their nearest neighbors. It should be stressed that these solu-
tions are generally valid for any such system with the appropriate
forms s and κ on its parameters. The presented examples, using
the driven FK model show that the DLMs are extended for fre-
quencies in the LWB and end-localized (end-avoided) for frequen-
cies above (below) the LWB. Those particular features of DLMs are
due to the choice of the open–ended boundary conditions, which
modifies the local potential that an element feels close to the end-
points. The resonance frequencies ωm , obtained from Eq. (31) for
all relevant values of m, provide the frequency dispersion for the
finite chain, which differs slightly from that of the periodic sys-
tem (Fig. 3). The difference increases with decreasing number of
elements. Preliminary calculations show that the localized states
shown here are stable and, moreover, they may evolve into dissi-
pative surface states when the nonlinearity sets in and the losses
are included [26].
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